
J Nanostruct 8(3): 225-231, Summer 2018

 RESEARCH PAPER

Optimization of Continual Production of CNTs by CVD Method 
using Radial Basic Function (RBF) Neural Network and the Bees 
Algorithm
Ameneh Ahangarpour1*, Mansoor Farbod1, Afshin Ghanbarzadeh2, Abbas Moradi2, 
Amin MirzakhaniNafchi2

1Department of Physics, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
2Department of Mechanical Engineering, Shahid Chamran University, Ahvaz, Iran

* Corresponding Author Email: a.ahangarpour@scu.ac.ir

ARTICLE  INFO 

Article History:
Received 11 March 2018
Accepted 28 May 2018    
Published 01 July 2018

Keywords:
Artificial Neural Network
Bees Algorithm
Carbon Nanotubes
Chemical Vapour Deposition
Optimization

ABSTRACT

How to cite this article
Ahangarpour A, Farbod M, Ghanbarzadeh A, Moradi A, MirzakhaniNafchi. Optimization of Continual Production of CNTs 
by CVD Method using Radial Basic Function (RBF) Neural Network and the Bees Algorithm. J Nanostruct, 2018; 8(3): 225-231. 
DOI: 10.22052/JNS.2018.03.001

Optimization of continuous synthesis of high purity carbon nanotubes 
(CNTs) using chemical vapour deposition (CVD) method was studied 
experimentally and theoretically. Iron pentacarbonyl (Fe(CO)5), acetylene 
(C2H2) and Ar were used as the catalyst source, carbon source and carrier 
gas respectively. The synthesis temperature and flow rates of Ar and acet-
ylene were optimized to produce CNTs at a large scale. A flow rate of 30-
120 sccm of acetylene and 500-3000 sccm of Ar at temperatures between 
650-950 °C were examined. Using the fundamental trial and error method 
it was found that the maximum yield of pure CNTs can be produced at 750 
°C with flow rates of 40-45 sccm of acetylene and 1500 sccm of Ar. In the-
oretical part, an artificial neural network (ANN) and the Bees Algorithm 
(BA) were used to model and optimize the CNTs production, based on 
the experimental data. The Bees Algorithm used the ANN as the fitness 
function and the optimum variables found as 60 sccm for acetylene, 555 
sccm for argon and 759 °C for temperature. The computational results have 
relatively good agreement with the experimental results.

INTRODUCTION 
Nowadays, the optimization process can play an 

important role in the experimental studies. Finding 
the optimum conditions using the conventional 
trial and error method is very time consuming 
and costly. So, optimization process based on 
experimental data is very useful to achieve such 
a goal. Here, we report the optimization of CNTs 
production conditions at a relatively large scale 
using continuous thermal CVD and confirmation 
of the production conditions using the artificial 
neural network.

Carbon nanotubes (CNTs), formed by rolling 
of graphene sheets into a tube shaped structure 
are unique 1D nanostructures. CNTs have been 

subjected to intense experimental investigations 
due to their novel mechanical and electrical 
properties. These properties accompanied by 
their high aspect ratio make them ideal for various 
potential applications such as electron field 
emitters, single molecular transistors, scanning 
probe microscope tip, hydrogen and energy 
storage, sensitive gas sensors, reinforcement 
agent of composites, etc. [1-6]. 

To date, many sintering methods have been 
developed for the production of CNTs such as the 
arc discharge method, laser ablation [7-9] and 
chemical vapour deposition (CVD) [10-12]. Among 
these methods, the CVD is more promising due to 
its large scale and continuous production potential, 
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low price, controlled synthesis conditions and the 
possibility of dense arrays of CNT growth [13-
17]. In this method at certain temperatures, the 
nanostructured metal catalysts like Fe, Co and 
Ni decompose a gas phase carbon source like 
hydrocarbons or other carbon precursors. The 
decomposed carbon atoms then are formed into 
the CNTs structures. 

