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Inkjet printing is an alternative, sustainable, cost-effective method for 
fabricating and depositing thin films. This research uses indium oxide nano-
thin films as the transparent conducting electrode (TCE) fabricated by an 
eco-friendly inkjet printing method. Various indium acetate water-based 
inks as metal salt precursors were formulated in the first stage. Different 
co-solvents were used to adjust ink solutions’ viscosity and surface tension 
to improve wettability and optimize the rheological conditions to avoid 
nozzle clogging of the printers’ heads. Plasma pretreatment also increased 
the hydrophilicity and wettability of the glass substrate to achieve smooth 
and homogenous printed film. Finally, after enhancing the integrity of 
the printed film by improving adhesion and wettability, the optimum ink 
formulation is printed on the plasma treated glass and then subjected to 
the required thermal treatment process to obtain indium oxide nano-thin 
film. Complete characterization of the printed indium oxide thin film 
was carried out through different techniques, including Field Emission 
Scanning Electron Microscopy (FE-SEM), X-ray Diffraction (XRD), UV/
Visible Spectrometry, Photoluminescence (PL) Spectrometry, and Raman 
Spectrometry towards finding the structures and optical properties of the 
printed thin film. The uniform and smooth nano-films of indium oxide are 
deposited on the glass substrate through an eco-friendly and sustainable 
method. 

INTRODUCTION 
Transparent conductive electrodes (TCE)s are 

essential for optoelectronic devices such as solar 
cells, light-emitting diodes, energy-conserving 
windows, and touch screens. TCEs pass the light 
through optoelectronic devices with minimum 
absorption or reflection [1]. Among TCE materials, 
metal oxides provide better conditions for 
optoelectronic devices because of their intrinsic 

properties [2]. Indium acetate, a water-soluble 
source of indium, is used in this research as a 
metal oxide precursor in the deposition of indium 
tin oxide films. 

There are various methods to deposit TCE 
materials. Inkjet printing is an alternative method 
to fabricate thin films from functional materials. 
Unlike other methods used to deposit TCEs, inkjet 
printing is cost-effective, fast, simple, safe, and 
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environmentally friendly. The desired pattern 
is provided on the selected substrate by inkjet 
printing during a non-contact process without 
obstacles like masks or vast and expensive 
equipment types [3]. This method is compatible 
with a wide variety of TCE materials like metal 
oxides and reduces material waste. 

Indium acetate precursor is used to fabricate 
indium oxide (IO) nano thin film by inkjet printing 
deposition method, as the metal acetate salts 
could be dissolved in water to produce sustainable 
and environmentally friendly aqueous ink 
solutions. After printing, the metal oxide nano-
thin films provide during the thermal treatment 
process. The acetates have low decomposition 
temperatures in the thermal treatment process, 
which could achieve metal oxide films in lower 
temperatures. 

Formulating an appropriate inkjet ink for 
commercial DOD (Drop-on-Demand) inkjet printer 
from the indium acetate solution is the most 
critical step in inkjet printing of TCE materials. 
Any cracks, heterogeneity, or non-levelness of 
printed films regarding the mal functionality of 
optoelectronic devices. Co-solvents were applied 
to tunning wettability and rheology behavior of 
formulated indium acetate inkjet inks to attain 
high-quality printed films.

Wettability has a crucial role in optimizing the 
inkjet inks formulations. Wettability and spreading 
of ink droplets on the substrate influence the 
adhesion of the printed layer to the substrate 
[4,5]. The wettability of inks could be investigated 
by measuring the contact angle of printed droplets 
and the surface tension of ink solutions [6]. 
Contact angle analysis notifies about substrate-
surface interactions and allows to evaluate of 
the ink droplets spreading and absorption by 
analyzing the drop dimensions and contact angles 
by passing the time.

The rheology behavior of the ink solution 
is another essential factor that influences the 
spreading dynamic of the droplet. For inkjet 
printing, Newtonian low viscosity ink solutions are 
recommended. Ink solutions behave as Newtonian 
fluids as the viscosity is constant by varying shear 
rates [7].

