RESEARCH PAPER

Nano Sized Ni/TiO₂ @ NaX Zeolite with Enhanced Photocatalytic Activity

Leila Torkian^{1,*} and Ehsan Amereh²

- ¹ Department of Applied Chemistry, Islamic Azad University, South Tehran Branch, Tehran, Iran
- ² Iranian Research and Development Center for Chemical Industries, ACECR, Tehran, Iran

ARTICLE INFO

Article History:

Received 19 July 2016 Accepted 08 September 2016 Published 01 October 2016

Keywords:

Nickel doped TiO₂ Nanocomposite Photodegradation Orange G

ABSTRACT

Nickel doped ${\rm TiO}_2$ nano particles (1% w/w) were prepared and immobilized on NaX zeolite and after characterization by X-ray diffraction and scanning electron microscopy used as photo catalyts for degradation of orange G. The X-ray diffraction patterns show that the supported ${\rm TiO}_2$ are crystallized in anatase form and the intensity of the zeolite peaks decreases with the increase of ${\rm TiO}_2$ loading. Scanning electron micrographs of synthesized samples show that nano size titanium dioxide particles are accumulated on the surface of the zeolite. These materials are applied as photo catalysts for the degradation of orange G in aqueous solution by means of ultraviolet light irradiation at room temperature. The effect of solution pH, ultraviolet irradiation time and catalyst in degradation of orange G was investigated. The results show that nickel doped ${\rm TiO}_2/{\rm NaX}$ zeolite as a photo catalyst in degradation of orange G in acidic solution is superior to the Ni/TiO $_2$ nano composite and also undoped nano size titanium dioxide particles.

How to cite this article

 $Torkian\ L,\ Amereh\ E.\ Nano\ sized\ Ni/TiO_{\underline{2}}\ @\ NaX\ zeolite\ with\ enhanced\ photo\ catalytic\ activity\ .\ J\ Nanostruct,\ 2016;\ 6(4):307-311.\ DOI:\ 10.22052/jns.2016.34328$

INTRODUCTION

In recent years semiconductor photo catalyst has been used as an efficient technology to overcome environmental problems [1-3]. Among various semiconductors TiO, in anatase form has been mostly studied because of its photo catalytic activity for mineralization of organic pollutants into carbon dioxide and water under UV irradiation. But this technology only works under ultraviolet light because of TiO, large band gap [4-6]. Solar light contains only 4% ultraviolet light when it reached to earth surface. So modification of TiO, is necessary to enhance the efficiency of its photo catalytic activity [7-9]. Among different approaches for modifications of TiO, using supported titanium dioxide has allowed to enhance the photo degradation rates significantly [10-15]. Also

doping ${\rm TiO}_2$ with metal ions may improve its photo activity [15-22]. To our knowledge nickel doped ${\rm TiO}_2$ nano particles has not be applied for the photo degradation of Orange G (OG) aqueous solutions.

In this work, the photo catalytic degradation of Orange G (OG) aqueous solutions was investigated using nano sized anatase titania prepared by sol-gel method. To improve the photo catalytic efficiency, nickel doped TiO₂ nano particles were synthesized and immobilized on NaX zeolite and used as a novel photo catalyst for the degradation of Orange G under UV irradiation. Also the dependency of degradation yield on various parameters such as the pH of the photo degradation reaction, time of UV irradiation and the weight ratio of Ti/Si have been investigated.

^{*} Corresponding Author Email: ltorkian@azad.ac.ir

MATERIALS AND METHODS

Chemicals

Analytical grade nitric acid, sodium hydroxide, isopropanol, nickel nitrate hexahydrate, Orange G (OG) dye ($\mathrm{C_{16}H_{10}N_2Na_2O_7}$) and tetraisopropyl orthotitanate, as a titania source, were purchased from Merck and used without further purification. NaX zeolite was obtained from SPNI Corporation, Iran and deionized water was used in all experiments.

Synthesis of Ni doped TiO₂/ NaX zeolite photocatalyst

Stable ${\rm TiO_2}$ sol was synthesized by acid hydrolysis of tetraisopropyl orthotitanate [23]. Ni doped ${\rm TiO_2}$ were prepared by adding Ni $({\rm NO_3})_2$.6H₂O solution to a stable sol of ${\rm TiO_2}$ (1/99 weight ratio of Ni/Ti, respectively) Then the slurry was dried at 313 K and calcined at 673 K for 3 h. In a typical preparation of supported photo catalyst, 4.0 g of zeolite was suspended in 100 mL of water and then mixed with 0.144 g of Ni/TiO₂ sol (weight ratio of Ti/Si = 20%) while stirring for 24 h. Finally the mixture was dried at 343 K and calcined at 673K for 3 h.

