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This study investigates the effects of diverse concentrations of zirconium 
oxide nanofiller powders (2%, 4%, 6%, and 8%) on the transverse 
and impact strengths of heat-cure polymer resin polymerization. Our 
approach’s novelty lies in using a novel method developed using pure 
polymethyl methacrylate. Powder samples of zirconium oxide in various 
concentrations were blended with hot-cured acrylic resin, which is treated 
with ideal conditions (L/P) rate of about 1: 3 (v/v), traditional packing 
method, and short curing cycle. Under two heating program of about 
74 °C (90 min) and 100 °C (30 min), polymethyl methacrylate (PMMA) 
specimens with dimensions of 65× 10× 2.5 mm for transverse strength and 
60× 7× 4 mm for impact strength were evaluated. Values for impact stress 
(J) and transverse stress (MPa) were gathered, tabulated, and statistically 
analyzed. ANOVA and Tukey’s tests were used to assess the range for 
the experimental samples. The addition of ZrO2 nanofillers significantly 
increased PMMA ‘s transverse and impact strengths, suggesting practical 
applications for denture base materials. These findings highlight the 
potential of PMMA and 8% weight percent ZrO2 nanofillers as effective 
options for denture based materials.

INTRODUCTION
Polymethyl methacrylate (PMMA) has been 

introduced more popular acrylic resin for the 
fabrication of dentures due to their benefits, 
which include cheap instrument costs, oral 
stability, pleasing aesthetics, accurate fitting, and 
ease of clinical and lab modification [1]. Although 
this material has been used for the manufacturing 
of dental restorations through prosthodontics, 
it was not sufficient to fulfill the optimum 
functional requirements for dental restorations. 
This was primarily due to low strain rate and 
plaque accumulation [2, 3]. According to a study 
comparing ten different denture base resins, it 

reported that approximately 70% of the dentures 
failed during the initial three years of delivery [2]. 
Upper denture fractures are more prevalent than 
lower denture fractures, with deboned or split 
teeth accounting for 33% of denture repairs and 
midline breaks accounting for 29%, according to 
studies. The remaining fractures are a variety of 
different types. Another researcher reported that 
mandibular partial dentures were widely used 
and regularly repaired [4]. Therefore, assessing 
the mechanical and physical characteristics of 
the foundation material for dentures is essential 
to determine the impact of different stressing 
materials [5-7]. Many experiments have been 
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done to improve the properties of the denture 
base materials, such as adding an elastomeric 
stage of evolution [8], metal frames and metal 
oxides [9, 10], or fibers [11]. Despite this progress, 
PMMA fracture resistance has yielded only a few 
encouraging outcomes [12]. Particular focus was 
placed on strengthening polymers for application 
in metal-composite dental systems [13]. Through 
the development of a novel kind of ceramic 
nanoparticles, the ZnO2 nanoparticle was selected 
for improving the biocompatibility of PMMA and 

to increase the material’s superior resistance and 
hardness in porcelain [14, 15]. The study aims to 
determine impacts of ZrO2 nanoparticles on the 
mechanical properties of hot-cure PMMA. 

MATERIALS AND METHODS
The research was investigated to evaluate 

the ability of ZrO2 nanofiller powder (in vitro) at 
different concentrations (2%, 4%, 6%, and 8%) on 
the transverse and impact stresses at a range of 5 
to 15 nm for polymerized heat-cured acrylic resin. 

 

  

 

  

Fig. 1. SEM image of ZrO2 nanoparticles.

Fig. 2. XRD pattern of ZrO2 nanoparticles.
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Created specimens with the following dimensions: 
60 × 7 × 4 mm for impact strength and 65 × 10 
× 2.5 mm for transverse strength were employed. 
As a control, one type of acrylic resin that cures 
with heat (Classico Dental Products, Sao Paulo, 
SP, Brazil) and zirconium oxide nanofiller powder 
(Germany, Batch No. 505/04) was incorporated 
into heat-cure acrylic resin (PMMA) in various 
doses (2%, 4%, 6%, and 8%) and processed under 
optimal conditions with a L/P ratio of 1:3 (via 
volume). Conventional packing method, short 
curing cycle (90 min with 74° C) and long curing 
cycle (30 min with 100° C) was utilized. 

RESULTS AND DISCUSSION
Characteriazation

The SEM micrographs in Fig. 1 demonstrate 
spherical ZrO2 nanoparticles along with negligible 
agglomeration, which possess average size range 
of 5–15 nm and homogeneous dispersion inside 
the PMMA matrix.

The XRD pattern in Fig. 2 display distinct 
diffraction peaks of the monoclinic and tetragonal 
phases of ZrO2. The distinctness of the peaks 
verified elevated crystallinity.

One hundred bar-shaped samples were 
manufactured for investigation. The samples were 
separated into transverse stress (Gr. A) and impact 
stress (Gr. B), with 50 samples in each group. Five 
subgroups (I, II, III, IV, and V) were created from 
each of the samples, as seen in Table 1.