Substrate pretreatment is another way to 
improve the wettability and adhesion of the printed 
layer. Glass substrate is a common choice in printing 
TCE materials, as it is transparent to pass the light 
from both sides. Inkjet printing of TCE materials 

on the glass substrate without any pretreatment 
leads to the random position of printed materials 
and non-homogeneity of the printed layer. Several 
approaches to pretreat the glass substrate include 
surface washing with Piranha solution and plasma 
pretreatment. Plasma pretreatment is effective 
and environmentally friendly, improving the glass 
surface’s hydrophilicity. As a result, the surface 
energy increases, allowing ink droplets wet the 
surface better.

Finally, the nano-IO thin film’s optical, electrical, 
and structural properties were investigated and 
confirmed the high-quality characteristics of the 
synthesized nano-films.

MATERIALS AND METHODS
Materials

Indium (III) acetate, In (C2H3O2)3 with 99.99% 
purity purchased from Sigma-Aldrich Chemical 
Corporation, Germany. The various co-solvents 
such as ethylene glycol (EG), diethylene glycol 
(DEG), triethylene glycol (TEG), tetraethylene 
glycol (Tetra EG), polyethylene glycol 200 (PEG200), 
glycerol, and all other chemicals used in this work 
were laboratory-grade chemicals purchased by 
Merck Company, UK. 

Equipment and instrumentation
The pH, surface tension, and viscosity of the 

water-based inks were evaluated using 827 
pH Metrohm meters (Herisau/Switzerland), 
Tensiometer K100MK2 (Hamburg, Germany), and 
Brookfield DVII (New Jersey, USA), respectively. The 
static and dynamic contact angle of ink solution 
with the glass substrate and the surface energy 
of the glass substrate is based on the sessile drop 
method at 20 °C temperature measured using the 
optical contact angle measuring device OCA200 
(Data physics company, Germany). This device has 
a CCD camera with a resolution of 768 × 576 pixels, 
capable of capturing 50 images per second and 
analyzing the shape of the drop. An Epson Stylus 
Photo P50 printer printed the prepared precursor 
ink inkjet. The inkjet-printed glass slides were 
dried and heat-treated in an Azar 1250 furnace. 

The crystallinity of the IO thin film was 
examined using high-resolution Grazing incidence 
X-ray diffraction (GIXRD) on a Philips PW 1730 
diffractometer (Netherland) equipped with Cu-Kα 
radiation (40kV, 30 mA) in the 2θ range from 20 to 
60˚ with the step of 0.05˚. The printed film surface 
morphology was analyzed by field emission 
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scanning electron microscope (FE-SEM), model 
MIRA3 TESCAN-XMU (Czech Republic). Optical 
transmittance of IO thin film was measured, 
within the wavelength range of 300–800nm, by a 
UV/Visible spectrometer (Agilent 8453, Australia). 
Photoluminescence (PL) was measured on a 
luminescence spectrometer (Perkin Elmer LS 55, 
USA). Raman spectra were recorded in the range 
of 100-2500cm-1 using an (XploRA Plus confocal 
RAMAN microscope, France SAS) through 532 nm 
excitation wavelength.

Preparation of indium acetate ink solutions with 
various co-solvents and complexing agents to 
achieve optimal formulation

Fluid ink solutions consist of indium acetate 
salt as a precursor. Initially, indium acetate was 
dissolved in deionized water as a diluent, then 
weak organic acid (acetic acid) was added to ink 
formulation as a complexing agent that improves 
the solubility of indium acetate in water. Glycol 
ethers were used as a co-solvent to reduce the rate 
of water evaporation, prevent the ink from drying 
out in the nozzle and improve the drying process 
of the printed droplet. Isopropyl alcohol was 

added to the ink formulation to adjust the surface 
tension so that the ink could jet from the nozzle 
optimally. Finally, ammonia was added to increase 
the pH value. Different inks were formulated that 
were the same in the concentration of indium 
acetate, isopropyl alcohol, water, and ammonia 
but were modified by various glycol ethers as co-
solvents and weak organic acids as complexing 
agents and investigate their effect on surface 
tension and contact angle of formulated inks 
and its rheological behavior. Finally, all the inks 
were stirred in ultrasonic for 10 minutes and 
then filtered through a 0.45 μm diameter syringe 
filter and a 0.2 μm diameter syringe filter. The 
formulated inks were printed on glass substrates 
by the Epson P50 printer.