Photo catalytic activity tests

In separate experiments, 50 mL of Orange G aqueous solutions with the initial concentrations of 10 ppm were mixed with 0.3 g of catalyst at pH 5, 7 and 9 for all three photo catalysts (TiO_2 , Ag/ TiO_2 and Ni/ TiO_2 /NaX zeolite). Prior to irradiation the suspensions were stirred for 30 min in dark and then irradiated for various duration of time. All degradation experiments were performed in a batch quartz photo reactor under a 125 W mercury lamp (λ_{max} =254 nm) as ultraviolet light source. Finally at the predetermined time intervals, 2 mL aliquots were withdraw from the reactor,

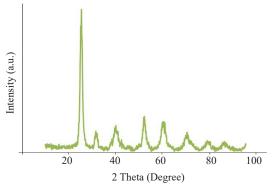


Fig. 1. XRD pattern of Ni/TiO₂ nano-composite.

centrifuged to remove the catalyst and analyzed for the photo degradation of Orange G by UV–vis spectrophotometer (SHIMADZU-2550). Photo catalytic degradation processes were carried out with nano crystalline ${\rm TiO_2}$, ${\rm Ni/TiO_2}$ and ${\rm NiTiO_2}/{\rm NaX}$ zeolite, in different pH values and in separate batches. All photo catalyst preparation and photo degradation measurements were repeated at least three times to confirm reproducibility. Phase analysis of the samples was carried out by X-ray diffraction (XRD; D4-BRUKER diffractometer by Cu K α radiation at 20KV and 30mA). Morphology of photo catalysts was observed by a Philips XL-30 scanning electron microscope.

RESULTS AND DISCUSSION

Catalyst characterization

The XRD pattern of Ni doped TiO₂ nano particles that calcined at 673K for 3 h is shown in Fig. 1. It shows five clear diffraction peaks at 25.48, 38.24, 48.12, 54.96, 63.48, 70.75 and 74.99°. This pattern shows that prepared powder is well crystallized in TiO, anatase phase (International Centre for Diffraction Data card File No. 21-1272). Due to the very small dopant contents (1%), no obvious diffraction line for Ni is observed. Fig. 2 shows the XRD patterns of the supported photo catalysts, where the appearance of a diffraction peak at $2\theta = 25.48^{\circ}$ is characteristic of anatase phase of titanium oxide and this reflection (101) increases with increasing of titania loading on zeolite. The average particle size of Ni/TiO, was calculated by applying the Scherrer's formula on the anatase diffraction peak (101) which is shown in Fig. 1 (20 = 25.4°) and is estimated by10 nm [24].

Fig. 3 shows the micrographs of zeolite NaX and Ni/TiO $_2$ /NaX zeolite (with weight ratio of Ti/Si=20%) samples. The images show that the clean surface of zeolite crystals is covered by the Ni/TiO $_2$ species and there is no change in the typical morphology of zeolite after loading of Ni/TiO $_2$.

Photo catalytic decomposition of Orange G (OG)

The pH has a pronounce effect on the photo degradation efficiency of organic pollutants [25]. TiO₂ is reported to have higher oxidizing activity at lower pH but the NaX zeolite is not stable in pH less than 3. As shown in Fig. 4, TiO₂, Ni/TiO₂ and Ni/TiO₂/NaX zeolite, as catalysts in photo degradation of orange G, are more effective in acidic conditions. Therefore, the photo degradation of orange G solutions were carried out in pH = 5.

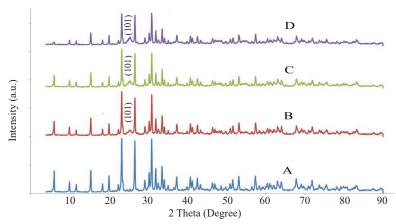


Fig. 2. XRD patterns of NaX zeolite (A), Ni/TiO $_2$ /NaX zeolite with weight ratio of Ti/Si=10% (B), 20% (C) and 30% (D).