In order to find the optimal conditions for CNT 
production, different flow rates of C2H2 between 
30 and 120 sccm and Ar between 500-3000 sccm 
were tried. The reaction temperature was chosen 
between 650 and 950°C. The reaction time for all 
experiments was 30 minutes afterward the furnace 
was cooled down to room temperature under a 
small flow of Ar. The samples were characterized 
using a scanning electron microscope (SEM, LEO 
1455VP) and a transmission electron microscope 
(TEM, LEO 906E). The XRD pattern of samples was 
taken using a Philips diffractometer (PW 1840) 
at room temperature utilizing Cu Kα radiation 
wavelength of λ = 1.5418 Å. 

The artificial neural network (ANN) was used 
to optimize the production conditions. Neural 
network models [18], assume many simplifications 
over actual biological neural networks. Such 
simplifications are necessary to understand 
the intended properties and to attempt any 
mathematical analysis. An artificial neural network 
(ANN) tries to model a living system by attempting 
to replicate its description from observation 
of the input/output behaviour. Many different 
internal descriptions can capture the input/output 
behaviour over the domain of observation, but the 
property of autopoiesis can be satisfied only by 
the internal states and intricate connections and 
dynamics of a living system. For this to happen in 
an ANN, the system must incorporate the feature 
of structural adaptation [19]. 

In order to solve many complex multi-variable 
optimization problems, it is necessary to use 

search algorithms that they can find optimal 
solution in the reasonable running times. The Bees 
Algorithm is one of the relatively new population 
based optimization techniques. It is inspired by the 
natural foraging behaviour of honey bees to find 
the optimal solution. Successful applications of the 
BA to a wide range of optimization problems, like 
benchmark test functions [20], mechanical design 
problems and other optimization problems [21] 
have demonstrated its potential and established it 
as an efficient optimization tool.

MATERIALS AND METHODS
The experimental system consists of a tube 

furnace with a heating zone of 20 cm and a 
quartz tube with an inner diameter of 3 cm as the 
reaction media. The quartz tube was connected 
from one end to the gases’ entrance and from the 
other end to the exhaust. The CNTs were formed 
by introducing the C2H2 as the reaction gas, Ar as 
the carrier gas and (Fe(CO)5) as the catalyst source 
into the reaction media. It was observed that 
the CNTs were formed everywhere on the inner 
surface of the quartz tube. Because of the liquidity 
of (Fe(CO)5) at room temperature, it was entered 
into the reaction media through a bubbler by direct 
bubbling of C2H2with various flow rates. The flow 
rates were controlled by local flow meters with 
an accuracy of one sccm. The bubbler was kept 
at 0 ᵒC in order to control a uniform evaporation 
of iron pentacarbonyl. This way of introducing the 
nanostructured metal catalyst into the furnace, 
was a key to have a continuous production. 
Indeed, as long as the flowing of the acetylene was 
last, the production of CNTs was continued.  The 
parameters that were to be optimized were the 
reaction temperature and the flow rates of Ar and 
C2H2. Any changes in these parameters could affect 
the purity and the yield of CNTs. Table 1 shows the 
conditions for the preparation different batches. 
In spite of producing CNTs with all conditions, 

 
Table 1. Different conditions for CNTs production 

 
CNT formation Flow rate of Ar 

(sccm) 
Flow rate of C2H2 

(sccm) 
Furnace temperature 

(◦C) 
Sample 

light 1000-1500 100-120 750-800 1 
dense 1000 40-45 700-750 2 

 high dense 1500 40-45 750 3 
dense 2000 40-45 750 4 
light 3000 40-45 750 5 
dense 1500 40-45 850 6 
dense 1500 40-45 900 7 
light 500-1500 30-35 750 8 

medium  1500 40-45 650 9 
 
 

Table 1. Different conditions for CNTs production
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based on SEM and TEM results, the quality and 
yield were different.   

By trial and error it was found that the flow 
rate of 40-45 sccm of C2H2, 1500 sccm of Ar and 
sintering temperature of 750 °C are the best choice 
for a dense production of CNTs. Figs. 1 and 2 show 
the SEM, TEM and XRD of the best sample.