Various glycol ethers were different in chemical 
structure, molecular weight, dipole moment, and 
boiling point used in the indium acetate ink’s 
formulation to investigate the co-solvents’ effect. 
Table 1 shows the formulation of inks 1 to 9 that 
differ in the type of co-solvent (glycol ether) and 
complexing agent (weak acid). Table 2 shows the 
chemical structure of different glycol ethers used 
in the inks’ formulation.
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Table 1. Formulation of different inks based on the type of ethylene glycol
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Four types of organic acids were used to 
investigate the effect of a weak acid as a complexing 
agent: formic acid, acetic acid, propionic acid, and 

butyric acid, in which the hydrocarbon chains 
are increased, respectively. Table 3 shows the 
chemical structure of complexing agents used in 
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Table 3. Structure of complexing agents used in inks formulation

Table 2. Characteristics of ethylene glycols used in inks formulation
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inks formulation.

Indium oxide film preparation and characterization
In this section, the inkjet printing was done 

after obtaining the optimum ink formulation and 
the pretreatment of the glass surface. This printer 
uses a piezoelectric squeeze mode print head that 
injects ink droplets through a 65 μm nozzle. IO thin 
films were deposited on microscope glass slides of 

20 × 20 mm by inkjet printing. The ink was ejected 
from the inkjet printer cartridge and dried at 150˚C 
for 10 minutes; this procedure was repeated three 
times. Finally, the thermal treatment process was 
run to achieve IO thin film. The dried film was 
initially sintered in a furnace heated under the 
rate of 10°C/min up to 350 °C and held for 3 hours 
in the air atmosphere. Afterward, the temperature 
increased up to 550 °C under the same heating rate 

 

 

 
 

Fig. 1. Rheological Behavior of Inkjet Inks (1-9)

Table 4. Viscosity of inks at the highest shear 
rate



922 J Nanostruct 14(3): 917-931, Summer 2024

and was maintained at that temperature for 3 h. 
Then, the samples were cooled down to ambient 
temperature. Subsequently, the samples were 
inserted into the glass tube furnace for annealing. 
The temperature was raised to 350°C at 10°C/min 
and kept constant for 30 min under the nitrogen 
atmosphere. Different analyses in the following 
characterized the prepared IO thin film.

RESULTS AND DISCUSSION
The viscosity of inkjet inks is significant because 

it affects the ink’s rheology behavior when it 

passes through the nozzles of the printer head 
and the performance of the ink during jetting and 
spreading on the surface. Dissolved nanoparticles’ 
particle size and concentration affect the ink’s 
viscosity. High viscosity ink cannot pass through 
the nozzles in the printer head, and if the viscosity 
is too low, the satellite drops form, which ink’s 
droplets come out from the printer’s nozzles too 
much splashing and causing poor print quality 
[8]. Another important physical property of inkjet 
ink is surface tension. The surface tension of 
conductive inks mainly affects the jettability of 
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Table 6. Image of contact angle of formulated inks

Table 5. Surface tension and static contact angle of formulated inks
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fine droplets from the printers’ nozzles and the 
ink’s wetting properties on the substrate in the 
printing process. The viscosity of DOD inkjet inks 
should be in the range of 1-25 mPa.s [9], and the 
recommended range for surface tension is 20-50 
mN.m-1 [10].

Effect of modification of co-solvents and complexing 
agents on the wettability and rheological behavior 
of formulated inks

Table 4 indicates the viscosity of the inks (1 
to 9) at the highest shear rate (1000 S-1). All inks 
have viscosity values in the acceptable range for 
inkjet printing inks. As can be seen, in Ink 1 to 
Ink 5, the viscosity of the ethylene glycol used in 
the ink formulation has increased with increasing 
molecular weight. In Ink 6 to Ink 9, there is a 
slight difference in the viscosity values of the inks. 
By changing the type of complexing agent and 
increasing the hydrocarbon chain of the weak acid 
used, in other words, by increasing the molecular 
mass of the complexing agent used in the ink 
formulation, the viscosity has also increased. All 
inks have a low viscosity and are acceptable for 
inkjet printing.