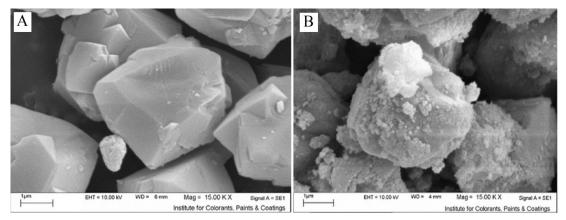


Fig. 3. SEM images of NaX zeolite (A), Ni/TiO₂/NaX zeolite with weight ratio of Ti/Si= 20% (B).

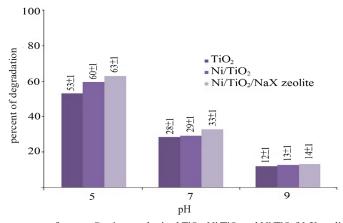


Fig.4. Degradation percentage of orange G using synthesized TiO₂, Ni/TiO₂ and Ni/TiO₂/NaX zeolite with weight ratio of Ti/Si=20% catalysts under 90 min UV irradiation at various pH values at room temperature.

The effect of irradiation time on the photo catalytic degradation of orange G in the presence of synthesized ${\rm TiO_2}$, ${\rm Ni/TiO_2}$ and ${\rm Ni/TiO_2}$ / NaX zeolite are shown in Fig. 5. After 150 min

irradiation, the degradation yields of orange G by utilizing synthesized TiO₂, Ni/TiO₂ and Ni/TiO₂/NaX zeolite (with weight ratio of Ti/Si=20%) reached to 81.87%, 87.21% and 92.1%, respectively.

J Nanostruct 6(4): 307-311, Autumn 2016

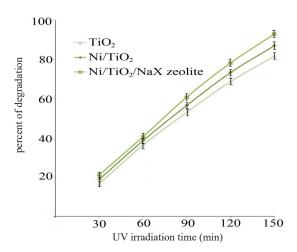


Fig. 5. Degradation percentage of orange G using synthesized TiO₂, Ni/TiO₂ and Ni/TiO₂/NaX zeolite with weight ratio of Ti/Si=20% catalysts under different times of UV irradiation at room temperature (pH=5).

CONCLUSIONS

- Ni/TiO₂ nano composite based on NaX zeolite is very effective for the photo catalytic decomposition of orange G which is a textile waste water pollutant.
- It was observed that the optimum pH value and UV irradiation time for Ni/TiO₂/NaX zeolite photo catalyst are 5 and 150 min, respectively.
- The TiO₂ sample when doped with nickel ions enhances its photo catalytic activity for the degradation of OG dye solutions up to 6.5%. Furthermore, supporting Ni/TiO₂ on NaX zeolite improves its photo catalytic efficiency up to 5.7%.

ACKNOWLEDGMENTS

The authors thank the Office of the Vice President for Research Affairs of South Tehran Branch of Islamic Azad University for the financial support of this research project.

CONFLICT OF INTEREST

The authors declare that there is no conflict of interests regarding the publication of this manuscript.

REFERENCES

- Ghaly MY, Jamil T, El-Seesy I E, Souaya E R, Nasr R A. Treatment of highly polluted paper mill wastewater by solar photocatalytic oxidation with synthesized nano TiO2 . Chem Eng J. 2011; 168: 446-454.
- 2. Shirsath SR, Pinjari DV, Gogate PR, Sonawane SH, Pandit

