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Head and neck squamous cell carcinoma (HNSCC) remains a therapeutic 
challenge due to its aggressive nature, immunosuppressive tumor 
microenvironment, and resistance to conventional therapies. Immune 
checkpoint modulation, particularly targeting the PD-1/PD-L1 axis, has 
shown promise but is limited by systemic toxicity and insufficient tumor-
specific delivery. Combining chemotherapy with immune checkpoint 
blockade offers a synergistic strategy to enhance antitumor efficacy 
while mitigating immune evasion. This review explores the novel use of 
dual-ligand liposomes for the co-delivery of cisplatin, a platinum-based 
chemotherapeutic agent, and anti-PD-L1 siRNA to simultaneously induce 
tumor cell death and reverse PD-L1-mediated immunosuppression. By 
integrating two targeting ligands, these nanocarriers improve tumor 
specificity, reduce off-target effects, and enhance drug accumulation 
in HNSCC tissues. Preclinical studies demonstrate that this approach 
potentiates cisplatin’s cytotoxic effects while silencing PD-L1 to activate 
cytotoxic T lymphocytes, fostering a durable antitumor immune response. 
The dual-ligand design addresses key limitations of single-ligand systems, 
offering a platform for precise, combinatorial therapy. 
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INTRODUCTION  
Head and neck squamous cell carcinoma 

(HNSCC) is the sixth most common cancer globally, 
with over 890,000 new cases annually [1]. It 
arises from mucosal epithelia in the oral cavity, 
pharynx, and larynx, often linked to tobacco use, 
alcohol consumption, and human papillomavirus 
(HPV) infection [2]. Despite advances in surgery, 
radiotherapy, and chemotherapy, the 5-year 
survival rate remains below 65% due to late 
diagnosis, metastasis, and recurrence [3]. New 
therapies for HNSCC are limited by systemic toxicity, 
chemoresistance, and an immunosuppressive 
tumor microenvironment (TME) [4]. Cisplatin, 
a cornerstone of HNSCC chemotherapy, often 
fails in advanced cases due to dose-limiting 
nephrotoxicity, neurotoxicity, and acquired 
resistance [4]. Additionally, tumor cells evade 
immune surveillance by upregulating PD-L1, which 
binds PD-1 on T cells to inhibit their activity [5]. 
Monotherapies targeting PD-1/PD-L1 achieve only 
modest response rates (15–20%), underscoring 
the need for combinatorial strategies [6].  Immune 
checkpoint inhibitors (ICIs) have revolutionized 
oncology, but their efficacy in HNSCC is hindered 
by poor TME penetration and adaptive resistance 
[7]. Silencing PD-L1 via siRNA offers a gene-editing 
approach to block immune evasion at its source, 
while cisplatin promotes immunogenic cell death 
(ICD), releasing tumor antigens that prime T-cell 
responses [8]. Combining these agents could 
synergistically enhance antitumor immunity and 
cytotoxicity. Co-delivering these agents ensures 
spatial-temporal coordination, maximizing 
therapeutic synergy while minimizing systemic 
immunosuppression [9].  

Nanocarriers, particularly liposomes, improve 
drug solubility, prolong circulation, and enhance 
tumor targeting [10]. Dual-ligand liposomes 
functionalized with two distinct targeting moieties 
(e.g., folate and transferrin receptors) exploit 
overexpression of multiple receptors on HNSCC 
cells, enabling precise delivery to both tumor 
and immune cells. This design overcomes the 
heterogeneity of HNSCC and improves penetration 
into the dense TME [11].  

The novelty of this approach lies in the integration 
of dual-ligand liposomes for simultaneous 
delivery of cisplatin and anti-PD-L1 siRNA. This 
review aims to evaluate the mechanistic basis, 
preclinical efficacy, and translational potential of 
this combinatorial nanotherapy, offering insights 

into its role in redefining immune checkpoint 
modulation for HNSCC treatment.