Fig. 1 shows the variation of the formulated 
inks viscosities by increasing the shear rate on 

a logarithmic scale. The viscosity of all samples 
remained constant with increasing shear rate. It 
is apparent that the constant changes in viscosity 
values by increasing the shear rates indicating the 
inks behave as the Newtonian fluid.

Table 5 shows the surface tension and 
contact angle of Ink 1 to Ink 9. Ink 1 to Ink 5, the 
contact angle and surface tension decrease with 
increasing oxygen groups in the structure of the 
glycol ethers used in the ink formulation. As 
shown in Table 2, with the increase of ethylene 
groups in glycol ethers, the dipole moment has 
increased from Ink 1 to Ink 5; consequently, the 
ink has become more polarized, and hydrophilicity 
increased, which improved wettability properties. 
Ink 9, which contains butyric acid as a complexing 
agent in its formulation, has the lowest contact 
angle value. Table 3 shows the structure of the 
complexing agents used in the ink formulations. 
The contact angle decreased by increasing the 
length of the alkyl chain of organic acid used in the 
ink formulation as the complexing agent, which is 
in line with the reported literature results [11,12].

It should be considered that the complexing 
agent role is improving the solubility of indium 
acetate in water. Butyric acid has the lowest 
contact angle of formulated inks as a complexing 

Fig. 2. Chart of contact angle of inks in terms of time (inks 1-9)
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agent. Nevertheless, only acetic acid could dissolve 
indium acetate in water entirely, and other acids 
could not completely dissolve indium acetate 
(Table 6). Therefore, it could be concluded that 
acetic acid was selected as the best complexing 
agent for ink formulation.

Fig. 2 also shows the contact angle changes with 
time on the glass substrate. As can be seen in all 
the diagrams, it is evident that first, there was an 
initial decrease in the initial times, and then over 
time, the value of the contact angle first decreased 
slightly and then remained constant.

Initially, a decrease in the contact angle was 
observed due to the initial adsorption of the ink 
droplet by the glass substrate and its spreading 
on it, and then over time, the value of the contact 
angle remained almost constant.

In general, it could be concluded that Ink 5, 
which contains polyethylene glycol as co-solvent 
and acetic acid as a complexing agent, has the 
lowest contact angle and thus was selected as 
the best ink formulation. To ensure the obtained 
results, the contact angle measurements were 

repeated for the formulated inks, and the obtained 
results were consistent with the previous results.

Thermogravimetric analysis
Fig. 3 shows the TG and DTG curves of the Ink 

5 solution. It can be seen from the curves that 
an initial decrease in 50% weight loss occurred 
between room temperature to 120 ˚C due to 
evaporation of water and acetic acid used in the 
ink solution. The weight loss continued in the 
next step from 120 ˚C to 180 ˚C by decomposition 
of other organic components used in the ink 
formulation, such as glycol ether co-solvent. At 
last, another decrease in weight loss in the range 
of 180 ˚C to 330 ˚C observed, which indicates the 
oxidation of precursor ink of indium acetate and 
the formation of indium oxide in this temperature 
range [13]. TG/DTG curves were measured to 
determine the appropriate temperature for the 
oxidation, so in thermal treatment by applying 
the 350 ˚C temperature, the indium oxide 
nanoparticles crystalized and converted to oxide 
phase.  

Fig. 3. TG/DTG curves of the solution of Ink 5
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Surface treatment of the glass substrate
Surface treatment by plasma

One economical, cost-effective, and 
environmentally friendly method to improve 
the wettability of glass substrate is the plasma 
method. The purpose of surface modification by 
plasma is to create special functional groups that 
can react and change the free energy of the surface 
and ultimately improve the chemical adhesion of 
the printed layer to the surface. The interaction 
of plasma with the surface causes the removal 
of contaminants from the surface and causes ion 
and electron bombardment and tiny engravings 
on the surface that can not be created by physical 
abrasion [14,15]. This method, which involves 
cleaning the surface from dirt and roughening the 
surface, improves the surface’s wettability. 

The plasma process under oxygen gas is based 
on oxygen induction and leads to chemical groups, 
including hydroxyl and carboxyl. The created 

functional groups play a critical role in creating 
polar groups and increasing the hydrophilicity 
of the glass surface [16]. The plasma under 
nitrogen gas also leads to forming amine 
functional groups. Nitrogen plasma generally 
improves wettability and adhesion properties 
[17].