RESULTS AND DISCUSSION
The neural network used in this study was a 

Radial Basic Function (RBF) neural network and 
has some specific characteristics. Fig. 3 shows the 

schematic representation of the RBF neural network 
structure. It has an input layer that represents the 
input variables to the neural network model which 
are Argon, Acetylene and temperature. This layer 
does not analyse the date. Also the RBF has an 
output layer that shows the result of the process, 
while the output layer is the quality of produced 
CNTs from the experiments. The hidden layers 
make a nonlinear correlation between input and 
output layers. In the RBF networks, the Gaussian 
functions were used as the transmission functions. 
The structure of ANN which was used in this paper 
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Fig. 1. SEM image of the best sample (sample 3). The inset shows 
SEM of the sample dispersed before imaging

 
 
 

 
 
 

 
  
 
 
 
 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. TEM image (left) and XRD pattern (right) of the best sample
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Fig. 3. Schematic representation of the RBF network
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consist of 3 hidden layers that number of neurons 
in each layer is 10, 10 and 4 respectively. In order 
to train this network, cross validation method 
was used. 2/3 of total experimental data were 
selected to train while the rest of data were used 
to test the network. To make a good train, the 
data should select randomly among all regions 
of data. So, the network can be abled to have an 
acceptable interpolation and extrapolation. The 

train procedure repeated until the mean square 
error (MSE) of the network and the experimental 
data become less than specified value (eta). Fig. 
4 shows the schematic representation of the 
training process.

ANN was used to estimate the fitness function 
calculator for the optimization problem. The 
BA requires a number of parameters to be set, 
namely: number of scout bees (n), number of 
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Fig. 4. Schematic representation of training process of NNs

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

Initialize a Population of n Scout Bees 

Evaluate the Fitness of the Population 

Select m sites for Neighbourhood search 

Determine the Size of Neighbourhood  
(Patch Size ngh) 

 
 

Recruit Bees for Selected Sites  
(More Bees for the Best e Sites) 
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Assign the (n-m) Remaining Bees to Random Search 

New Population of Scout Bees 

Fig. 5. Flowchart of the BA
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sites selected out of n visited sites (m), number 
of the best sites out of m selected sites (e), 
number of the bees recruited for the best e sites 
(nep), number of the bees recruited for the other 
(m-e) selected sites (nsp), initial size of patches 
(ngh) which includes site and its neighbourhood 
and stopping criterion. Fig. 5 shows flowchart of 
the Bees Algorithm.  For more details, the reader 
is referred to [23]. 

The optimization problem formulated as follows:

Maximize            J = ANNs (MLP) = f (T, Ar, Ac)
Subject to           650 < T < 950
                              500 <Ar< 3000
                              30 < Ac < 120

The resulting test of this network is shown 
in Fig. 6.  In this graph, O, represents the 
experimental data and +, represents the 
estimated value by ANN. According to this graph, 

the estimated values are in a good agreement 
with the experimental data.

Then, by use of this trained ANN as a fitness 
function, the convergence of quality graph was 
obtained and is shown in Fig. 7. The BA method 
is evaluated on experimental dataset according 
to Table 1 and compared against the state of 
the experimental results. According to this 
convergent, the designed variables that consist of 
argon, acetylene and temperature were obtained 
555 sccm, 60 sccm and 759 oC respectively.

In order to test the results of the ANN and BA 
experimentally, an experiment was performed 
at predicted conditions. Fig. 8 shows the SEM 
image of this sample which confirms that the 
CNTs have been successfully synthesized by the 
predicted conditions and the computational 
results have relatively in a good agreement with 
the experimental ones.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6. Comparison between the experimental data and the estimated value by ANN

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7. Converge of quality graph by use of trained ANN as a fitness function
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CONCLUSIONS
In this study, CNTs at a large scale were grown 

using CVD under different conditions. The flow rates 
of 1500 sccm of Ar and 40-45 sccm of acetylene at 
750°C were the optimal conditions for large scale 
production of nearly pure CNTs. Combination 
of artificial neural networks (ANN) and the Bees 
Algorithm (BA) was applied for optimization of 
CNTs production by use of the experimental data. 
So, the optimum variables were obtained as 60 
sccm for acetylene, 555 sccm for Ar and 759°C for 
temperature. The conditions which were found by 
the BA have good agreement with the conditions 
deduced from the experiments.
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