DUAL-LIGAND LIPOSOME DESIGN AND 
FORMULATION
Liposome Engineering for Dual-Targeting

Dual-ligand liposomes represent an advanced 
nanoscale drug delivery system designed to 
facilitate the co-administration of cisplatin 
and anti-PD-L1 siRNA. This formulation aims 
to enhance tumor-specific targeting, improve 
drug stability, and increase therapeutic efficacy, 
addressing challenges associated with tumor 
heterogeneity and immunosuppressive tumor 
microenvironments[12]. Cisplatin exerts 
cytotoxic effects by inducing DNA crosslinking 
and promoting immunogenic cell death, whereas 
anti-PD-L1 siRNA modulates immune responses 
by downregulating PD-L1 expression, thereby 
restoring T-cell function. The simultaneous 
delivery of these therapeutic agents is intended 
to optimize antitumor immune responses and 
inhibit mechanisms of immune evasion [13]. 
Traditional liposomal formulations primarily rely 
on passive accumulation; however, variability in 
tumor characteristics in head and neck squamous 
cell carcinoma can limit treatment efficacy [14]. 
The dual-ligand approach incorporates two 
receptor-targeting moieties, increasing binding 
affinity for both tumor cells and immune cells, 
thereby improving therapeutic delivery precision 
[15]. In head and neck squamous cell carcinoma, 
folate receptors and transferrin receptors are 
frequently overexpressed, facilitating selective 
tumor uptake [16]. Folate functions as an 
essential cofactor in DNA synthesis, with cancer 
cells exhibiting increased folate uptake due to 
heightened metabolic activity [17]. Similarly, 
transferrin plays a crucial role in iron homeostasis 
and is highly expressed in proliferative tumor 
cells, making it a viable targeting ligand [18]. The 
combination of folate and transferrin ligands in 
the dual-functionalized liposomal system ensures 
precise tumor accumulation, optimizing drug 
delivery efficiency [19]. Achieving effective drug 
penetration within the tumor microenvironment 
is critical for PD-L1 silencing and immune 
modulation [20]. 

siRNA Loading: Challenges and Solutions
The delivery of anti-PD-L1 siRNA presents 

several inherent challenges, primarily related to 
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its stability, cellular uptake, and susceptibility to 
nucleic acid degradation. Free siRNA molecules 
are highly vulnerable to enzymatic degradation by 
nucleases in circulation, resulting in a short half-life 
and limited therapeutic efficacy [21]. Additionally, 
the negative charge and hydrophilic nature of 
siRNA molecules hinder their ability to traverse 
lipid membranes, leading to poor intracellular 
penetration and inefficient gene silencing [22]. 
Overcoming these obstacles necessitates the 
development of optimized delivery systems that 
enhance siRNA stability, facilitate cellular entry, 
and ensure effective gene silencing without 
premature degradation. Several key challenges 
must be addressed to achieve successful siRNA 
delivery. One major limitation is rapid clearance 
from circulation, which significantly reduces 
bioavailability and necessitates stabilization 
strategies to extend siRNA half-life [23]. Low 
transfection efficiency further complicates 
therapeutic application, as siRNA must enter tumor 
cells efficiently and suppress PD-L1 expression 
without being neutralized prior to intracellular 
processing [24]. Another critical barrier is the 
endosomal escape limitation, wherein siRNA 
molecules are internalized via endocytosis but 
frequently undergo degradation within lysosomal 
compartments before reaching the cytoplasm, 
thereby reducing their functional availability for 
gene silencing [25]. To improve the stability and 
delivery efficiency of siRNA therapeutics, several 
formulation strategies have been explored. Cationic 
liposomes serve as an effective delivery platform 
by incorporating positively charged lipids that 
interact electrostatically with negatively charged 
siRNA molecules [26]. This electrostatic association 
enhances siRNA encapsulation, improves retention 
within lipid-based carriers, and facilitates 
cellular uptake [27]. Surface modifications such 
as polyethylene glycol functionalization further 
contribute to siRNA stabilization by shielding the 
therapeutic cargo from enzymatic degradation 
and immune recognition, thereby prolonging 
systemic circulation and enhancing biodistribution 
[23]. Additionally, endosomal escape strategies 
are critical for maximizing siRNA bioavailability 
within the cytoplasm [28]. Lipid-based carriers 
often integrate pH-sensitive compounds such as 
histidine-modified lipids, which induce endosomal 
membrane destabilization in response to acidic 
intracellular environments, facilitating the 
release of siRNA into the cytoplasm and ensuring 

effective gene silencing [29]. These optimization 
strategies collectively enhance the efficacy 
of PD-L1 suppression, thereby potentiating 
the immunomodulatory effects required for 
antitumor activity [30]. When combined with 
cisplatin-induced immunogenic cell death, siRNA-
mediated PD-L1 downregulation contributes 
to sustained immune activation and improved 
therapeutic outcomes in head and neck squamous 
cell carcinoma [31]. 