Surface treatment by washing with Piranha 
solution

The Piranha solution is a mixture of sulfuric 
acid and hydrogen peroxide used as a robust 
oxidant solution. Piranha solution removes 
metals and organic contaminants and will 
improve the hydrophilicity of glass surfaces. It is 
prepared by first adding 30 ml of concentrated 
sulfuric acid to a beaker and then gently adding 
30 ml of 30% hydrogen peroxide when stirring 
vigorously. Different sulfuric acid and hydrogen 
peroxide ratios can be used (3: 1 and 5: 1) [18].

Fig. 4. SEM images of the surface of printed samples a) not treated glass substrate, b) piranha treated, c) O2 plasma treated, d) N2 
plasma treated)
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In this study, to remove possible contaminants 
and impurities from the glass substrate, glass slides 
were placed in piranha solution for 45 minutes, 
then immersed in deionized water for 5 minutes, 
and this step was repeated three times.

Washing glass substrates with piranha solution, 
an oxidizing agent, removes impurities and surface 
contaminants; makes the surface hydrophilic 
because the piranha solution hydroxylates the 
surface and adds OH functional groups to the 
surface [19].

SEM images of printed samples
Fig. 4 shows the SEM images of printed samples 

with the optimal ink formulation (Ink 5 containing 
polyethylene glycol as co-solvent and acetic acid as 
complexing agent) on the glass substrate, without 
any particular physical and chemical treatment, 

piranha, cleaned glass substrate, and plasma-
treated glass substrate.

SEM images show that ink based on indium 
acetate printed better and more uniformly on 
plasma glass surfaces under nitrogen gas. Plasma 
treatment under nitrogen has caused surface 
modification of the glass substrate and added 
amine functional groups to the glass substrate, 
thus increasing the wettability and hydrophilic 
properties.

Structural analysis of printed indium oxide thin film
XRD analysis

XRD measurements investigated the crystal 
structure of IO thin film. The XRD patterns are 
illustrated in Fig. 5. All detected peaks could be 
indexed to body-centered cubic (bcc) IO (JCPDS 
card NO 06-0416). The sharp peaks revealed the 

Fig. 5. The XRD patterns of IO thin film

Table 7. Structural parameters (crystallite size and lattice constant) of the IO inkjet printed 
film
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crystallinity of the thin film and no impurity was 
identified. The crystallite size (D) was calculated by 
Debye–Scherrer formula (equation 1) along with 
(2 2 2) direction, which was the preferred growth 
orientation.

                           D = (0.9×λ)
(β cosθ )        

  

                                                                (1)     

Where λ is the X-ray wavelength (λ=1.5406 Å), θ 

is the diffraction angle, and β is the line broadening 
at half the maximum intensity full width (FWHM) 
in radians. Table 7 presents the crystallite size and 
the lattice constant of the IO inkjet printed film.

Morphological analysis of printed indium oxide 
thin film
FESEM analysis

Fig. 6 shows the FESEM image of IO thin film 

Fig. 7. Deconvolution of PL spectra for IO inkjet-printed thin film

Fig. 6. a, b) FESEM images of the surface of the printed IO nano thin film, c) cross-section of the printed IO nano thin 
film fabricated by 3 print passes on the glass substrate
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after thermal treatment, revealing that IO thin 
film consists of crystalline nanoparticles, which 
are not agglomerated. The magnified FESEM 
image of IO thin film (Fig. 6, b) shows that most IO 
nanoparticles are spherical. IO thin film is uniform, 
and nanoparticles distribute homogeneously 
throughout the film. The film’s surface exhibited 
polycrystalline nature with a grain size below 20 
nm. The cross-sectional view of the IO nano thin 
film (Fig. 6c) indicated dense and uniform nano 
structure of printed film. The thickness of nano 
thin film fabricated by 3 print passes is 96.39 nm.

Photoluminescence analysis
PL spectrum is related to the materials’ 

microstructure, electronic state, defect state, 
and energy level structure. It is known that bulk 
IO cannot emit light at room temperature; in 
contrast, nano-scaled IO films are reported to 
display PL response [20,21]. Fig. 7 shows that the 
PL spectrum of the IO thin film was measured 
at room temperature under an excitation 
wavelength of 320 nm. Deconvolution of PL 
spectra for IO thin film carried out by the method 

of multi peaks gaussian fitting to detailed study 
of emissions through defects. The PL spectra 
comprised of 6 bands peaking at approximately 
370,393,410,436,483 and 527 nm, respectively.