Transverse stress test (TS)
According to International Standard 

Organization 1567, transverse stress testing (TS) is 
performed for denture base polymers [16, 17]. The 
following standards are rectangular (65 × 10 × 2.5 
mm). A Lloyd universal testing machine (model LRX 
Plus II, Fareham, England) with a three-point force 
and a 5 mm/minute crosshead speed was used for 
the tests. Table 2 and Fig. 3 compare the mean TS 
in MPa for the examined PMMA grouping. ANOVA 

 

  

Group AI 

Control group 

Group AII 

(2% ZrO2) 

Group AIII 

(4% ZrO2) 

Group AIV 

(6% ZrO2) 

Group AV 

(8% ZrO2) 
P-value 

Mean ± SD Mean ± SD Mean ± SD Mean ± SD Mean ± SD  

80.1±1.125 87.4±2.97 94.2±3.3.86 103±2.01 130.1±1.21 0.000* 

 
  

Table 2. A comparison of the mean transverse strength (MPa) of the tested PMMA groups.

Fig. 3. Bar graph of average transverse stress (MPa) for the PMMA testing groups.
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analysis showed a statistically significant variance 
between the groups. The PMMA samples with 8% 
of ZrO2 nanofiller (Gr. AV) had the highest mean 
transverse stress, which was followed by samples 
with 6% (ZrO2, Gr. AIV), 4% (ZrO2, Gr. AIII), and 2% 
(ZrO2, Gr. AII). The significant variation was among 
the investigation brands (P≤0.05).

Impact stress test (IS)
Impact strength testing was performed on 

rectangular-shaped samples (60 × 4 × 7 mm) (IS). 
Uzun et al. [18] employed a similar sample size 
and strength test procedure. A 3.5-mm wedge 
was prepared for the whole sample using a notch 
cutter. Pressure was applied to the un-notched 
side of the samples from the Charpy-type impact 
testing (J/mm2). Samples that passed the first 

test without breaking were excluded from the 
investigation throughout the testing process. The 
acquired transverse and impact strength values 
were tabulated, verified for statistical significance, 
and reported [19]. Tukey’s testing and assessment 
within one variance (ANOVA) were used to 
examine average significant of the experimental 
groups, which were statistically significant at P 
≤0.05.

The mean transverse stress was substantially 
lower in a polymethyl methacrylate sample (control 
group) that did not include other compounds. The 
groups improved the IS factor. According to the 
finding in Table 3 and Fig. 4, ZrO2 reinforcement 
revealed a substantially high level in IS.

By adding ZrO2 nanoparticles, researchers 
hoped to augment the mechanical characteristics 

 

Group B1 

Control group 

Group B2 

(2% ZrO2) 

Group B2 

(4% ZrO2) 

Group B2 

(6% ZrO2) 

Group B2 

(8% ZrO2) 
P-value 

Mean ± SD Mean ± SD Mean ± SD Mean ± SD Mean ± SD  

1.64±1.01 2.02±0.02 2.68±1.01 2.89±1.03 3.52±1.11 0.000* 

 

Fig. 4. Bar graph of the average impact strength for the PMMA testing groups.

Table 3. The mean impact strength (J/mm2) of the tested PMMA groups.
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of PMMA, particularly the impact and transverse 
stresses. Three methods exist for improving 
PMMA’s mechanical properties: substituting it 
with another material, modifying it chemically, or 
strengthening it with additional materials [20, 21]. 
Adding ZrO2 nanofillers enhanced the mechanical 
characteristics of acrylic resin. Moreover, ZrO2 
has been employed due to its exceptional 
biocompatibility and a white hue that does not 
negatively impact aesthetics. Microparticles 
used in this work improve adaptability with 
natural polymers, decrease aggregation, and 
create excellent diffusion  [22, 23]. A range of 
ZrO2 nanofillers (2–8%) has been chosen as the 
appropriate overall average since an average of over 
7% causes noticeable changes in the acrylic [24]. 
One type of mechanical stress test is mastication. 
While mastication attempts to deliver this kind of 
strength to the denture, TS testing proved that 
denatured base materials help evaluate them [25]. 
The TS combines compression shear and tensile 
stresses that can affect a material’s stiffness and 
ability to withstand fracture [26]. Dentures made 
of acrylic resin broke when their thickness was 
reduced, and research is still ongoing to create 
a more impact-resistant foundation material for 
dentures. The impact of stress is an essential 
factor since it may, under some circumstances, 
represent the force required to shatter a denture, 
like an accidental fall [26]. Recent study discovered 
that enhancing the average ZrO2 fillers significantly 
improved impact and transverse stresses. The 
previous research showed high mechanical 
properties may account for the more excellent 
surface shear stress that results from bent or 
supramolecular bonding formation covering or 
shielding the nanofillers from the composite 
resin. Additionally, enhanced flexural stress, 
toughness, and resistance to fracture propagation 
occurred when the nanofillers in the resin reached 
their maximum moisture content [27, 28]. This 
investigation’s results align with those of earlier 
studies [29-31], which unequivocally showed that 
mechanical qualities may be markedly enhanced 
by ZrO2 reinforcement of porcelain and restorative 
dental resins in addition to acrylic resin.

CONCLUSION
This study emphasis that adding ZrO2 

nanofillers to PMMA boosted the heat-
polymerized acrylic resin’s transverse and impact 
strengths. The research findings indicate that the 

optimal outcomes were attained at an 8% weight 
concentration.
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