RESEARCH PAPER

Kaolin-SO₃H Nanoparticles: A New Efficient and Reusable Catalyst for Synthesis of 2-Substituted Benzimidazoles at Room Temperature

Abdolhamid Bamoniri^{1*}, Bi Bi Fatemeh Mirjalili² and Nahid Yaghmaeiyan-Mahabadi¹

¹ Department of Organic Chemistry, Faculty of Chemistry, University of Kashan, Kashan, Iran ² Department of Chemistry, College of Science, Yazd University, Yazd, Iran

ARTICLE INFO

Article History: Received 25 November 2018 Accepted 20 January 2019 Published 01 April 2019

Keywords: Benzimidazole Heterogeneous catalyst Kaolin-SO₃H nanoparticles Solid acid

ABSTRACT

Kaolinite clay found its application in medicine, in toothpaste, in cosmetic and as a food additive. Recently, a specially formulated spray is used in fruit and vegetable production to repel the insects and prevent sunburn. Kaolin-SO₃H nanoparticles were prepared via reaction of kaolin and chlorosulfonic acid and characterized by FT-IR, XRD, FESEM, TEM, XRF, EDS, BET and TGA. 2-Substituted benzimidazoles have been used as selective neuropeptides YY, receptor antagonists, antitumor, antivirus, antimicrobial, antioxidant, antiparasitic, antihelmintics, antiproliferative, anti-HIV, anticonvulsant, anti-inflammatory, antihypertensive, antineoplastic, analgesicand antitrichinellosis, topoisomerase IV inhibitors, potent inhibitors of TiE-2 and VEGFER-2 tyrosine kinase receptor, and 5-HT3 antagonists. 2-Substituted benzimidazoles are prepared via condensation of o-phenylenediamines and aldehydes. In this article, we have used Kaolin-SO₃H nanoparticles for the synthesis of 2-substituted benzimidazoles under mild reaction conditions. The structure of products were identified by FT-IR, 1H-NMR and 13C-NMR. This method has the advantages of high yields, short reaction times and easy work-up.

How to cite this article

Bamoniri A, Mirjalili B, Yaghmaeiyan-Mahabadi N. PKaolin-SO₃H Nanoparticles: A New Efficient and Reusable Catalyst for Synthesis of 2-Substituted Benzimidazoles at Room Temperature. J Nanostruct, 2019; 9(2):219-229. DOI: 10.22052/JNS.2019.02.004

INTRODUCTION

Benzimidazole nucleus is a bicyclic compound which is structurally similar to purine bases. This structure has been found in many natural compounds such as vitamin B_{12} and its derivatives [1]. These structures are one of the most biologically active classes of compounds, possessing a wide range of activities. They have been used as selective neuro-peptides YY [2], receptor antagonists [3], antitumor [4], antivirus [5],antimicrobial [6], antioxidant [7], antiparasitic [8], antihelmintics [9], antiproliferative [10], anti-HIV [11], anticonvulsant [12], anti-inflammatory [10], antihypertensive [13], antineoplastic [1],

* Corresponding Author Email: bamoniri@kashanu.ac.ir

analgesic and antitrichinellosis [1], topoisomerase IV inhibitors [14], potent inhibitors of TiE-2 and VEGFER-2 tyrosine kinase receptor [15], and 5-HT3 antagonists [16]. Due to the importance of these compounds in industries, various methods have been reported in the literature for the synthesis of benzimidazoles [17-25].

Kaolinite (hydrated aluminum silicate) with chemical composition $AI_2Si_2O_5(OH)_4$ is one of the most common minerals [26]. Large volumes of kaolinite clays are used for the production of cement [27] and ceramics [28]. The greatest demand for kaolinit is in the paper industry to produce a high-quality paper [29]. It is also

This work is licensed under the Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

used as filler for paint rubber and plastics [21]. Kaolinite clay found its application in medicine, in toothpaste, in cosmetic and as a food additive [29]. Recently, a specially formulated spray is used in fruit and vegetable production to repel the insects and prevent sunburn [30]. Usually, suitable kaolin contains 70-73% of SiO₂, 18-20% of Al₂O₃, 0.4-1% of Fe₂O₃, and 0-0.8% of TiO₂ and no MnO.

Kaolin-SO₃H nanoparticles as a green heterogeneous catalyst was prepared by the reaction of kaolin nanoparticles with chlorosulfonic acid. It could be an efficient solid acid catalyst for promotion of many organic reactions.

In continuation of our efforts in using solid acids in organic synthesis [31-35], here, we wish to report the synthesis of 2-substituted benzimidazoles from aldehydes and o-phenylenediamines using kaolin- SO_3H nanoparticles as a mild heterogeneous catalyst. This procedure was done at room temperature and in the presence of O_2 of air as oxidant.