A strong emission peak was observed in the 
ultraviolet region centered at 393 nm. The reported 
Blue emission at 410 nm is due to the deep level 
emission of oxygen defects in the nanostructure 
of IO thin film[22,23]. The 436 nm band is possibly 
due to the defect of In–O vacancy [24]. PL peak 
at 483 nm was attributed to the formation of 
single ionized oxygen defects [25]. A weak green 
emission peak centered at 527 nm also originated 
from deep level defects such as surface defects 
and singly ionized oxygen vacancies [26]. In this 
research, oxygen vacancies would be generated 
due to the incomplete oxidation of precursor ink 
solution during the thermal treatment process.

Optical analysis
Fig. 8 shows the optical transmittance of printed 

IO thin film on the glass substrate. The high optical 
transmittance is a vital intrinsic property for TCE 
materials. The optical transmittance of IO thin film 

Fig. 8. Transmittance spectra of the IO inkjet-printed thin film
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is above 82% at 550 nm.
Based on UV-Vis spectra, the optical band gap 

energy of IO thin film calculated by using Tauc’s 
relation (equation 2) [27]: 

αhν = A(hν − Eg)m                                                 (2)

where α is the absorption coefficient, h is the 
Planck’s constant, ν is the frequency of incident 
light, A is an energy independent constant, Eg 
is the optical band gap energy and m assumes 
values of 1/2 and 2 for allowed direct and allowed 
indirect electronic transitions, respectively. In this 
case, the band gap energy has been estimated by 
assuming an allowed direct transitions.

Fig. 9 illustrates the dependence of the 
absorption coefficient (αhν)2 against photon 
energy (hν) for IO thin film. By extrapolating the 
linear region of the curve to horizontal axis the 
band gap (Eg) of IO thin film determined 3.6 ev. 
Due to quantum confinement effect, the band 

gap energy increases by decreasing crystallite size 
[28,29]. As in this work the IO thin film has the 
small size crystallite size, the band gap energy is 
higher than bulk indium oxide and comparable to 
the reported results [30–33].

Raman analysis
Fig. 10 shows Raman spectra of the IO thin film 

at room temperature in the frequency range of 
100–700 cm_1. The cubic structure of IO belongs 
to the space group Ia

3 and Th
7. IO has vibration 

modes for this structure with symmetry Ag, Eg, 
Tg (Raman active), and Tu (IR active) [34]. As seen 
in Fig. 8, the measured Raman spectra of IO thin 
film show peaks at 131, 307, 366, 495, 560, and 
631 cm-1. These values are in good agreement with 
those previously reported in the literature [35–
38]. A wide peak centered at 560 cm-1 originated 
from the glass substrate [39]. As XRD results, the 
Raman spectra approved the cubic bixbyite crystal 
structure of nano IO thin film.

Fig. 9. Optical band gap energy (Eg) of the IO inkjet-printed thin film
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CONCLUSION
The IO nano thin film was fabricated on the glass 

substrate using an eco-friendly and cost-effective 
inkjet printing method. Various water-based 
indium acetate ink solutions differ in co-solvents 
and complexing agents formulated. Co-solvents 
were applied to tune indium acetate inks’ viscosity 
and surface tension. Different methods also applied 
for substrate pretreatment, and plasma treatment 
was selected as an environmentally friendly 
and cost-effective method, which improved the 
substrate’s wettability and enhanced the printed 
film’s adhesion to prevent cracking during the 
thermal process. 

After obtaining the optimum ink formulation 
(Ink 5), which supported rheological behavior 
and wettability properties, the indium acetate ink 
solution as precursor was deposited on the plasma 
treated glass substrate via inkjet printing and, 
consequently, thermal treatment was performed 
to produce dense and uniform IO nano thin film. 
Complete characterizations were utilized on the 
prepared IO film by different analyses such as 
XRD, FESEM, PL, and Raman, which approved the 
smooth and homogenous nanoscale layer. 
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