Ligand Selection for Tumor-Specific Targeting
The selection of ligands for tumor-specific 

targeting is a critical factor in optimizing drug 
delivery, ensuring precise accumulation within 
tumor cells and immune compartments. While 
passive targeting strategies rely on the enhanced 
permeability and retention effect, active targeting 
mechanisms leverage ligand-receptor interactions 
to achieve selective drug localization [32]. By 
incorporating ligands that are overexpressed 
on malignant cells, it is possible to enhance 
therapeutic specificity while minimizing off-
target effects. The strategic selection of ligands 
is particularly relevant in the context of head 
and neck squamous cell carcinoma, where 
tumor heterogeneity and an immunosuppressive 
microenvironment pose significant challenges 
to conventional drug delivery approaches [33]. 
Among the various targeting ligands investigated, 
folate has emerged as a highly effective molecule 
for tumor-specific drug accumulation. Folate 
receptors are frequently overexpressed in head 
and neck squamous cell carcinoma, facilitating 
ligand-mediated endocytosis and enhancing the 
intracellular delivery of therapeutic agents [34]. 
The high-affinity interaction between folate and its 
receptor allows selective uptake, reducing systemic 
exposure and minimizing off-target effects. This 
ligand is particularly advantageous in circumventing 
normal tissue accumulation, thereby improving 
the therapeutic index of liposomal formulations 
[35]. Transferrin represents another widely 
utilized ligand for active targeting. The transferrin 
receptor is highly expressed in proliferative tumor 
cells, playing a pivotal role in iron homeostasis and 
cellular metabolism [36]. The overexpression of 
transferrin receptors in malignant tissues makes 
transferrin an ideal targeting moiety for liposomal 
drug delivery systems. By facilitating receptor-
mediated endocytosis, transferrin improves drug 
uptake efficiency and enhances tumor-specific 
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accumulation. This ligand is especially beneficial 
for nanoparticle-mediated cisplatin delivery, as 
iron metabolism influences tumor progression 
and therapeutic sensitivity [37]. Epidermal 
growth factor receptor inhibitors offer a targeted 
approach for addressing tumors with high EGFR 
expression. Certain head and neck squamous 
cell carcinoma subtypes exhibit elevated EGFR 
levels, which contribute to malignant progression 
and therapeutic resistance [38]. Ligands directed 
towards EGFR facilitate selective drug delivery, 
allowing liposomal formulations to preferentially 
bind to cancer cells exhibiting EGFR amplification. 
Targeting this receptor enhances intracellular 
drug retention and reinforces treatment efficacy, 
particularly in combination with immune-
modulatory agents [39]. CD44-targeting moieties 
provide an additional avenue for improving tumor 
penetration and drug delivery specificity. CD44, 
a cell surface glycoprotein associated with tumor 
invasion and stemness, is frequently upregulated 
in head and neck squamous cell carcinoma [40]. 
The utilization of CD44-targeting ligands enables 
deeper tumor microenvironment penetration, 
improving intracellular drug bioavailability 
and reducing tumor recurrence risks [41].  An 
important consideration in ligand selection is the 
optimization of ligand density to prevent excessive 
binding affinity that may trigger rapid clearance 
mechanisms [42]. Overexpression of targeting 
moieties can lead to accelerated systemic 
elimination via mononuclear phagocytic system 
recognition, thereby reducing drug accumulation 
at the tumor site. Balancing ligand affinity is 
essential to ensure sufficient receptor-mediated 
uptake while avoiding premature degradation 
[43]. 