MATERIALS AND METHODS

All Chemicals and solvents such as orthophenylenediamines, aldehyde derivatives, chlorosulfonic acid, kaolin nanoparticles and ethanol were purchased from Fluka, Merck and Aldrich chemical companies and were used without any further purification. All of the products are known compounds which were characterized by comparison of their spectral (FTIR, ¹H and ¹³C NMR) and physical data with authentic samples. FTIR spectra were determined on a Nicolet Magna series FT-IR 550 spectrometer using KBr pellets. Thin layer chromatography (TLC) on commercial aluminium-backed plates of silicagel 60 F₂₅₄ was used to monitor the progress of the reactions. Melting points were obtained with a micro melting point apparatus (Electrothermal, Mk3). ¹H and ¹³C NMR spectra were recorded on a Bruker DRX-400 Avance spectrometer in CDCl₃ as solvent and chemical shift are expressed in δ ppm relative to tetramethylsilane. The XRD patterns were collected on a Philips Xpert MPD diffractometer equipped with a Cu K α anode (λ =1.54 A°) in the 20 range from 10 to 80°. Elemental composition was investigated by XRF BRUKER S4 EXPLORER. Average size of kaolin-SO₂H nanoparticles was analyzed by FESEM and TEM using a Mira 3-XMU and Philips CM120 with a LaB6 cathode and accelerating voltage of 120 kV, respectively. Brunauer-Emmett-Teller (BET) surface area analysis of catalyst was done with Micromeritics, Tristar II 3020 analyzer. Quantitative elemental information (EDS) of kaolin -SO₃H nanoparticles was measured by EDS instrument, Phenom pro X.

Preparation of Kaolin-SO₃H nanoparticles

In a ventilated cabinet, a 100 mL suction flask containing 5 g of commercial kaolin nanoparticles was equipped with a dropping funnel containing 10 mL of chlorosulfonic acid and gas inlet tube for conducting obtained HCl gas over a water vessel. Then, 25 mL of chloroform was added to the suction flask and chlorosulfonic acid was added drop-wise to the mixture with vigorously mixing at room temperature. After the addition of chlorosulfonic acid was completed, a white solid was obtained. The solid was filtered and washed with chloroform and dried at room temperature. The kaolin-SO₃H nanopaticles was obtained with 98 % yield and characterized by FT-IR, XRD, SEM, TEM, XRF, TGA, EDS and BET techniques.

Preparation of 2-substituted benzimidazoles

A mixture of aromatic aldehyde (1 mmol), ortho-phenylenediamine (1 mmol) and Kaolin- SO_3H nanoparticles (0.025 g) was stirred in a tube for 10-55 minutes at room temperature in 10 ml ethanol as solvent. After completion of the reaction, the reaction mixture was washed with hot ethanol. Products were separated from the catalyst by filtration and after evaporation of the solvent, the pure products were obtained.

Spectroscopic data

2-Phenyl-1*H*-benzimidazole (1): white solid. Mp / °C: 285-288 (Lit. 289-291 [36]). $\bar{\nu}$ (KBr) / cm⁻¹: 3421 (N-H), 3050 (=C-H), 1630-1461 (C=C and C=N), 755 (=C-H), 755 and 698 (=C-H). ¹H NMR (DMSO-d₆) / ppm: $\delta_{\rm H}$ = 8.14 (d, 2H, J=7.6 Hz), 7.74 (m, 2H), 7.64 (m, 3H), 7.39 (m, 2H). ¹³C NMR (DMSO-d₆) / ppm: $\delta_{\rm c}$ = 149.41, 147.82, 133.13, 131.41, 131.34, 124.76, 124.71, 122.98.

2-(4-Methylphenyl)-1*H*-benzimidazole (2): White solid. Mp / °C: 261-262 (Lit. 262-264 [37]). \bar{u} (KBr) / cm⁻¹: 3414 (N-H), 3057 (=C-H), 2937 (-C-H), 1632-1464 (C=C and C=N), 1394 (CH₃), 824 (=C-H), 752 (=C-H). ¹H NMR (DMSO-d₆)/ppm: δ_{H} = 8.07 (d, 2H, J = 7.2Hz), 7.69 (m, 2H), 7.44 (d, 2H, J = 7.2Hz), 7.35 (m, 2H). ¹³C NMR (DMSO-d₆)/ppm: δ_{c} = 150.7, 142.3, 135.9, 130.4, 127.6, 124.4, 124.2, 114.9, 21.6.

2-(4-Methoxyphenyl)-1*H*-benzimidazole (3):

Purple solid. Mp / °C: 224-227 (Lit. 224-226 [37]). \bar{u} (KBr) / cm⁻¹: 3420 (N-H), 3050 (=C-H), 2929 (-C-H), 1610-1462 (C=C and C=N), 1394 (CH₃), 1029 and 1266 (Ar-C-OCH₃), 837 (=C-H), 749 (=C-H bending). ¹H NMR (DMSO-d₆) / ppm: δ_{H} = 8.13 (d, 2H, J = 8.4Hz), 7.67 (m, 2H), 7.35 (m, 2H), 7.25 (d, 2H, J_{HH} = 8.4Hz), 3.86 (s, 3H). ¹³C NMR (DMSO-d₆) / ppm: δ_{C} = 140.93, 136.29, 133.84, 131.47, 130.81, 129.35, 129.19, 128.39, 128.25, 127.76, 127.12, 61.07.

2-(4-N, N-Dimethylaminophenyl)-1*H*benzimidazole (5): White solid. Mp / °C: 294-295 (Lit. 292-294 [38]). \bar{v} (KBr) / cm⁻¹: 3428 (N-H), 3031 (=C-H), 2859 (-C-H), 1604-1446 (C=C and C=N), 1376 (CH₃), 1123 (C-N), 824 (=C-H), 767 (=C-H). ¹H NMR (DMSO-d₆) / ppm: $\delta_{\rm H}$ = 8.15 (d, 2H, J = 8.8Hz), 7.70 (m, 2H), 7.70 (m, 2H), 6.91 (d, 2H, J = 8.8Hz), 3.05 (s, 6H). ¹³C NMR (DMSO-d₆)/ppm: $\delta_{\rm c}$ = 146.15, 138.19, 135.95, 133.51, 130.01, 129.68, 128.82, 128.21, 128.02, 127.53, 125.68, 21.35.

