Effect of PbS Film Thickness on the Performance of Colloidal Quantum Dot Solar Cells

Document Type : Research Paper

Authors

Department of Chemistry, Faculty of Science, Yazd University, Yazd, 89195-741, I.R. Iran

10.7508/jns.2013.01.003

Abstract

Colloidal quantum dots offer broad tuning of semiconductor band structure via the quantum size effect. In this paper, we present a detailed investigation on the influence of the thickness of colloidal lead sulfide (PbS) nanocrystals (active layer) to the photovoltaic performance of colloidal quantum dot solar cells. The PbS nanocrystals (QDs) were synthesized in a non-coordinating solvent, 1-octadecene, using oleic acid (OA) as the ligand. It was found that the device with 50 nm of thickness of active layer showed a high Efficiency (η) of 0.667 under simulated Air Mass 1.5 Global (AM 1.5G) irradiation (100 mW/cm2) compared  to the device with low thickness of active layer.

Keywords


[1] A.S. Moffat, Science 272 (1996) 21.
[2] Y. Chiba, A. Islam, Y. Watanabe, R. Komiya, N. Koide, L. Han, Japanese Journal of Applied Physics Part 2 Letters 45 (2006) L638.
[3] M.-W. Ho, Quantum dots and ultra-efficient solar cells, Institute of Science in Society.[Online Article]. Available: Http://www. I-sis. Org. uk/QDAUESC. Php. (2006).
[4] A. Ward, P. Hausher, Quantum Dots: The Future of Highly-Efficient Solar Cells, n.d.
[5] I. Robel, V. Subramanian, M. Kuno, P. Kamat, J. Am. Chem. Soc. 128 (2006) 2385–2393.
[6] P.V. Kamat, Meeting the clean energy demand: nanostructure architectures for solar energy conversion, J. Phys. Chem. C. 111 (2007) 2834– 2860.
[7] A. P. Alivisatos, Science. 271 (1996) 933–937.
[8] M. Nirmal, L. Brus, Acc. Chem. Res., 32 (1999) 407–414.
[9] V. L. Colvin, M. C. Schlamp, A. P. Alivisatos, Nature. 370 (1994) 354–357.
[10] W. U. Huynh, J. J. Dittmer, A. P. Alivisatos, Science. (2002).
[11] S. Kumar, Z.H. Khan, M.A. Majeed Khan, M. Husain, Curr. Appl. Phys. 5 (2005) 561–566.
[12] L. Bakueva, I. Gorelikov, S. Musikhin, X.S. Zhao, E.H. Sargent, E. Kumacheva, Adv. Mater. 16 (2004) 926–929.
[13] H. Hirata, K. Higashiyama, Bull. Chem. Soc. Jpn. 44 (1971) 2420–2423.
[14] R. Debnath, J. Tang, D. A. Barkhouse, X. Wang, A. G. Pattantyus-Abraham, L. Brzozowski, L. Levina, E. H. Sargent, J. Am. Chem. Soc. 132 (2010) 5952–5953.
[15] H. Lee, H. C. Leventis, S. Moon, P. Chen, S. Ito, S. A. Haque, T. Torres, F. Nu¨ esch, T. Geiger, S. M. Zakeeruddin, M. Grätzel, M. K. Nazeeruddin, Adv. Funct. Mater. 19 (2009) 2735–2742.
[16] J.Tang, X. Wang, L. Brzozowski, D. Aaron, R. Barkhouse, R. Debnath, L. Levina, E.H. Sargent, Adv. Mater. 22 (2010) 1398–1402. [14] P.K. Nair, V.M. Garcia, A.B. Hernandez, M.T.S. Nair, J. Phys. D: Appl. Phys. 24 (1991) 1466–1472.
[17] A. G. Pattantyus-Abraham, I. J. Kramer, A. R. Barkhouse, X. Wang, G. Konstantatos, R. Debnath, L. Levina, I. Raabe, M. K. Nazeeruddin, M Gratzel, E. H.  Sargent, ACS Nano. 4 (2010) 3374–3380.
[18] P.K. Nair, O. Gomezdaza, M.T.S. Nair, Adv. Mater. Opt. Electron. 1 (1992) 139–145.
[19] J.J. Valenzuela-Jauregui, R. Ramirez-Bon, A. Mendoza-Galvan, M. Sotelo-Lerma, Thin Solid Films. 441 (2003) 104–110.
[20] E. Nykanen, J. Laine-Ylijoki, P. Soininen, L. Niinisto, M. Leskela, L.G. Hubert- Pfalzgraf, J. Mater. Chem. 4 (1994) 1409–1412.
[21] M. Ichimura, T. Narita, K. Masui, Mater. Sci. Eng. B. 96 (2002) 296–299.
[22] T. Kanniainen, S. Lindroos, J. Ihanus, M. Leskela, J. Mater. Chem. 6 (1996) 161–164.
[23] M. Takahashi, Y. Ohshima, K. Nagata, S. Furuta, J. Electroanal. Chem. 359 (1993) 281–286.
[24] M. Sharon, K.S. Ramaiah, M. Kumar, M. Neumann-Spallart, C. Levy-Clement, J. Electroanal. Chem. 436 (1997) 49–52.
[25] B. Scharifker, Z. Ferreira, J. Mozota, Electrochim. Acta. 30 (1985) 677–682.
[26] M. Alanyalıoglu, F. Bayrakceken, U. Demir, Electrochim. Acta. 54 (2009) 6554–6559.
[27] H. Saloniemi, M. Ritala, M. Leskela, R. Lappalainen, J. Electrochem. Soc. 146(1999)2522-252.
[28] M. A. Hines, G. D. Scholes, Adv. Mater. 15 (2003) 1848–1849.
[29] J. M. Luther, M. Law, Q. Song, C. L. Perkins, M. C. Beard, and A. J. Nozik, Acs Nano, 2 (2008) 271–280.
[30] L. F. Sun, L. Bao, B. R. Hyun, A. C. Bartnik, Y. W. Zhong, J. C. Reed, D. W. Pang, H. D. Abruna, G. G. Malliaras, F. W. Wise, Nano Lett. 9 (2009) 789–793.
[31] W. L. Ma, J. M. Luther, H. M. Zheng, Y. Wu, A. P. Alivisatos, Nano Lett. 9(2009)1699–1703.
[32] J. M. Luther, J. Gao, M. T. Lloyd, O. E. Semonin, M. C. Beard, A. J. Nozik, Adv. Mater. 22 (2010) 3704–3707.
[33] E.J.D. Klem, D.D. MacNeil, P.W. Cyr, L. Levina, E.H. Sargent, Appl. Phys. Lett. 90 (2007) 183113-183113.
[34] S. Emin, S.P. Singh, L. Han, N. Satoh, A. Islam, Solar Energy. 85 (2011) 1264–1282.