MECHANISMS OF ACTION
Cisplatin Encapsulation: Methods and Stability

Cisplatin is a platinum-based chemotherapeutic 
agent widely utilized in oncology due to its 
ability to induce DNA crosslinking, thereby 
disrupting tumor cell replication and promoting 
immunogenic cell death [44]. This mechanism 
of action renders cisplatin highly effective in 
treating various malignancies; however, its clinical 
utility is often constrained by dose-dependent 
toxicity and the emergence of drug resistance. 
These limitations necessitate the development of 
advanced drug delivery systems that can enhance 
cisplatin’s therapeutic index while minimizing 

adverse effects [45]. Among the various strategies 
investigated, liposomal encapsulation has 
demonstrated considerable potential in improving 
cisplatin delivery by providing controlled release 
kinetics, reducing systemic toxicity, and increasing 
tumor-specific accumulation [46]. Liposomes, 
which are phospholipid-based vesicular 
systems, serve as biocompatible carriers that 
can encapsulate cisplatin within their aqueous 
compartments. Their structural versatility allows 
for modifications that enhance drug loading 
efficiency, stability, and bioavailability, ensuring 
optimal therapeutic efficacy upon administration 
[47]. Several techniques have been employed to 
encapsulate cisplatin within liposomes efficiently. 
The hydration and solvent evaporation method, 
a widely used approach, facilitates liposome 
formation while enabling cisplatin incorporation 
within the aqueous phase. This technique ensures 
adequate drug encapsulation while maintaining 
the physicochemical stability of the liposomal 
formulation [48]. Remote loading using pH 
gradients has also been extensively explored, 
where cisplatin is actively loaded into liposomes 
by exploiting pH differences. This method 
enhances drug retention and stability, preventing 
premature release during circulation [49]. In 
addition, modified lipid-polymer hybrids integrate 
polymeric stabilizers that improve cisplatin 
retention within liposomes, effectively mitigating 
the risk of premature leakage while preserving the 
drug’s bioavailability [50]. Beyond enhancing drug 
stability and bioavailability, liposomal cisplatin 
formulations have demonstrated significant 
potential in mitigating cisplatin-induced toxicity. By 
modulating pharmacokinetics and biodistribution, 
liposome-mediated delivery achieves targeted 
tumor accumulation while preserving cisplatin’s 
immunogenic properties [51]. 

Cisplatin-Induced Immunogenic Cell Death in 
HNSCC

Cisplatin, a platinum-based chemotherapeutic 
agent, is widely utilized in the treatment of head 
and neck squamous cell carcinoma due to its potent 
cytotoxic effects, primarily mediated through DNA 
crosslinking and apoptosis induction. By forming 
intra- and interstrand crosslinks within the genomic 
DNA of tumor cells, cisplatin disrupts essential 
replication and transcription processes, ultimately 
leading to cell cycle arrest and programmed cell 
death [4]. While its efficacy as a cytotoxic agent is 
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well-established, emerging evidence suggests that 
cisplatin possesses additional immunomodulatory 
properties, contributing to its therapeutic potential 
beyond direct tumor cell eradication [52]. A key 
immunogenic mechanism associated with cisplatin 
treatment is the induction of immunogenic cell 
death, a specialized form of apoptosis that elicits an 
adaptive immune response through the release of 
damage-associated molecular patterns [53]. These 
molecular signals, including extracellular ATP, 
high-mobility group box 1, and surface-exposed 
calreticulin, act as potent immunostimulatory 
agents, facilitating dendritic cell activation and 
subsequent tumor antigen presentation [54]. The 
activation of dendritic cells in response to these 
damage-associated molecular patterns enhances 
CD8⁺ T-cell priming, thereby promoting robust 
antitumor immunity [55]. This immunogenic facet 
of cisplatin-mediated cell death distinguishes it 
from conventional apoptosis and underscores its 
role as a potential enhancer of immune checkpoint 
inhibition strategies [56].

 Despite the promising immunogenic properties 
of cisplatin, its efficacy in head and neck 
squamous cell carcinoma is often compromised 
by the presence of an immunosuppressive 
tumor microenvironment [57]. Tumor-associated 
regulatory T cells and myeloid-derived 
suppressor cells exert immunosuppressive effects 
that impede effective antitumor immunity, 
diminishing the ability of CD8⁺ T cells to mount 
sustained cytotoxic responses [58]. Additionally, 
the upregulation of immune checkpoint 
molecules such as programmed death-ligand 
within the tumor microenvironment facilitates 
immune evasion, reducing the effectiveness of 
cisplatin-induced immunogenic signalling [59]. 
Consequently, therapeutic interventions aimed 
at counteracting immune suppression within 
the tumor microenvironment, including immune 
checkpoint inhibitors and selective depletion 
of immunosuppressive cell populations, may 
synergize with cisplatin treatment to improve 
patient outcomes [60].