- AB. Ultrasound assisted synthesis of doped ${\rm TiO_2}$ nanoparticles: characterization and comparison of effectiveness for photocatalytic oxidation of dyestuff effluent. Ultrason Sonochem. 2013;20(1):277-86.
- Sökmen M, Tatlıdil İ, Breen C, Clegg F, Buruk CK, Sivlim T, Akkan Ş. A new nano-TiO₂ immobilized biodegradable polymer with self-cleaning properties. J Hazard Mater. 2011;187(1):199-205.
- 4. Lu SY, Wu D, Wang QL, Yan J, Buekens AG, Cen KF. Photocatalytic decomposition on nano-TiO₂: Destruction of chloroaromatic compounds. Chemosphere. 2011;82(9):1215-24.
- Shen C, Wang YJ, Xu JH, Luo GS. Facile synthesis and photocatalytic properties of TiO₂ nanoparticles supported on porous glass beads. Chem Eng J. 2012;209:478-85.
- Kazemi M, Mohammadizadeh MR. Simultaneous improvement of photocatalytic and superhydrophilicity properties of nano TiO₂ thin films. Chem Eng Res Des. 2012;90(10):1473-9.
- Liu F, Liu H, Li X, Zhao H, Zhu D, Zheng Y, Li C. Nano-TiO₂@ Ag/PVC film with enhanced antibacterial activities and photocatalytic properties. Appl Surf Sci. 2012;258(10):4667-71
- Shen C, Wang YJ, Xu JH, Luo GS. Facile synthesis and photocatalytic properties of TiO₂ nanoparticles supported on porous glass beads. Chem Eng J. 2012;209:478-85.
- 9. Ghorai TK, Chakraborty M, Pramanik P. Photocatalytic performance of nano-photocatalyst from ${\rm TiO_2}$ and Fe 2 O 3 by mechanochemical synthesis. J Alloy Compd. 2011;509(32):8158-64.
- Zhang Z, Xu Y, Ma X, Li F, Liu D, Chen Z, Zhang F, Dionysiou DD. Microwave degradation of methyl orange dye in aqueous solution in the presence of nano-TiO 2-supported activated carbon (supported-TiO₂/AC/MW). J Hazard Mater. 2012;209:271-7.
- Chow KL, Man YB, Zheng JS, Liang Y, Tam NF, Wong MH.
 Characterizing the optimal operation of photocatalytic degradation of BDE-209 by nano-sized TiO₂. . J Environ Sci. 2012;24(9):1670-8.
- Hu S, Li F, Fan Z, Chang CC. Enhanced photocatalytic activity and stability of nano-scaled TiO₂ co-doped with N and Fe. Appl Surf Sci. 2011;258(1):182-8.
- Sorolla MG, Dalida ML, Khemthong P, Grisdanurak N. Photocatalytic degradation of paraquat using nano-sized Cu-TiO₂/SBA-15 under UV and visible light. J Environ Sci. . 2012;24(6):1125-32.
- 14. Pant HR, Pant B, Sharma RK, Amarjargal A, Kim HJ, Park CH, Tijing LD, Kim CS. Antibacterial and photocatalytic properties of Ag/TiO₂/ZnO nano-flowers prepared by facile one-pot hydrothermal process. Ceram Int. 2013;39(2):1503-10.
- Cheng X, Yu X, Xing Z. Characterization and mechanism analysis of Mo–N-co-doped TiO₂ nano-photocatalyst and its enhanced visible activity. J Colloid Interf Sci. 2012;372(1):1-5.
- 16. Zhou S, Lv J, Guo LK, Xu GQ, Wang DM, Zheng ZX, Wu YC. Preparation and photocatalytic properties of N-doped nano-TiO₂/muscovite composites. Appl Surf Sci. 2012;258(16):6136-41.
- 17. Pant HR, Park CH, Pant B, Tijing LD, Kim HY, Kim CS. Synthesis, characterization, and photocatalytic properties of ZnO nano-

- flower containing TiO₂ NPs. Ceram Int. 2012;38(4):2943-50.
- Shi H, Zhang T, An T, Li B, Wang X. Enhancement of photocatalytic activity of nano-scale TiO₂ particles co-doped by rare earth elements and heteropolyacids. J Colloid Interf Sci. 2012;380(1):121-7.
- 19. Saha S, Wang JM, Pal A. Nano silver impregnation on commercial ${\rm TiO}_2$ and a comparative photocatalytic account to degrade malachite green. Sep Purif Technol. 2012;89:147-59.
- Christoforidis KC, Figueroa SJ, Fernández-García M. Ironsulfur codoped TiO₂ anatase nano-materials: UV and sunlight activity for toluene degradation. Appl Catal B: Environ.
- Wang C, Shi H, Zhang P, Li Y. Synthesis and characterization of kaolinite/TiO₂ nano-photocatalysts. Appl. Clay Sci. 2011;53(4):646-9.

- Ramaswamy V, Jagtap NB, Vijayanand S, Bhange DS, Awati PS. Photocatalytic decomposition of methylene blue on nanocrystalline titania prepared by different methods. Mater Res Bul. 2008;43(5):1145-52.
- Rupa AV, Manikandan D, Divakar D, Sivakumar T. Effect of deposition of Ag on TiO₂ nanoparticles on the photodegradation of Reactive Yellow-17. J Hazard Mater. 2007;147(3):906-13.
- 24. Xu Y, Lei B, Guo L, Zhou W, Liu Y. Preparation, characterization and photocatalytic activity of manganese doped ${\rm TiO_2}$ immobilized on silica gel. J Hazard Mater. 2008 Dec 15;160(1):78-82.