2-(4-Hydroxyphenyl)-1*H*-benzimidazole (6): Red solid. Mp / °C: 256-258 (Lit. 256 [39]). \bar{u} (KBr) / cm⁻¹: 3412 (N-H and OH), 3060 (=C-H), 1609-1462 (C=C and C=N), 1266 (Ar-O), 838 (=C-H), 750 (=C-H). ¹H NMR (DMSO-d₆) / ppm: $\delta_{\rm H}$ = 10.37 (s, 1H, OH), 8.02 (d, 2H, J = 6.8Hz), 7.65 (m, 2H), 7.42 (m, 2H), 6.98 (d, 2H, J = 6.8Hz). ¹³C NMR (DMSO-d₆)/ ppm: $\delta_{\rm c}$ = 160.36, 151.62, 137.92, 129.11, 123.01, 122.71, 119.60, 116.35, 115.67, 114.86.

2-(4-Nitrophenyl)-1*H*-benzimidazole (8): White solid. Mp / °C: 306-308 (Lit. 308-310 [37]). \bar{u} (KBr) / cm⁻¹: 3430 (N-H), 3058 (=C-H), 1605-1456 (C=C and C=N), 1522 and 1348 (ArN=O), 1110 (C-N), 858 (=C-H), 749 (=C-H). ¹H NMR (DMSO-d_e) / ppm:

 $δ_{\rm H}$ = 8.47 (d, 2H, J = 7.2Hz), 8.41 (d, 2H, J = 7.2Hz), 7.74 (m, 2H), 7.38 (m, 2H). ¹³C NMR (DMSO-d₆)/ ppm: $δ_{\rm c}$ = 148.07, 147.87. 147. 50, 139.80, 139.06, 124.31, 121.88, 116.30.

2-(3-Nitrophenyl)-1*H*-benzimidazole (9): Yellow solid. Mp / °C: 202-204 (Lit. 202-204 [37]). $\bar{\upsilon}$ (KBr) / cm⁻¹: 3428 (N-H), 3068 (=C-H), 1630-1455 (C=C and C=N), 1532 and 1350 (ArN=O), 1112 (C-N), 876, 812 and 706 (=C-H), 746 (=C-H). ¹H NMR (DMSO-d₆) / ppm: $\delta_{\rm H}$ = 9.03 (s, 1H), 8.58 (d, 1H, J = 8.8Hz), 8.41 (d, 1H, J = 8.8Hz), 7.92 (t, 1H, J = 8.8Hz), 7.75 (m, 2H), 7.40 (m, 2H). ¹³C NMR (DMSO-d₆) / ppm: $\delta_{\rm c}$ = 148.71, 148.41, 136.15, 133.55, 131.47, 128.80, 126.15, 124.95, 122.21, 115.39.

2-(2-Nitrophenyl)-1*H*-benzimidazole (10): Orang solid. Mp / °C: 255-257 (Lit. 256-258 [40]). $\bar{\nu}$ (KBr) / cm⁻¹: 3418 (N-H), 3062 (=C-H), 1587-1416 (C=C and C=N), 1524 and 1348 (ArN=O), 1147 (C-N), 766 (=C-H). ¹H NMR (DMSO-d₆)/ppm: δ_H= 13.05 (s, 1H), 8.17 (d, 1H, J = 7.2Hz), 7.85 (d, 1H, J= 7.2Hz), 7.84 (t, 1H, J= 7.2Hz), 7.72 (t, 1H, J = 7.6Hz), 7.63 (m, 1H), 7.58 (m, 1H), 7.22 (m, 2H). ¹³C NMR (DMSO-d₆)/ppm: δ_c= 151.71, 144.26, 130.64, 130.31, 129.42, 126.91, 122.93, 122.20, 119.33, 111.17.

2-(3-Pyridyl)-1*H*-benzimidazole (11): Brown solid. Mp / °C: 245-247 (Lit. 246-258 [41]). $\bar{\nu}$ (KBr) / cm⁻¹: 3418 (N-H), 3025 (=C-H), 1632-1457 (C=C and C=N), 753 (=C-H). ¹H NMR (DMSO-d₆) / ppm: $\delta_{\rm H}$ = 9.35 (s, 1H), 8.47 (d, 2H, J = 7.2Hz), 8.77 (d, 1H, J= 5.0Hz), 8.55 (d, 1H, J= 8.0Hz), 7.72 (m, 3H), 7.38 (m, 2H). ¹³C NMR (DMSO-d₆)/ppm: $\delta_{\rm c}$ = 153.32, 146.52, 143.51, 128.83, 127.86, 124.93, 124.59, 121.20, 113.48.

