Journal of

NANOSTRUCTURES

Nano-TiCl₄.SiO₂: A Versatile and Efficient Catalyst for Synthesis of 14-aryl or alkyl-14*H*-dibenzo[*a*,*j*]xanthenes

B. F. Mirjalili^{*a}, A. Bamoniri^b, L. Zamani^a

^aDepartment of Chemistry, College of Science, Yazd University, Yazd, PO Box 89195-741, I. R. Iran. ^bDeprtment of Organic Chemistry, Faculty of Chemistry, University of Kashan, Kashan, I. R. Iran.

Article history: Received 27/1/2013 Accepted 13/5/2013 Published online 1/3/2014

Keywords: Dibenzo xanthenes Nano-TiCl₄.SiO₂ Salvent-free

**Corresponding author:* Bi Bi Fatemeh Mirjalili fmirjalili@gmail.com Phone: +98 351 8122672 Fax: +98 351 8210644

Abstract

Nano-silica supported titanium tetrachloride (TiCl₄.SiO₂) was prepared and used as an acid catalyst for the 14-aryl or alkyl-14Hdibenzo[a,,j]xanthenesreaction under solvent-free conditions. Compared to the classical 14-arvl alkyl-14*H*or dibenzo[a, j]xanthenesreaction conditions, this method consistently has the advantage of excellent yields, mild reaction conditions, ease of workup, survival of different functional groups and short reaction times.

2014 JNS All rights reserved

1. Introduction

Heterogeneous catalysis dominates the industrial scenery mainly due to the facility of recovery and reuse of solid insoluble catalysts [1, 2]. Titanium tetrachloride as a powerful Lewis acid is a liquid which is highly volatile, corrosive and difficult to handle. It hydrolyses to produce HCl in the presence of moisture. Silica-supported TiCl₄ have several advantages as catalysts which make them economically and environmentally attractive. They have very strong Brønsted acidity approaching the superacid region and this acid-base property can be varied over a wide range by changing the chemical composition. It can be stored at an ambient temperature for months without losing its catalytic activity. This catalyst does not need special precautions for preparation, handling, or storage.

The preparation of benzoxanthenes is important due to their broad spectrum of biological and therapeutic properties such as antiviral [3], antibacterial [4] and anti-inflammatory [5] activities. They have efficiency in photodynamic therapy [6] and in antagonism of the paralyzing action of zoxazolamine [7]. Further, these compounds can be employed as dyes [8], pHsensitive fluorescent materials for visualization of biomolecules [9] and in laser technologies [10].

For the construction of xanthenes and benzoxanthenes, various procedures are available including the cyclo-acylation of carbamates [11], trapping of benzynes by phenol [12]. cyclocondensation between 2-hydroxy aromatic aldehydes and 2-tetralone [13], cyclodehydrations [14] and reaction of aldehydes with β -naphthol [15].

Previously, this procedure has been catalyzed with acids such as silica sulfuric acid [16, 17] Dowex-50W [18], NH₄H₂PO₄ [19], HClO₄– SiO₂[20], PW acid [21], cyanuric chloride [22], Yb(OTf)₃ [23], and polyphosphoric acid (PPA/SiO₂) [24].

2. Experimental procedure

The chemicals were used from Merck Company without any additional purification. The products were characterized by FT-IR (ATR), ¹H-NMR, and a comparison of their physical properties with those reported in the literature. FT-IR (ATR) spectra were run on a Bruker, Eqinox 55 spectrometer. A Bruker (DRX-400 Avance) NMR was used to record the ¹H NMR spectra. The X-ray diffraction (XRD) patterns of materials were recorded by employing a Philips Xpert MPD diffractometer equipped with a Cu K α anode (λ = 1.54 A°) in the 2θ range from 10 to 80°. The SEM of nano particles determined with VEGA/TESCAN scanning electron microscope and TEM photograph was prepared by Leo 912AB OMEGA microscope.

A mixture of 2-naphthol (2 mmol), aldehyde (1 mmol), and 50% nano-TiCl₄.SiO₂ (0.05 g) was heated at 90°C. The progress of the reaction was monitored by TLC. After the completion of the reaction, the mixture was washed with hot ethanol and filtered to recover the catalyst. The filtrate was

cold to obtain the pure 14-aryl or alkyl-14Hdibenzo[a,j]xanthene derivatives in 85–97% yields.