Another clinical challenge associated with 
cisplatin therapy is the emergence of resistance 
mechanisms, which limit its long-term efficacy 
[44]. Cisplatin-resistant tumor cells often exhibit 
enhanced DNA repair capabilities, effectively 
reversing cisplatin-induced DNA damage and 
restoring proliferative potential [61]. Additionally, 
increased expression of drug efflux transporters 

facilitates cisplatin extrusion from tumor cells, 
further contributing to therapeutic resistance. 
These resistance mechanisms underscore the need 
for combination strategies that integrate cisplatin 
with adjunctive therapies targeting DNA repair 
pathways or efflux-mediated drug resistance [59].

Anti-PD-L1 siRNA-Mediated Immune Checkpoint 
Blockade 

The PD-1/PD-L1 signaling axis represents a 
fundamental immune checkpoint mechanism 
that contributes to immune evasion in head and 
neck squamous cell carcinoma [57]. Tumor cells 
frequently overexpress PD-L1, which interacts with 
PD-1 receptors on T cells, leading to the inhibition 
of T-cell activation and the induction of exhaustion 
[62]. This interaction suppresses antitumor 
immune responses, facilitating tumor progression 
and reducing the efficacy of immunosurveillance 
mechanisms [63]. Therapeutic strategies aimed 
at disrupting this pathway have demonstrated 
significant potential in restoring T-cell function and 
enhancing antitumor immunity [60]. Anti-PD-L1 
small interfering RNA has emerged as a promising 
molecular tool for modulating immune checkpoint 
inhibition [64]. By selectively targeting PD-L1 
mRNA, siRNA-mediated gene silencing reduces 
PD-L1 protein expression, thereby preventing 
tumor-mediated suppression of cytotoxic T cells 
[31, 65]. The resulting restoration of T-cell activity 
enhances immune-mediated tumor clearance and 
contributes to improved therapeutic outcomes 
in head and neck squamous cell carcinoma [66]. 
However, several barriers impede the effective 
delivery of siRNA-based therapeutics, including 
enzymatic degradation in circulation and 
suboptimal cellular uptake [23, 67]. The inherent 
instability of free siRNA molecules necessitates 
specialized delivery systems capable of providing 
protection against nucleases while ensuring 
efficient intracellular transport [68].

Liposomal encapsulation offers a viable 
solution to the challenges associated with siRNA 
delivery by providing a biocompatible and 
protective environment that shields siRNA from 
enzymatic degradation [69]. Liposome-mediated 
delivery can be facilitated through passive 
targeting mechanisms, leveraging the enhanced 
permeability and retention effect for tumor-specific 
accumulation [70]. Alternatively, active targeting 
strategies incorporate ligand-mediated uptake 
to improve siRNA internalization and enhance 
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therapeutic precision [71]. Surface modifications, 
including polyethylene glycol functionalization, 
further contribute to prolonged circulation times 
and reduced immune clearance, optimizing 
liposomal delivery of siRNA therapeutics [26].

Synergistic Effects of Cisplatin and siRNA Co-
Delivery

The concurrent delivery of cisplatin and 
anti-PD-L1 siRNA represents a multifaceted 
approach that integrates both cytotoxic and 
immunomodulatory mechanisms to enhance 
tumor clearance in head and neck squamous 
cell carcinoma. Cisplatin, a platinum-based 
chemotherapeutic agent, exerts its antitumor 
activity primarily through the induction of DNA 
crosslinking, leading to apoptosis and immunogenic 
cell death [72]. This process is characterized by the 
release of damage-associated molecular patterns, 
including extracellular ATP, high-mobility group 
box 1, and surface-exposed calreticulin, which 
facilitate dendritic cell activation and antigen 
presentation. As a result, cisplatin treatment 
initiates a cascade of immune responses that 
culminate in CD8⁺ T-cell priming and enhanced 
tumor infiltration [73]. Despite the immunogenic 
properties of cisplatin, the immunosuppressive 
tumor microenvironment often limits its efficacy 
by promoting T-cell exhaustion and suppressing 
cytotoxic activity [74]. Regulatory T cells and 
myeloid-derived suppressor cells, commonly 
found in head and neck squamous cell carcinoma, 
actively inhibit antitumor immunity, thereby 
reducing the therapeutic potential of cisplatin-
induced immunogenic signalling [58]. The 
incorporation of anti-PD-L1 siRNA within the 
treatment paradigm addresses this limitation 
by silencing PD-L1 expression in tumor cells and 
immune compartments, thereby restoring T-cell 
functionality and preventing immune suppression. 
PD-L1, a key immune checkpoint molecule, 
interacts with PD-1 on T cells to inhibit their 
activation and promote functional exhaustion 
[75]. The downregulation of PD-L1 through siRNA-
mediated mRNA degradation disrupts this immune 
checkpoint pathway, reinvigorating cytotoxic T-cell 
responses and augmenting the immunogenic 
effects of cisplatin therapy [76].  