2-(4-Pyridyl)-1*H*-benzimidazole (12): Brown solid. Mp / °C: 273-275 [4]. \bar{u} (KBr)/cm⁻¹: 3428 (N-H), 3025 (=C-H), 1632-1476 (C=C and C=N), 729 (=C-H). ¹H NMR (DMSO-d₆)/ppm: $\delta_{\rm H}$ = 8.87 (d, 2H, J = 5.0Hz), 8.31 (d, 2H, J = 5.0Hz), 7.72 (m, 2H), 7.32 (m, 2H). ¹³C NMR (DMSO-d₆)/ppm: $\delta_{\rm c}$ = 149.43, 148.22, 136.45, 127.81, 124.73, 123.47, 123.46.

2-(2,4-Dichlorophenyl)-1*H*-benzimidazole (13): White solid. Mp / °C: 265-266 (Lit. 266-268 [37]). $\bar{\nu}$ (KBr) / cm⁻¹: 3424 (N-H), 3103 (=C-H), 1625-1426 (C=C and C=N), 740 (=C-H). ¹H NMR (DMSO-d₆)/ppm: $\delta_{\rm H}$ = 7.97 (m, 2H), 7.8-7.68 (m, 3H), 7.44 (m, 2H). ¹³C NMR (DMSO-d₆)/ppm: $\delta_{\rm C}$ = 141.23, 136.17, 132.37, 131.33, 130.91, 129.26, 128.79, 128.70, 128.25, 128.16, 127.82, 127.64, 127.06.

2-(4-Carboxyphenyl)-1*H*-benzimidazole (14): White solid. Mp / °C: 215-217 (Lit. 215 [42]). \bar{u} (KBr) / cm⁻¹: 3418 (N-H), 2400-3600 O-H acid), 1738 C=O), 1610-1445 (C=C and C=N), 835 (=C-H), 768 (=C-H). ¹H NMR (DMSO-d₆)/ppm: δ_{H} = 8.29 (d, 2H, J = 8.8Hz), 8.16 (d, 2H, J= 8.8Hz), 7.73 (m, 2H), 7.37 (m, 2H). ¹³C NMR (DMSO-d₆) / ppm: δ_{C} = 169.75, 160.10, 146.02, 133.25, 129.35, 129.17, 128.29, 127.85, 126.96, 126.74, 123.51, 114.01.

2-(3,4-Dimethoxyphenyl)-1*H*-benzimidazole (15): White solid. Mp / °C: 227-229 (Lit. 228-230 [37]). \bar{u} (KBr) / cm⁻¹: 3422 (N-H), 3050 (=C-H), 2941 (-C-H), 1632-1465 (C=C and C=N), 1392 (CH₃ bending), 1108 and 1273 (Ar-C-OCH₃), 752 (=C-H). ¹H NMR (DMSO-d₆)/ppm: $\delta_{\rm H}$ = 7.80 (m, 2H), 7.71 (m, 2H), 7.04 (m, 2H), 7.23 (d, 2H, J = 8.4Hz), 3.86 (s, 3H). ¹³C NMR (DMSO-d₆)/ppm: $\delta_{\rm c}$ = 146.08, 138.28, 130.70, 129.69, 129.49, 129.22, 129.06, 128.87, 128.15, 126.93, 126.59, 126.21, 122.84, 61.07, 56.33.

2-(4-Nitrophenyl)-1H-4-methyl-benzimidazole (16): White solid.mp / °C: 199-201 [43]. $\bar{\nu}$ (KBr) / cm⁻¹: 3420 (N-H), 3061 (=C-H), 1600-1400 (C=C and C=N), 1348 (CH₃), 1524 and 1348 (ArN=O), 1110 (C-N), 844 (=C-H). ¹H NMR (DMSO-d₆)/ppm: $\delta_{\rm H}$ = 8.15 (m, 2H), 8.72 (m, 2H), 7.60 (dd, 1H, dd, J = 8.4 Hz and 4.0 Hz), 7.49 (d, 1H, J = 4.0 Hz), 7.21 (dd, 1H, J = 8.4 Hz and 4.0 Hz), 7.19 (d, 1H, J = 8.4 Hz), 2.49 (s, 3H). ¹³C NMR (DMSO-d₆) / ppm: $\delta_{\rm c}$ = 158.01, 146.43, 133.76, 129.00, 128.87, 128.57, 128.28. 127.87, 126.92, 126.71, 126.23, 122.43,

115.47,22.43.

2-(4-Methyl phenyl)-1H-4-methyl-benzimidazole (17): Green solid.mp / °C: 175-177 (Lit. 177 [36]). $\bar{\nu}$ (KBr) / cm⁻¹: 3425 (N-H), 3108 (=C-H), 2924 (-C-H), 1633-1446 (C=C and C=N), 1345 (CH₃), 858 (=C-H). ¹H NMR (DMSO-d₆)/ppm: δ_{H} = 8.43 (d, 2H, J= 8.8 Hz), 8.37 (d, 2H, J= 8.8 Hz), 7.60 (d, 1H, J = 8.4 Hz), 7.49 (s, 1H), 7.19 (d, 1H, J= 8.4 Hz), 2.48 (s, 3H), 2.45 (s, 3H). ¹³C NMR (DMSO-d₆) / ppm: δ_{c} = 158.00, 146.39, 133.75, 128.88, 128.65, 128.29, 127.84, 126.93, 126.91, 126.71, 126.23, 122.42, 115.47, 25.32, 21.76.

