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Using green chemistry is an attractive proposed method for making nano 
photocatalysts for the photodegradation of organic pollutants. This work 
introduces the novel magnetic green nickel ferrite for the removal of 
dyes from wastewater. In this regard, green nickel ferrite nanostructures 
were prepared through a wet chemical route. The peppermint extract was 
utilized for the engineering of shape and size. The energy-dispersive X-ray 
spectroscopy (EDS) and X-ray powder diffraction (XRD) analyses confirmed 
the formation of pure nickel ferrite with a desirable crystalline structure. A 
scanning electron microscope (SEM) approved that the peppermint extract 
leads to the formation of regular and uniform nickel ferrite. The obtained 
hysteresis loop from the vibrating-sample magnetometer (VSM) showed 
the superparamagnetic behavior of prepared nickel ferrite. The optical 
property is a key factor for photocatalytic activity. So UV-Vis spectroscopy 
was applied for characterizing the optical properties of the sample. The 
optical band gap of prepared nickel ferrite was calculated 2.88 eV. Finally, 
the prepared green nickel ferrite was applied to remove rhodamine B and 
methylene blue from the water solution. The results showed that prepared 
nickel ferrite can be introduced as a promising candidate for the removal of 
organic pollutants. The prepared nano photocatalyst could photodegrade 
71.6% and 84.2% of rhodamine B and methylene blue under visible light. 

INTRODUCTION
Water is known as one of the main factors 

in the formation of life on earth.   However, in 
recent years, this source of life has been exposed 
to serious dangers due to destructive human 
activities.   This danger directly threatens human 
life on earth [1].   In recent decades, with the 
increasing expansion of the paint, textile and 

paper industries, the introduction of organic 
pollutants into the environment has also increased 
significantly.   In this regard, the introduction of 
organic pollutants into the environment and 
their penetration into the underground water has 
brought many concerns [2–4].   In addition, since 
this problem is directly related to human health, 
finding a suitable and quick solution is inevitable.  
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Several methods have been introduced and used 
so far, including filtration [5], electro-oxidation[6], 
photocatalytic process[7, 8], and ozonation [9]. 
The photocatalytic process is considered as the 
acceleration of a photoreaction in the presence 
of a photocatalyst. Photocatalyst is an agent that 
photodegrades organic pollutants under the 
sun lights containing UV rays[10], [11]. Since the 
emergence of photocatalysts as a viable option 
for environmental pollution control, efforts have 
been made to improve their reaction rate or 
photocatalytic activity. Metal oxide semiconductor 
photocatalysts have been increasingly focused on 
in recent years due to their potential applications 
in solar energy conversion and environmental 
purification[12–14]. Nanophotocatalysts are 
an important group of advanced materials 
that have the ability to destroy a wide range of 
organic pollutants and in this field can help solve 
environmental problems related to the paint, 
paper, and textile industries [15, 16]. The most 
important issue in the field of nano photocatalysts 
is the selection of the appropriate nanostructure. 
The nanostructure should be selected in such 
a way that it is a semiconductor and its optical 
properties allow the degradation of pollutants 
under visible light. In this regard, researchers 
have proposed a wide range of photocatalytic 
nanomaterials, the most important of which are 
metal oxide nanomaterials[14]metal sulfide [17], 
carbon nanostructures [18], and composites 
related to these nanostructures [19]. Over time, 
the limitations of using nanostructures in the field 
of photocatalysts became the focus of researchers. 
These limitations include high cost, low degradation 
efficiency, and environmental problems created 
by the nanostructures themselves[20]. So far, 
many efforts have been made to overcome these 
challenges. Various synthesis methods with 
multiple precursors have been proposed so that 
nanomaterials can be synthesized with the highest 
efficiency and lowest cost [21, 22]. In this regard, 
researchers have used simple chemical methods 
such as co-precipitation, sol-gel, hydrothermal and 
ultrasonic for the synthesis of nano photocatalysts, 
and by changing the effective parameters in these 
methods, they have been able to synthesize 
nanostructures with attractive morphological and 
optical properties[23, 24].  