3. Results and discussion

Nano-TiCl₄.SiO₂[25, 26] as an efficient and reusable acidic catalyst is synthesized via reaction of nano-silica gel with TiCl₄ in chloroform at room temperature. For the identification of the structure of nano-TiCl₄.SiO₂, we studied IR spectra of SiO2, nano-TiCl₄.SiO₂ and TiCl₄ (Fig. 1). In all of the spectra, very broad OH stretching bands are observed with a strong intermolecular hydrogen bonding. In FT-IR spectra of nano-TiCl₄.SiO₂ and SiO2, the absorption bands for Si-OH and Si-O-Si appear in $\sim 700 \text{ cm}^{-1}$ and $\sim 1100 \text{ cm}^{-1}$ respectively. The absorption band of Ti-Cl appear in 1600 cm⁻¹ in TiCl₄ spectrum. In FT-IR spectrum of nano-TiCl₄.SiO₂, the O-Ti-Cl, Si-OH and Si-O-Si absorption bands are observed in 900, 700 and 1100 cm⁻¹ respectively. In this study on nano-TiCl₄.SiO₂ structure led to more exactly configuration containing SiO₂-TiCl₃ (19%) and SiO₂-TiCl₂-SiO₂ (81%) (Scheme 1).

Because the nano-TiCl₄.SiO₂ produces HCl in water, we have determined the concentration of the acidic aqueous solution by titration. We have found that 0.1 g of catalyst produced a 0.0064 M aqueous solution. For the determination of the loading amount of Ti on 0.1 g of nano-TiCl₄.SiO₂, we have extracted Ti from the catalyst using EDTA solution (0.004 M) at pH of 4.

The standard solutions of titanium (IV) were prepared by dissolving a proper amount of TiCl₄ in acetone. Determination of the extracted Ti was carried out by an atomic absorption spectrometer with a hollow cathode lamp at a wavelength of 346 nm using C_2H_2/N_2O flame. The calibration equation for titanium was found as A=0.012C-0.1895 (R²=0.9998). In this equation, A and C are the absorbance and concentration (mg L^{-1}) of titanium respectively. The calculated loading amount of Ti in catalyst is 7 mgg⁻¹.

Fig. 1. FT-IR spectrum of: (a)SiO₂, (b)nano-TiCl₄.SiO₂, and (c) TiCl₄.

Scheme 1. Suggested structure for nano-TiCl₄.SiO₂.

The dimensions of nanoparticles were observed with the transmiThe scanning electron microscopy (SEM). The particle sizes of the commercial silica gel and synthesizednano-TiCl₄.SiO₂ were about 16-24 nm and 37-41 nm (Fig.2) respectively.

The X-ray diffraction (XRD) patterns of nano-SiO₂ and nano-TiCl₄.SiO₂ are shown inFig. 3. The XRD pattern of Nano-SiO₂has a strong peak in 2θ value of 21.8024° with FWHM equal to 0.1771. According to XRD pattern of nano-TiCl₄.SiO₂, the values of 2θ and FWHM are shown in Table 1.

In continuation of our investigations on solid acids in organic synthesis [27, 28],we have applied the nano-TiCl₄.SiO₂ for the synthesis of 14-phenyl-14*H*-dibenzo[a,j]xanthene. The reaction between benzaldehye and 2-naphthol was examined to optimize the reaction condition (Scheme 2). Reaction in different conditions in the presence of $TiCl_4$.SiO₂ revealed that the best condition for all the reaction was a solvent-free one at 90°C (Table 2, Entry 6).

Fig. 2. SEM photograph of (a) nano-SiO₂ and (b) nano-TiCl₄.SiO₂.

Fig. 3. X-ray diffraction (XRD) pattern of a) nano-SiO₂ and b) nano-TiCl₄.SiO₂.

Transmission electron microscopy (TEM) picture of nano-TiCl₄.SiO₂ were shown in Fig. 4. The particle size in (TEM) pattern is calculated between 14-20 nm.

 Table
 1.
 Nano-TiCl₄.SiO₂
 reflexes
 in
 XRD
 diffractogram

Ent.	Pos [°2Th.]	FWHM [°2Th.]	Particle size (A°)
1	21.7587	0.3542	22.0
2	27.1424	1.6531	5.0
3	35.8287	0.4723	17.0
4	40.8394	1.1808	7.0
5	54.1881	1.1808	7.5
6	62.8214	0.7085	13.0
7	69.3466	2.3040	4.0

Fig.4. TEM photograph of nano-TiCl₄.SiO₂.

We have repeated the above mentioned reaction with 50% nano-TiCl₄.SiO₂ and found that 0.05 g of catalyst is necessary (Table 2, Entry 12).To examine the reusability of nano-TiCl₄.SiO₂in a solvent-free condition, after each run, the product was dissolved to CHCl₃ and filtered. The catalyst residue was washed with acetone and reused. Treatment with acetone removes the tar from the catalyst surface more efficiently (Table 2, Entries 14 and 15). The catalyst was reusable although a gradual declinewas observed in its activity. All of the products were known and characterized by FT-IR, ¹H-NMR, and the physical properties of those reported in the literature.