RESULTS AND DISCUSSION

Characterization of kaolin-SO₃H nanoparticles

In order to identify the molecular structure of kaolin-SO₃H nanoparticles, FT-IR analysis of the kaolin nanoparticles and kaolin-SO₃H nanoparticles were compared (Fig. 1). In FT-IR spectrum of kaolin, many bands at 3686 and 3620, 1114, 990, 909, 791 and 752 cm⁻¹ were existed. However in the kaolin-SO₃H nanoparticles, in addition to the above mentioned bands, a band at 1160 cm⁻¹ and a very broad band at 2700-3400 cm⁻¹ were appeared. The broad band at 1160 cm⁻¹ and a very broad band at 2700-3400 cm⁻¹ verify the O=S=O and –SO-H vibrations on kaolin-SO₃H, respectively. In the 990 cm⁻¹ and 640 cm⁻¹ region,

J Nanostruct 9(2): 219-229, Spring 2019

main functional groups were Si-O and Al-OH.

Fig. 2 shows the XRD powder diffraction pattern of kaolin-SO₃H nanoparticles. As shown in this figure, incorporation of -SO₃H leads to some changes in the diffractogram of kaolin nanoparticles. In the diffractogram of kaolin nanoparticles in 20 from 62 to 74, nine peaks but in kaolin-SO₃H nano particles, only three peaks (at 70.60, 72.67 and 74.08) are existed. In kaolin-SO₃H nanoparticles, three peaks in 2 0 from 20 to 25 were disappeared. Other peaks in kaolin and kaolin-SO₃H nanoparticles diffractograms are in the same position. The sharpness of peaks in the kaolin-SO₃H nanoparticles diffractogram shows crystalline form for this catalyst

Field emission scanning electron microscopy (FESEM) and transition electron microscope (TEM) images of the kaolin-SO₃H nanoparticles are

displayed in Fig. 3. These images clearly showed the amorphous surface morphology of the kaolin-SO₃H nano particles with an average size distribution of 15 nm.

TG-DTG curves of starting kaolinite display a strong peak at 517 °C, which is due to dehydroxylation of kaolinite within the 450-600 °C temperature range resulting in a weight loss of 15.34 % and formation of meta-kaolinite. The peak on the TG-DTG curve at approximately 980 °C is an evidence of the breakdown of the meta kaolinite structure and the formation of mullite. Thermal gravimetric analysis (TG-DTG) pattern of kaolin-SO₃H nano particles was detected from 25 to 750 °C (Fig. 4). The catalyst is stable up to 100 °C and only 5 % of its weight was reduced in 120 °C. One endothermic processes were accrued between in 130 °C due to decomposition of $-SO_2H$ group and

Fig. 2. X-ray diffraction (XRD) pattern of kaolin-SO₃H nanoparticles

Fig. 3. (a) FESEM and (b) TEM photographs of kaolin-SO₃H nanoparticles

J Nanostruct 9(2): 219-229, Spring 2019

elimination of SO_2 and H_2O from catalyst. Another endothermic processes in 530 °C caused mass changed equal to 5 % due to dehydroxylation of kaolinite.

The results of X-ray fluorescence of kaolin-SO₃H nanoparticles are shown the presence of 15.9 % of SO₂ in its composition (Table 1).

The percentage of each element in nanocatalyst was approved by EDS analysis data (Fig. 5).

The percentage of S, O, Si and Al in kaolin-SO₂H

nanoparticles is shown in Table 2.

The specific surface area of catalyst was measured by Brunauer–Emmett–Teller (BET) theory. The single point surface area at P/Po = 0.983 is 7.59 m²/g, while the mean pore diameter is 20.601 nm and the total pore volume is 3.909 cm³ g⁻¹. The N₂ adsorption isotherm of catalyst is depicted in Fig. 6.

The acidity of the catalyst was compared with kaolin. The pH of 0.05 g of commercial kaolin or

Fig.4.Thermal gravimetric analysis (TGA-DTG) pattern of kaolin-SO3H nanoparticles

element	SiO ₂	Al ₂ O ₃	SO ₃	CO ₂
Percent %	43	30.5	15.9	8.2

Fig. 5. EDS spectra of kaolin-SO₃H nanoparticles

A. Bamoniri et al / Kaolin-SO₃H Nanoparticles Promoted Synthesis of 2-Substituted Benzimidazoles

······································							
Element	App	Intensity	Weight%	Weight%	Atomic%		
	Conc.	Corrn.		Sigma			
O K	249.75	1.1405	61.06	0.28	73.17		
Al K	49.20	0.8817	15.56	0.17	11.06		
Si K	58.99	0.7736	21.26	0.21	14.51		
S K	5.70	0.7514	2.12	0.09	1.27		
Totals			100.00				

Table 2. The EDS analysis of kaolin-SO₃H nanoparticles

kaolin-SO₃H in 5 mL of distilled water is 6 and 3.4, respectively. The acidic capacity of catalyst was determined via titration of 0.05 g of it with 12.16 mL of 0.009 N of NaOH and was 2.268 meq/g H⁺.

Preparation of 2-substituted benzimidazoles in the presence of kaolin-SO₃H nanoparticles

Kaolin-SO₃H nanoparticles as a new efficient heterogeneous catalyst, was used for the synthesis of 2-substituted benzimidazoles via reaction of

Fig. 6. (a) BET (Brunauer–Emmett–Teller), (b) adsorption/desorption isotherm and (c) BJH (Barrett-Joyner-Halenda) plots of kaolin-SO₃H nanoparticles

J Nanostruct 9(2): 219-229, Spring 2019

ortho-phenylendiamines and various aldehydes (Fig. 7, Table 3).

