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Compared with their bulky or nanosized counterparts, nanostructured 
carbon materials attract many researchers due to their diverse practical 
applications. Graphene has been successfully fabricated using a pulsed 
laser ablation process. It relies on the exfoliation of a graphite disc to induce 
polycarbonate sheets suspended in an aqueous medium (deionized water). 
Chlorophyll was extracted from spinach and then mixed with graphene. 
The properties were studied using a scanning electron microscope (SEM) 
and X-ray diffraction (XRD). Various graphene nanostructures have been 
observed, such as disks, dots, and fibers. The optical properties were studied 
by UV-vis spectroscopy and photoluminescence (PL) measurements. PL of 
graphene typically shows strong photoemission in the visible region (400.7 
nm, 675.3 nm). 

INTRODUCTION
Graphene is known as an atomic layer of 

graphite, which is also the essential unit for 
fullerenes and CNTs. It is a two dimensional (2D) 
crystal that is stable under ambient conditions [1, 
2]. Graphene has exceptional in-plane structural, 
mechanical, thermal and electrical properties. 
These properties make it attractive for application 
in many research fields [3, 4]. Optoelectronic 
devices based on graphene have garnered 
significant interest and show potential for use in 
solar cells, touch screens, and photodetectors 
[5-10]. The exceptional optical characteristics of 
graphene, such as linear optical absorption [11, 12], 
tunable band-gap [13], and intrinsic photocurrent 
have been established [14-17]. These qualities 
can be combined with other unique mechanical 
and electrical characteristics of graphene to 

provide novel functions. The weakness of pristine 
graphene’s absorption, which can reach 2.3%, 
severely restricts its use in photodetection.

As a result, other strategies have been used 
to improve the interaction between graphene 
and photons, such as plasmonic effects [18, 19], 
photothermoelectric effects [20], sensitization by 
quantum dots [10, 21, 22], or bulk semiconductors 
[23]. In this work, we employ chlorophyll as a light-
absorbing material for graphene phototransistors 
and examine the hybrid graphene-chlorophyll 
devices’ optoelectronic performance. As an organic 
semiconductor, chlorophyll absorbs light very 
well. Furthermore, chlorophyll is an exceptionally 
stable and abundant biomaterial [24]. Studies on 
chlorophyll photosensitization could be useful for 
organic photovoltaics [25, 26], optical sensors [27], 
and artificial photosynthesis [28], since chlorophyll 
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is essential to the process of photosynthesis. 
Furthermore, because chlorophyll-related 
molecules come in a variety of forms, it is possible 
to tailor the energy level alignment in hybrid 
graphene-organic molecule systems to maximize 
charge separation and transfer. There are two 
types of chlorophyll—types A and B—found in 
green algae and terrestrial plants. The presence of 
methyl in chlorophyll a, which is substituted by a 
formyl group in chlorophyll b, is what distinguishes 
these two types of chlorophylls. In higher plants, 
the ratio of chlorophyll a to chlorophyll b is roughly 
3:1. The visible spectrum’s red (650–700 nm) and 

blue–violet (400–500 nm) bands are the primary 
wavelengths that chlorophyll absorbs [29].

MATERIALS AND METHODS
Pulse laser ablation

Graphene powders can be obtained by using 
Q-Switched Nd: YAG pulsed laser in liquids as 
showed in Fig. 1.

Preparation of chlorophyll (collection of plants 
and chlorophyll extraction) 

The spinach leaves from the plant is collected. 
Ten milliliters of 80% acetone were used to grind 
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Fig. 2. XRD pattern of graphene.

Fig. 1. Schematic diagram of PLAL method to produce 
graphene.
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five grams of freshly chopped leaves. Then, for five 
minutes, it was centrifuged at 5000–10000 rpm. 
Once the supernatant was moved, the process 
was repeated until the residue lost all of its color 
[29]. 

RESULTS AND DISCUSSION
XRD pattern

A significant peak at 2θ = 26° can be seen in the 

XRD pattern of graphene, as illustrated in Fig. 2. 
It’s a unique peak that appear to be quite broad 
with lesser intensity when compared to bulk 
graphite’s patterns, which is consistent with the 
previous report [30].

Morphological study
Using FESEM, the surface morphology was 

examined. The graphene nanoparticles have a 
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Fig. 4. UV-Vis spectrum of graphene.

Fig. 3. FE-SEM image of graphene powders.
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spherical shape and different sizes and have an 
almost homogeneous distribution as showed in 
Fig. 3. The Image J program was used to calculate 
the average particle size and it was about 40 nm, 
which is close to what the researcher reported in 
the reference [31].

Optical properties 
UV-visible spectrum 

The UV-visible spectrum of graphene is 

displayed in Fig. 4. According to earlier research, 
graphene has an absorption peak at 285.4nm [32]. 
The electrical arrangement of graphene during 
the reduction of graphene oxide is the cause 
of this peak. The n-π* transition of C–O bonds, 
which are now embedded on the graphene due to 
exfoliation and intercalation, is responsible for this 
absorption peak.

Fig. 5 illustrates the UV-Vis spectrum of 
chlorophyll extract dissolved in acetone 
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Fig. 6. UV-Vis spectrum of graphene/chlorophyll sample.

Fig. 5. UV-Vis spectrum of chlorophyll.
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absorption. The highest absorption was seen at 
433.3 and 664.2 nm [33].

Fig. 6 shows the UV-Vis spectrum of graphene/

chlorophyll sample. The absorption peaks for the 
chlorophyll/graphene are located at 340.8 and 
666.2 nm.
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Fig. 8. PL spectrum of graphene/chlorophyll sample.

Fig. 7. PL spectrum of graphene nanoparticales. 
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Photoluminescence
The researchers [34] affirmed that the emission 

peak of carbon is usually wide with large stocks 
shift as compared with that of organic dyes and it 
may result from the wide distributions of dierently  
sized particles and surface chemistry, different 
emissive traps (salvation effect), or a mechanism 
currently unresolved [35]. The emission of the 
graphene typically shows wide optical emission in 
the visible region (Fig. 7). 

Also, the additional PL data of graphene/
chlorophyll sample is shown in Fig. 8. In this sample, 
there is a clear quenching of PL. The PL quenching 
suggests that charge transfer occurs between the 
chlorophyll film and graphene, which reduces 
radiative recombination since electron–hole pairs 
are produced in the chlorophyll molecules under 
illumination [36].

CONCLUSION
The pulsed laser, with a wavelength of 1064 

nm, energy of 80 mJ, a frequency of 6 Hz, and a 
number of pulses of 400 pulses, has the ability to 
generate nanoparticles having a spherical shape 
and homogeneous distribution with absorption 
peak at 285.4nm. The pulsed laser has the 
ability to exfoliate graphite layers through the 
appearance of a single peak of low intensity as 
compared to graphite. Through the PL results, 
we notice that mixing chlorophyll with graphene 
nanoparticles enhanced the emission spectrum at 
400.7 nm, and this indicates the removal of a small 
portion of impurities during the mixing process 
and showed quenching of graphene as a result of 
charge transfer from chlorophyll, which caused a 
reduction in radiative recombination.
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