Chenyu Li et al [77], checked and concluded 
that nanomaterials are being prominently utilized 
in the realm of nanomedicine because of their 
extremely good properties, especially inside the 

context of cancer detection and remedy. within 
the context of HNC treatment, nanomaterials 
have demonstrated the capacity to reinforce the 
effectiveness of chemotherapy whilst minimizing 
associated toxicities. The usage of nanoparticles 
as carriers for drug delivery in HNC has opened 
up avenues to alleviate affected person suffering 
and extend the lives of these with superior-stage 
disease.

CONCLUSION AND FUTURE PERSPECTIVES  
The emergence of dual-ligand liposomal 

formulations incorporating cisplatin and anti-
PD-L1 siRNA represents a promising strategy for 
enhancing immune checkpoint modulation and 
chemotherapy efficacy in head and neck squamous 
cell carcinoma. This approach leverages cisplatin-
induced immunogenic cell death to stimulate 
immune responses while simultaneously silencing 
PD-L1 expression to counteract tumor-associated 
immunosuppressive mechanisms. By employing 
ligand-mediated tumor-specific targeting, 
these nanoscale delivery systems improve drug 
accumulation, minimize systemic toxicity, and 
optimize intracellular therapeutic retention. 
Preclinical studies have demonstrated enhanced 
CD8⁺ T-cell infiltration, reduced regulatory T-cell 
populations, and improved tumor regression 
with dual-ligand liposome co-delivery compared 
to monotherapy approaches, reinforcing the 
synergistic effects of integrating chemotherapy 
and immune checkpoint inhibition.  

The introduction of dual-ligand nanocarrier 
systems addresses key limitations associated 
with conventional immune checkpoint inhibitors 
and platinum-based chemotherapy. The 
immunosuppressive tumor microenvironment, 
a major barrier to therapeutic efficacy in head 
and neck squamous cell carcinoma, can be 
reprogrammed through immune modulatory 
interventions incorporated into liposomal 
formulations. By selectively depleting myeloid-
derived suppressor cells and repolarizing 
tumor-associated macrophages toward a pro-
inflammatory phenotype, these systems enhance 
immune-mediated tumor clearance while 
mitigating the emergence of drug resistance. 
The ability of these liposomes to improve drug 
bioavailability and tumor-specific accumulation 
presents a viable strategy for reducing systemic 
toxicity, ensuring prolonged therapeutic exposure, 
and enhancing patient outcomes in clinical 
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settings.  
To facilitate clinical translation, future 

investigations must focus on optimizing liposomal 
physicochemical properties, refining ligand 
selection, and evaluating therapeutic efficacy in 
relevant patient-derived tumor models. Further 
studies on formulation stability, controlled drug 
release kinetics, and biodistribution profiling are 
necessary to ensure reproducibility and scalability 
for clinical applications. Additionally, comparative 
analyses between dual-ligand liposomes and 
existing checkpoint blockade therapies will be 
instrumental in determining the advantages 
of this nanocarrier approach. Regulatory 
considerations for safety, biocompatibility, and 
immunogenic potential must also be addressed 
to enable progression into early-phase clinical 
trials. Ultimately, the integration of dual-
ligand liposomes into personalized oncologic 
treatment strategies offers a novel paradigm for 
combinatorial precision medicine, bridging the 
gap between chemotherapy and immunotherapy 
to improve therapeutic outcomes for patients with 
head and neck squamous cell carcinoma.
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