A suggested mechanism for synthesis of

2-substituted benzimidazole is shown in Fig. 8. In this mechanism, at first the solid acid catalyst protonates the carbonyl group of aldehyde which

Entry	Aldehvde	Product	Time	Yeild	M.P	с (°С)	Ref.
	CHO	Н	(min)	(%)	Found	Reported	
1ª			10	99	285-288	289-291	[36]
2ª	H ³ C	\sim	20	95	261-262	262-264	[37]
3ª	MeO		10	97	224-227	224-226	[37]
4ª	CI		15	94	292-293	288-291	[37]
5ª	ме ₂ N	$\underset{N}{\overset{H}{\longrightarrow}} \underset{N}{\overset{N}{\longrightarrow}} \underset{NMe_2}{\overset{NMe_2}{\longrightarrow}}$	10	89	294-295	292-294	[38]
6ª	HO	N OH	10	98	256-258	256	[39]
7ª	(CH ₃) ₂ HC	$ \underset{N}{\overset{H}{\longrightarrow}} \underset{N}{\overset{H}{\longrightarrow}} \underset{CH(CH_{3})_{2}}{\overset{H}{\longrightarrow}} $	15	88	248-250	249-250	[38]
8ª	O ₂ N CHO		15	86	306-308	308-310	[37]
9ª	O ₂ N CHO		10	84	202-204	202-204	[37]
$10^{\rm a}$	CHO CHO		10	80	255-257	256-258	[40]
11ª	N CHO	$\operatorname{constant}^H_N \to \operatorname{constant}^N$	40	65	245-247	246-248	[41]
12ª	N CHO		40	70	273-275	-	[4]
13ª	CI CHO		20	84	265-266	266-268	[37]
14ª	HOOC		30	90	215-217	215	[42]
15ª	MeO CHO MeO	$ \longrightarrow_{N}^{H} \longrightarrow_{OMe}^{OMe} $	30	67	227-229	228-230	[37]
16 ^b	O2N CHO	H ₃ C H _N NO ₂	55	87	199-201	-	[43]
17 ^b	H ₃ C	H_3C	55	85	175-177	177	[36]

Table 3. Synthesis of 2-substituted benzimidazoles in the presence of kaolin-SO₃H nanoparticles at room temperature^a

^ao-Phenylendiamine (1 mmol), aldehyde (1 mmol), Kaolin-SO₃H nanoparticles (0.025 g).
^b4-Methyl-1,2-phenylendiamine (1 mmol), aldehyde (1 mmol), Kaolin-SO₃H nanoparticles (0.025 g).

A. Bamoniri et al / Kaolin-SO, H Nanoparticles Promoted Synthesis of 2-Substituted Benzimidazoles

 $Y = H, CH_3, NO_2$

X = different groups

Fig. 7. Synthesis of 2-substituted benzimidazole derivatives in the presence of kaolin-SO₃H nanoparticles

Fig. 8. Suggested mechanisms for synthesis of 2-substituted benzimidazoles in the presence of Kaolin-SO₃H nanoparticles

then condense with one of the NH_2 groups of ortho-phenylen diamine to produce corresponding schiff base. After this, the second NH_2 group of ortho-phenylenediamine condense with this intermediate via an intramolecular ring closure produces five membered ring which formed 1,3-benzodiazolidine. In the presence of O_2 of air as oxidant, 2-substituted benzimidazole is formed by removal of H⁺.

CONCLUSION

In this paper, Kaolin-SO₃H nanoparticles were prepared and characterized with FT-IR, XRD, FESEM, TEM, XRF, EDS, BET and TGA. We have been able to introduce a new efficient and environmentally friendly pathway for one pot synthesis of 2-substituted benzimidazoles via condensation of ortho-phenylendiamine and aldehyde using Kaolin-SO₃H nanoparticles as a recyclable solid acid catalyst. This simple procedure is solvent- free and its easy and clean work up, high yields and heterogeneous conditions make this attractive for large–scale environment-friendly operations.

ACKNOWLEDGMENTS

The authors are grateful to University of Kashan for supporting this work by Grant No. 159189/40.

CONFLICT OF INTEREST

The authors declare that there are no conflicts of interest regarding the publication of this manuscript.

REFERENCES

- Lee Y-S, Cho Y-H, Lee S, Bin J-K, Yang J, Chae G, et al. Significant facilitation of metal-free aerobic oxidative cyclization of imines with water in synthesis of benzimidazoles. Tetrahedron. 2015;71(4):532-8.
- Sajjadifar S, Ahmad Mirshokraie S, Javaherneshan N, Louie O. SBSA as a New and Efficient Catalyst for the One-Pot Green Synthesis of Benzimidazole Derivatives at Room Temperature. American Journal of Organic Chemistry. 2012;2(2):1-6.
- Ng RA, Guan J, Alford VC, Lanter JC, Allan GF, Sbriscia T, et al. Synthesis and SAR of potent and selective androgen receptor antagonists: 5,6-Dichloro-benzimidazole derivatives. Bioorganic & Medicinal Chemistry Letters. 2007;17(3):784-8.
- 4. Wen X, El Bakali J, Deprez-Poulain R, Deprez B. ChemInform

Abstract: Efficient Propylphosphonic Anhydride (*T3P) Mediated Synthesis of Benzothiazoles, Benzoxazoles and Benzimidazoles. ChemInform. 2012;43(35):no-no.