Magnetic nanomaterials can be effectively used 
in the field of photocatalysts due to their unique 
properties.   The magnetic properties of these 

materials help them to be recovered and used 
again.   For these reasons, the use of magnetic 
nanomaterials has expanded a lot in recent 
years, and various magnetic nanomaterials have 
been used both in pure form and in hybrid form 
with other nanomaterials [25, 26]. Spinel ferrites 
(MFe2O4) are an important class of magnetic 
nanomaterials that have been noticed in the 
field of photocatalysts due to their attractive 
properties.   Research shows that the metal used 
and the applied method for synthesis determine 
the photocatalytic performance of ferrite 
nanomaterials.   For this reason, various types 
of ferrites have been synthesized by different 
methods and used as nano photocatalysts in the 
removal of organic pollutants [27, 28]. Various 
nickel ferrite nanostructures have been used as 
photocatalysts in the removal of various pollutants, 
but these nanostructures suffer from limitations 
such as inappropriate optical properties [29–31].  

In this work, nickel ferrite nanostructures 
were synthesized by a new chemical method.  
The synthesized nanostructures were identified 
by XRD, SEM, FTIR, and VSM techniques, and 
then the synthesized nanostructures were used 
to remove the ciprofloxacin pollutant and the 
possible mechanism was investigated.

MATERIALS AND METHODS
Materials 

All the materials such as Iron (III) chloride 
hexahydrate (Fe(NO3)3.6H2O) and Nickel (II) nitrate 
hexahydrate (Ni(NO3)2.6H2O), ammonia, were 
purchased from Merck Company and applied with 
any purification. 

Green preparation of nickel ferrite nanostructure
The nickel ferrite nanostructure was synthesized 

via dissolving 2:1 molar ratio of Fe(NO3)3.6H2O and 
Nickel (II) nitrate hexahydrate in distilled water 
separately. Then, 5 ml fresh peppermint extract 
as a capping agent was added to the iron (+3) 
containing solution and the stirring continued 
at room temperature, and then the nickel (2+) 
containing solution was added to the iron (+3) 
containing solution. Then the ammonia solution 
was added drop by drop to the solution and stirred 
for a further 20 min. Finally, the solution was 
transferred to a 20 mL Teflon-lined stainless-steel 
autoclave and was then heated at 140 °C for 7 h. 
Then, the solid was cooled to room temperature 
and separated by centrifugation at 12000 rpm for 
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10 min.

Photocatalytic test
The prepared nickel ferrite nanostructure was 

examined for the removal of rhodamine B and 
methylene blue under visible light at ambient 
conditions. 0.003 g/ml concentration of prepared 
nickel ferrite nanostructure were added to 100 
ml of 30 ppm of provided organic pollutants. 
Before applying light, the mixture of nickel 
ferrite nanostructure and provided dyes were 
stirred for 30 min in a dark to make adsorption–
desorption equilibrium between the nickel ferrite 
nanostructure and dyes solution. Then, the 
mixture was subjected to the provided visible light 
and at every given time interval, 5 ml pollutants 
solution was separated for examination with UV-
Vis spectrophotometer. The photocatalytic activity 
of nickel ferrite nanostructure was determined via 
the following equation (1):

𝑃𝑃ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 % = 𝐶𝐶0 − 𝐶𝐶𝑡𝑡
𝐶𝐶0

× 100 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Where C0 is the initial concentration of dyes Ct is 

the concentration after the time interval.

RESULTS AND DISCUSSION
The XRD pattern was applied for the investigation 

of structural and crystalline properties of 
prepared green nickel ferrite nanostructures. Fig. 
1 represents the XRD pattern of prepared nickel 
ferrite nanostructures. The position of peaks is in 
good agreement with JCPDS card no. 00-010-0325 
with Fd3m space group [32]. Also, no impurity 
peaks were observed in the XRD pattern. The 
crystallite size was calculated from (FWHM) (β) of 
the preferred orientation diffraction peak by using 
the Debye-Sherrer̛̛̛̛ s equation (2)[33]:
      

 

𝐷𝐷 = 0.94𝜆𝜆
𝛽𝛽 cos 𝜃𝜃                                                              (2)    

 
Where: λ: is the X-ray wavelength (Å), β: FWHM, 

θ: Bragg diffraction angle of the XRD peak, and 
(D) is a mean crystallite size or average grain size. 
The average grain size of as-obtained nickel ferrite 
nanostructures was calculated 24 nm. In terms of 
appearance, the width of the peaks indicates the 
small size of grains. 

 

 

 

 

 

 

Fig. 1. XRD patterns of prepared NiFe2O4 nanoparticles.
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Fig. 2 shows the FTIR spectrum of prepared 
green nickel oxide nanostructures. The presence 
of peaks at 647 and 532 cm-1 are attributed to 
the Ni-O and Fe-O bonds, respectively [34]. The 
presence of different peaks at 1000-1600 cm-1 can 
be assigned to the linked peppermint extract on 
the surface of nickel ferrite. The FTIR spectrum 
shows broad peaks at 3435 cm-1, corresponding 
to the stretching mode of the hydroxyl group, and 
a weak band at about 1640 cm-1 that is related 
to H–O–H bending vibration mode due to the 
adsorption of water molecules on the nickel ferrite 
surface.