Scheme 2. Synthesis of 14-phenyl-14*H*-dibenzo[*a*,*j*]xanthenes.

According to the obtained best condition, we have applied 2-naphthol and various aldehydes, for the synthesis of 14-aryl or alkyl-14*H*-dibenzo[a,j]xanthene derivatives (scheme 3 and Table 3).

Table 2. Synthesis of 14-(phenyl)-dibenzo[a,j]xanthene
under various conditions ^a

En	(g) Catalyst	Solvent	Cond.	Time(h)/ Yeild(%) ^{Ref.}
1	50% TiCl ₄ .SiO ₂ (0.1)	Chloroform	r.t	15/5
2	50% TiCl ₄ .SiO ₂ (0.1)	Ethanol	r.t	15/5
3	50% TiCl ₄ .SiO ₂ (0.1)	Solvent free	r.t	15/5
4	30% TiCl ₄ .SiO ₂ (0.1)	Solvent free	90 °C	0.5/60
5	40% TiCl ₄ .SiO ₂ (0.1)	Solvent free	90 °C	0.5/77
6	50% TiCl ₄ .SiO ₂ (0.1)	Solvent free	90 °C	0.5/96
7	50% TiCl ₄ .SiO ₂ (0.025)	Solvent free	90 °C	0.5/60
8	50% TiCl ₄ .SiO ₂ (0.075)	Solvent free	90 °C	0.5/95
9	50%TiCl ₄ .SiO ₂ (0.1)	Solvent free ^b	ММ	1/60
10	50%TiCl ₄ .SiO ₂ (0.1)	EtOAc ^c	Sonication	30min/74
11	50%TiCl ₄ .SiO ₂ (0.1)	Solvent free ^d	MW	20min/80
12	50% nano- TiCl ₄ .SiO ₂ (0.05)	Solvent free	90 °C	0.1/95
13	50% nano- TiCl ₄ .SiO ₂ (0.025)	Solvent free	90 °C	0.1/89
14	50% nano- TiCl ₄ .SiO ₂ (0.05), 2^{nd} run	Solvent free	90 °C	0.5/88
15	50% nano- TiCl ₄ .SiO ₂ (0.05), 3^{rd} run	Solvent free	90 °C	1.5/80
16	Dowex-50 W	Solvent free	100 °C	2/8618
17	NH ₄ H ₂ PO ₄ /SiO ₂	Water	Ultrasound/40 °C	40min/88 ¹⁹
18	HClO ₄ -SiO ₂	Solvent-free	125 °C	8min/92 ²⁰
19	PW acid	Solvent-free	100°C	1.5/91 ²¹
21	Cyanuric chloride	Solvent-free	110°C	32min/91 ²²
22	Yb(OTf) ₃	Reflux	110°C	7/89 ²³
23	Silica sulfuric acid	Solvent-free	80 °C	45min/86 ¹⁶

^aThe molar ratio of 2-naphthol : benzaldehyde is 2:1

^busing mixer mill (MM 400) in 25 Hz frequency.

^cusingBANDELIN Sonopulse HD 3200 Ultrasonic apparatus with power equal to 20 KHz.

^dUsing microwave oven Kenwood, 1300W.

Scheme 3. Synthesis of 14-aryl or alkyl-14Hdibenzo[a,j]xanthene derivatives.

Table 3. Synthesis of 14-aryl or alkyl-14*H*-dibenzo[a,j]xanthenesin the presence of 50% nano-TiCl₄.SiO₂.

Ent.	R ^a	Yield ^b Mp (°C)		p (°C)
		(%)	Found	Reported ^{ref}
1	CH ₃ CH ₂	88	149–152	$150-152^{16}$
2	$(CH_3)_2CH$	85	156–157	155-157 ¹⁷
3	CH ₃ CH ₂ CH ₂	89	152-154	152-154 ¹⁸
4	C_6H_5	96	184–185	185 ¹⁸
5	4-Br C ₆ H ₅	97	296–297	297 ¹⁹
6	4-OMe	89	202-205	203-205 ²⁰
7	3-C1	96	209-211	210-213 ²¹
8	2-OMe	88	256-259	258-259 ²²
9	4-Me	94	227-229	$227-229^{23}$
10	4-Cl	97	289–290	289^{24}
11	2-Cl	95	214-216	214-216 ²⁴
12	$4-NO_2$	93	310-312	311-312 ²⁶
13	3-NO ₂	90	210-211	211^{24}
14	3-CH ₃	91	197-199	198 ²⁴
15	3-Br	96	189-191	$190-192^{26}$
16	$2-NO_2$	97	214-215	214^{26}

^aThe ratio of 2-naphthol (mmol): aldehyde (mmol): 50% nano-TiCl₄.SiO₂(g) is 2:1:0.05

4. Conclusion

In conclusion, this paper demonstrates simple methods for the synthesis of 14-aryl or alkyl-14*H*-dibenzo[a,j]xanthenes using 50% nano-TiCl₄.SiO₂ as a reusable, inexpensive, and efficient catalyst. Short reaction times, high yields, scale up, and easy work-up are the advantages of this protocol.