- Tushar M, Kaneria D.M, Kapse G.K, Gaikwad T.V, Sarvaiya J. A Mild and Efficient Synthesis of Benzimidazole by Using Zinc Chloride under Solvent Free Condition. Int. J. Pharm. Res. Sch., 2013; 2(1): 90-98.
- Rathee PS, Dhankar R, Bhardwaj S, Gupta M, Kumar R. Synthesis and Antimicrobial Studies of Novel Benzimidazole Derivatives. J. App. Pharm. Sci. 2011; 1(4): 127–130.
- Ateş-Alagöz Z, Kuş C, Çoban T. Synthesis and antioxidant properties of novel benzimidazoles containing substituted indole or 1,1,4,4-tetramethyl-1,2,3,4-tetrahydronaphthalene fragments. Journal of Enzyme Inhibition and Medicinal Chemistry. 2005;20(4):325-31.
- Navarrete-Vázquez G, Yépez L, Hernández-Campos A, Tapia A, Hernández-Luis F, Cedillo R, et al. Synthesis and antiparasitic activity of albendazole and mebendazole analogues. Bioorganic & Medicinal Chemistry. 2003;11(21):4615-22.
- 9. Walia R, Hedaitullah M.D, Naaz S. F, Iqbal K, Lamba H. S. Benzimidazole Derivatives–an Overview. Int. J. Res. Pharm. Chem., 2011; 1(3): 565-574.
- Lazer ES, Matteo MR, Possanza GJ. Benzimidazole derivatives with atypical antiinflammatory activity. Journal of Medicinal Chemistry. 1987;30(4):726-9.
- Fonseca T, Gigante B, Marques MM, Gilchrist TL, De Clercq E. Synthesis and antiviral evaluation of benzimidazoles, quinoxalines and indoles from dehydroabietic acid. Bioorganic & Medicinal Chemistry. 2004;12(1):103-12.
- Bhrigu B, Siddiqui N, Pathak D, Alam M.S, Ali R, Azad B. Anticonvulsant Evaluation of Some Newer Benzimidazole Derivatives: Design and Synthesis. Acta Pol. Pharm. Drug Res., 2012; 69(1): 53-62.
- Serafin B, Borkowska G, Główczyk J, Kowalska I, Rump S. Potential Antihypertensive Benzimidazole Derivatives. Pol. J. Pharmacol. Pharm., 1989; 41(1): 89-96.
- 14. Charifson PS, Grillot A-L, Grossman TH, Parsons JD, Badia M, Bellon S, et al. Novel Dual-Targeting Benzimidazole Urea Inhibitors of DNA Gyrase and Topoisomerase IV Possessing Potent Antibacterial Activity: Intelligent Design and Evolution through the Judicious Use of Structure-Guided Design and Stucture–Activity Relationships. Journal of Medicinal Chemistry. 2008;51(17):5243-63.
- Hasegawa M, Nishigaki N, Washio Y, Kano K, Harris PA, Sato H, et al. Discovery of Novel Benzimidazoles as Potent Inhibitors of TIE-2 and VEGFR-2 Tyrosine Kinase Receptors. Journal of Medicinal Chemistry. 2007;50(18):4453-70.
- Falcó JL, Piqué M, González M, Buira I, Méndez E, Terencio J, et al. Synthesis, pharmacology and molecular modeling of N-substituted 2-phenyl-indoles and benzimidazoles as potent GABAA agonists. European Journal of Medicinal Chemistry. 2006;41(8):985-90.
- 17. Venkateswarlu Y, Kumar S, Leelavathi P. Facile and efficient one-pot synthesis of benzimidazoles using lanthanum chloride. Organic and Medicinal Chemistry Letters. 2013;3(1):7.
- Varala R, Nasreen A, Enugala R, Adapa SR. I-Proline catalyzed selective synthesis of 2-aryl-1-arylmethyl-1Hbenzimidazoles. Tetrahedron Letters. 2007;48(1):69-72.
- Banie H, Sinha A, Thomas RJ, Sircar JC, Richards ML.
 2-Phenylimidazopyridines, a New Series of Golgi Compounds with Potent Antiviral Activity. Journal of

Medicinal Chemistry. 2007;50(24):5984-93.