The scanning electron microscope images were 
applied for the investigation of morphological 
properties of prepared green nickel nanostructures. 
As can be seen from Fig. 3, the regular morphology 
of spherical nanoparticles has been synthesized. 
The higher magnification of SEM image confirm the 
narrow size distribution of the prepared sample. 
It should be noted that no common chemical 
capping agent was used in this work and therefore 

the small size and regular shape of prepared nickel 
ferrite are attributed to the peppermint extract. 
The SEM images suggest the peppermint extract 
as an excellent capping agent for the preparation 
of nickel ferrite nanostructures.

EDS analysis was applied for the chemical 
analysis of the as-obtained sample. Fig. 4 shows 
the EDS analysis of the prepared sample. It can 
be concluded that the synthesized sample formed 
with any impurity. As well as seen, the Fe, Ni, and 
O elements are presented in the EDS analysis. 

The magnetic properties of prepared green 
nickel ferrite was investigated via the VSM 
hysteresis loop (Fig. 5). At the ambient condition, 
the coercivity (Hc) was determined 0 emu/g, and 
magnetization at saturation (Ms) was measured 
34 emu/g. As a result, the prepared green nickel 
ferrite nanoparticles exhibit superparamagnetic 
properties. This excellent magnetic feature is a key 
factor in the reusability of prepared nickel ferrite 
in the photocatalytic process.

Fig. 6a shows the optical absorbance spectra 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. FTIR spectrum of prepared NiFe2O4 nanoparticles.
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of prepared nickel ferrite nanospheres. Fig. 
6b shows the calculated band gap for nickel 
ferrite nanostructures. the optical band gap 
was determined through Tauc equation and 
extrapolating the linear section of the drawing 

of (𝛼h𝜈)2 vs h𝜈. In this regard, the optical band 
gap of prepared nickel ferrite nanostructures 
was measured 2.88 eV which matches the band 
gap that was previously reported. Photocatalytic 
activity is based on the principle of irradiating a 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. SEM images of prepared NiFe2O4 nanoparticles at different magnifications.

Fig. 4. EDS analysis of as-obtained NiFe2O4 nanoparticles.
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semiconductor material with light that leads to 
electro-hole pair formation. Electrons in the valence 
band of this material absorb enough energy equal 
to or greater than that of the band gap to shift from 

the valence band to the conduction band, leaving 
holes. In this work, photocatalytic performance 
was investigated via photodegradation of 
rhodamine B and methylene blue. As well as 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5. VSM analysis of synthesized NiFe2O4 nanoparticles

Fig. 6. a) UV-Vis absorption spectra of synthesized NiFe2O4 nanoparticles b) Optical band gap of prepared NiFe2O4 nanoparticles
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seen in Fig. 7, 71.6% and 84.2% of rhodamine 
B and methylene blue were removed from the 
solution after 120 min solar light irradiation. The 
reactive oxygene species (ROS) are the major ones 
responsible for the photodegradation of organic 
pollutants. The hydroxyl radicals are one of these 
active species that are caused by a positive charge 
hole reaction with water molecules. Superoxide 
anions are also produced from the reaction of 
negative charge electron with oxygen molecules. 
In addition to this, due to the presence of nickel 
ferrite nanostructures, there may be a chance of 
the Fenton process intensifies the photocatalytic 
process [35].

CONCLUSION
The green nickel ferrite nanostructures were 

synthesized via a hydrothermal route. The 
peppermint extract was applied as capping agent. 
The peppermint extract leads to the formation of 
a regular shape of nickel ferrite with narrow size 
distribution. The prepared nanostructures were 
characterized via XRD, FTIR, SEM, EDS, and VSM 
analysis. Results showed the superparamagnetic 
behavior of prepared nickel ferrite nanospheres 
with saturation magnetization of 34 emu/g. The 
optical properties of the prepared sample was 
investigated via UV-Vis spectroscopy. The optical 
band gap of prepared nickel ferrite nanospheres 
was calculated 2.88 eV. Finally, the prepared 
sample was applied for photodegradation of 
rhodamine B and methylene blue under visible 

light. The prepared green nickel ferrite showed 
considerable photocatalytic activity and degraded 
71.6% and 84.2% of rhodamine B and methylene 
blue after 120 min irradiation. 
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