Acknowledgment

The Research Council of Yazd University, Central Iron Ore and Strategic of Research Centre gratefully acknowledged for the financial support for this work.

References

[1] D.P. Sheng, I.O.Kady, Appl. Catal. A. 365 (2009) 149-152.

[2] J.L. Souza, F. Fabri, R. Buffon, R. Schuchardet, Appl. Catal. A. Gen. 323 (2007) 223-234.

[3] R.W.Lambert, J.A. Martin, J.H. Merrett, K.E.B.
Parkes, G.J. Thomas, PCT Int. Appl. WO 9706178, 1997; Chem. Abstr., 126 (1997) 212377y.

[4] T. Hideo, Chem. Abstr.95 (1981) 80922b.

[5] J.P. Poupelin, G. Saint-Ruf, O. Foussard-Blanpin, G. Narcisse, G. Uchida-Ernouf, R. Lacroix, Eur. J. Med. Chem. 13 (1978) 67-71.

[6] R.M. Ion, Prog. Catal. 2 (1997) 55-76.

[7] G. Saint-Ruf, A. De, H.T. Hieu, Bull. Chim. Ther. 7 (1972) 83-86.

[8] S.M. Menchen, S.C. Benson, J.Y.L. Lam, W. Zhen, D. Sun, B.B. Rosenblum, S.H. Khan, M. Taing, Chem. Abstr. 139 (2003) 54287f.

[9] C.G. Knight, T. Stephens, Biochem. J.258 (1989) 683-687.

[10] O. Sirkeeioglu, N. Talinli, A. Akar, J. Chem. Res. (1995) 502-506.

[11] D. Quintas, A.Garcia, D. Dominguez, Tetrahedron Lett. 44 (2003) 9291-9294.

[12] D.W. Knight, P.B. Little, Synlett.(1998) 1141-1143.

[13] A. Jha, J. Beal, Tetrahedron Lett. 45 (2004) 8999-9001.

[14] A. Bekaert, J. Andrieux, M. Plat, Tetrahedron Lett. 33 (1992)\2805-2806.

[15] J.A. Van Allan, D.D. Giannini, T.H. Whitesides, J. Org. Chem. 47 (1982) 820-823.

[16] M. Seyyedhamzeh, P. Mirzaei, A. Bazgir, Dyes Pigments. 76 (2008) 836-839.

[17] H.R. Shaterian, M. Ghashang, A. Hassankhani, Dyes Pigments.76 (2008) 564-568.

[18] G. ImaniShakibaei, P. Mirzaei, A. Bazgir, Appl. Catal. A: Gen. 325 (2007) 188-192. [19] M.A. Pasha, V.P. Jayashankara, Bioorg. Med. Chem. Lett. 17 (2007) 621-623.

[20] M.A. Bigdeli, M.M. Heravi, G.H.Mahdavinia, J. Mol. Catal. A: Chem. 275 (2007) 25-29.

[21] M.M. Amini, M. Seyyedhamzeh, A. Bazgir, Appl. Catal. A: Gen. 323 (2007) 242-245.

[22] M.A. Bigdeli, M.M. Heravi, G.HosseinMahdavinia, Catal. Commun. 8 (2007) 1595-1598.

[23] W. Su, D. Yang, C. Jin, B. Zhang, Tetrahedron Lett. 49 (2008) 3391-3394.

[24] A. Khojastehnezhad, A.G. Davoodnia, M. Bakavoli, N. Tavakoli-Hoseini, M. Zeinali-Dastmalbaf, Chinese. J. Chem. 29 (2011) 297-302.

[25] B.F. Mirjalili, A. Bamoniri, L. Zamani, ScientiaIranica. doi:10.1016/j.scient.2011.12.013

[26] B.F. Mirjalili, A. Bamoniri, L. Zamani, Lett. Org. Chem. 9 (2012) 338-243.

[27] B.F. Mirjalili, A. Bamoniri, A. Akbari, Tetrahedron Lett.49 (2008) 6454-6456.

[28] B. Sadeghi, B.F. Mirjalili, M.M. Hashememi, Tetrahedron Lett. 49 (2008) 3391-3394.