- Bahrami K, Khodaei MM, Naali F. Mild and Highly Efficient Method for the Synthesis of 2-Arylbenzimidazoles and 2-Arylbenzothiazoles. The Journal of Organic Chemistry. 2008;73(17):6835-7.
- Zheng N, Anderson KW, Huang X, Nguyen HN, Buchwald SL. A Palladium-Catalyzed Regiospecific Synthesis of Aryl Benzimidazoles. Angewandte Chemie International Edition. 2007;46(39):7509-12.
- Beaulieu P, Haché B, von Moos E. A Practical Oxone[®]-Mediated,High-Throughput, Solution-Phase Synthesis of Benzimidazolesfrom 1,2-Phenylenediamines and Aldehydes and its Application toPreparative Scale Synthesis. Synthesis. 2003;2003(11):1683-92.
- Wang Y-G, Du L-H. A Rapid and Efficient Synthesis of Benzimidazoles Using Hypervalent Iodine as Oxidant. Synthesis. 2007;2007(5):675-8.
- Du L-H, Luo X-P. Efficient One-Pot Synthesis of Benzimidazoles Under Solvent-Free Conditions. Synthetic Communications. 2010;40(19):2880-6.
- Gogoi P, Konwar D. An efficient and one-pot synthesis of imidazolines and benzimidazoles via anaerobic oxidation of carbon–nitrogen bonds in water. Tetrahedron Letters. 2006;47(1):79-82.
- Aras A, Albayrak M, Arikan M, Sobolev K. Evaluation of selected kaolins as raw materials for the Turkish cement and concrete industry. Clay Minerals. 2007;42(2):233-44.
- 27. Murray HH. Traditional and new applications for kaolin, smectite, and palygorskite: a general overview. Applied Clay Science. 2000;17(5-6):207-21.
- Cravero F, Gonzalez I, Galan E, Dominguez E. Geology, mineralogy, origin and possible applications of some Argentinian kaolins in the Neuquen basin. Applied Clay Science. 1997;12(1-2):27-42.
- H. Murray H, Kogel JE. Engineered clay products for the paper industry. Applied Clay Science. 2005;29(3-4):199-206.
- Schupp JR, Fallahi E, Chun IJ. EFFECT OF PARTICLE FILM ON FRUIT SUNBURN, MATURITY AND QUALITY OF 'FUJI' AND 'HONEYCRISP' APPLES. Acta Horticulturae. 2004(636):551-6.
- 31. Mirjalili BF, Zolfigol MA, Bamoniri A, Hazar A. Al(HSO4)3 as an efficient catalyst for acetalization of carbonyl compounds under heterogeneous or solvent -free conditions. Journal of the Brazilian Chemical Society. 2005;16(4):877-80.
- Mirjalili BF, Zolfigol MA, Bamoniri A, Sheikhan N. Solvent-Free Preparation of 1,1-Diacetates from Aldehydes Mediated by Zirconium Hydrogen Sulfate at Room Temperature. Journal of the Chinese Chemical Society. 2006;53(4):955-9.
- 33. Salehi N, Fatameh Mirjalili BB. Synthesis of highly substituted dihydro-2-oxopyrroles using Fe3O4@nano-cellulose– OPO3H as a novel bio-based magnetic nanocatalyst. RSC Advances. 2017;7(48):30303-9.
- 34. Azad S, Fatameh Mirjalili BB. Fe3O4@nano-cellulose/TiCl: a bio-based and magnetically recoverable nano-catalyst for the synthesis of pyrimido[2,1-b]benzothiazole derivatives. RSC Advances. 2016;6(99):96928-34.
- 35. Mirjalili B.F, Bamoniri A, Nezamalhosseini S.M. BF $_3$ /nano- γ -Al $_2O_3$ Promoted Knoevenagel Condensation at Room Temperature. J. Nanostruct., 2015; 5(4): 367-373.
- Ugheoke B.I, Onche E.O, Namessan O. N. Askpo, G. A. Property Optimization of Kaolin - Rice Husk Insulating Fire

A. Bamoniri et al / Kaolin-SO₃H Nanoparticles Promoted Synthesis of 2-Substituted Benzimidazoles

- Bricks, El. J. Pract. Technol. 5 (2006), 167-178.

- Sadeghi B, Ghasemi Nejad M. Silica Sulfuric Acid: An Eco-Friendly and Reusable Catalyst for Synthesis of Benzimidazole Derivatives. Journal of Chemistry. 2013;2013:1-5.
- Eshghi H, Rahimizadeh M, Shiri A, Sedaghat P. One-pot Synthesis of Benzimidazoles and Benzothiazoles in the Presence of Fe(HSO4)3as a New and Efficient Oxidant. Bulletin of the Korean Chemical Society. 2012;33(2):515-8.
- Rathod SB, Lande MK, Arbad BR. ChemInform Abstract: Synthesis, Characterization and Catalytic Application of MoO3/CeO2-ZrO2 Solid Heterogeneous Catalyst for the Synthesis of Benzimidazole Derivatives. ChemInform. 2011;42(9):no-no.
- 40. Chen G-F, Shen H-D, Jia H-M, Zhang L-Y, Kang H-Y, Qi Q-Q, et al. Eco-Friendly Synthesis of 2-Substituted Benzimidazoles

Using Air as the Oxidant. Australian Journal of Chemistry. 2013;66(2):262.

- Birajdar S.S, Hatnapure G.D, Keche A.P, Kamble V.M. Synthesis of 2-Substituted-1*H*-benzo[*d*]imidazoles Through Oxidative Cyclization of *O*-Phenylenediamine and Substituted Aldehydes using Dioxane Dibromide. Res. J. Pharm. Biol. Chem. Sci., 2014; 5(1): 487-493.
- 42. Bommegowda YK, Lingaraju GS, Thamas S, Vinay Kumar KS, Pradeepa Kumara CS, Rangappa KS, et al. Weinreb amide as an efficient reagent in the one pot synthesis of benzimidazoles and benzothiazoles. Tetrahedron Letters. 2013;54(21):2693-5.
- Patil V.D, Medha G, Shramesha M, Aarti J. A Mild and Efficient Synthesis of Benzimidazole by Using Lead Peroxide under Solvent Free Condition. Der. Chemica Sinica, 2010; 1(2): 125-129.