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ARTICLE INFO ABSTRACT

Biosynthetic routes for producing nanoparticles have created a wide
interest due to their environmental friendliness, simplicity, affordability,
and clean technology. They do not contain hazardous chemicals or
produce contaminants or byproducts. This work affords a green synthesis
approach for cerium oxide nanoparticles CeO,NP performed using
hexane extract from Citrus aurantuim peels sourced from Karbala-Iraq.
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K ds:
eywores Gas Chromatography-Mass Spectrometry analysis of this hexane extract
Adsorption . S S . .

) Jo NP recognized key bioactive compounds inside the Citrus aurantuim peels
C(lzrzum oxide ) S extract, which included Limonene (35.72%), 3-Pinene (25.43%), Myrcene
Citrus aurantuim (15.87%), and Linalool (12.34%) that elevated the stabilization of synthesis
Green synthesis CeO,NP. XRD of synthesis CeO,NP revealed a cubic fluorite shape with a
Removal mean crystal size of 12nm. BET analysis indicated a specific floor area of

85.6 m*/g and a mean pore diameter of 8.2 nm, ensuring a mesoporous
structure. The perfect removal of 10 ppm of eosin yellow dye using 0.025 g
of CeO, NPs turned into pH 6 at 90 min which agreed with zeta potential
analysis, and the adsorption process followed pseudo-second-order
kinetics. The AH® of adsorption is 13.430 kJ/mol due to this reaction being
physical adsorption. The reusability study showed the CeO,NP could be
successfully used up to the 3rd cycle before a loss of 50% from efficiency.
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INTRODUCTION

Nanotechnology is a vital area of modern
research that deals with the design, synthesis,
and manipulation of particle structures ranging
in size from 1 to 100 nm [1]. The prefix Nano is

* Corresponding Author Email: luma.ahmed@uokerbala.edu.iq

derived from the Greek word Nanos, which means
“dwarf”, and refers to one billionth10°m) in size
[2]. Nanoparticles have numerous applications
in fields such as health care, cosmetics, food
and feed, environmental health, mechanics,
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optics, biomedical sciences, chemical industries
and electronics, space industries, drug-gene
delivery, energy science, electronics, catalysis,
single-electron  transistors, light  emitters,
nonlinear optical devices, and photoelectron
chemical applications [3,4]. New advancements
in nanotechnology are progressively driven by
artificial intelligence (Al). Techniques like machine
learning optimize synthesis processes, predict
nanoparticle properties, and improve the material
design. Hassan et al. highlighted how Al reduces
resource use and fosters eco-friendly novelty,
introductory new applications in environmental
remediation, biomedicine, and energy storage [5].
There are numerous physical, chemical, biological,
and hybrid methods for synthesizing various
types of nanoparticles [6]. To synthesize NPs,
the most common chemical approaches, such
as chemical reduction using a variety of organic
and inorganic reducing agents, electrochemical
techniques, physicochemical reduction, and
radiolysis, are widely used. The distinct properties
of biologically synthesized NPs are preferred over
physical-chemically  produced nanomaterials
[7,8]. Biologically synthesized nanoparticles hold
great potential for advancing health care and
environmental applications, offering eco-friendly
and biocompatible solutions [9]. Green synthesis
of NPs from metal ions is more eco-friendly, free of
chemical contamination, less expensive, and safe
for biological applications. Green chemistry allows
us to obtain the necessary substance in the safest
possible way. It provides the selection of raw
materials and process schemes, which exclude
harmful substances, and toxic and hazardous

chemicals, and focuses on industrial processes that
do not pollute the environment [10]. Currently,
chemistry is witnessing a significant development
with the emergence of a novel and comprehensive
scientific trajectory known as “green” chemistry.
The field of “green” chemistry encompasses
various disciplines, including synthetic organic
chemistry, analytical chemistry, physical chemistry,
toxicology, microbiology, biotechnology, and
engineering [11]. The goal of green chemistry is to
develop technologies for more efficient chemical
reactions. Green chemistry aims to prevent
pollution in the very early stages of the planning
and implementation of chemical processes
and covers all types and aspects of chemical
processes to minimize environmental risks [12].
The problems within the competence of green
chemistry can be categorized into two main areas.
The first relates to the processing and utilization of
environmentally hazardous waste and by-products
of the chemical industry [13,14] The second,
more promising, involves the development of
new industrial processes to eliminate or minimize
the form In green chemistry, fundamentally new
constructs such as ideal process, ideal product
and ideal consumer are used, ideal process is a
simple, eco-friendly, one-stage process, effective
at the molecular level, with the use of renewable
raw materials, which provides maximum yield,
ideal product requires a minimum of energy and
packaging, is safe, recyclable and fully degradable
by microorganisms [15]. The green synthesis of
CeO, NPs using Citrus aurantuim peel extract
entails the discount of cerium ions by way of
bioactive compounds present in the extract,
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Fig. 1. Green synthesis of nanomaterial using Citrus aurantuim and application [13, 16].
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which includes flavonoids and phenolic acids
[16].The goal of this study is a green synthesis
technique for cerium oxide (CeO,) NPs using
hexane extract from Citrus aurantuim peels. This
method seeks to harness the natural antioxidant
in the extraction beginning with the collection
of fresh Citrus aurantium peels to provide CeO,
NPs in a friendly environmental way. They take a
look at will systematically look into the synthesis
parameters to optimize the system, signify the
ensuing nanoparticles in terms of size, crystallinity,
and surface properties, and examine them in the
removal of Eosin yellow dye. These studies have
substantial implications for both nanotechnology
and environmental sustainability as shown in Fig.
1.

MATERIALS AND METHODS
Materials, Reagents, and instrumentations

The source of Citrus uranium peels is Karbala,
Iraq, which serves as the renewable uncooked
fabric. Hexane purity of 99% facilitated the
extraction of bioactive compounds supplied by
(BDH, England). The cerium chloride (CeCl..6H,0)
purity of 99% was bought from (Merck, Germany).
Ethanol purity of 99% and ammonia of 35%
were purchased by (BDH). Eosin yellow dye
(C,,HBr,Na,0,) purity is 99% with acidic natural.
The characterization of the nanoparticles was
analyzed using a UV-visible spectrophotometer
(UV-1900i, Shimadzu, Japan), Fourier Transform

Infrared spectrophotometer (FT-IR) (IR Spirit,
Shimadzu, Japan) using a KBr pellet with a scan rate
of approximately 4 cm s™ at 25 °C, field emission
Scanning Electron Microscopy (Fe-SEM), Energy
Dispersive X-ray spectroscopy (EDX) analysis (SU-
8000, Hitachi, Japan) at accelerating voltages of
10 and 15 kV, and X-ray diffraction (XRD) (Rigaku
Smart Lab spectrometer, Japan) with Cu-Ka
radiation. A pH ION/EC/DO METER (MM-43X) was
used to measure the pH of the solution.

Extraction of Citrus aurantuim peels

The extraction technique was started with
the gathering of fresh Citrus aurantuim peels.
Thorough washing the removal of impurities, and
subsequent drying at room temperature for 48
hours were done to eliminate moisture. The dried
peels (800g) were powdered using a mechanical
grinder. Consequently, Soxhlet extraction was
used to extract the bioactive compounds.
Specifically, 370 g of the floor peel powder
underwent extraction with 200 mL of hexane for
6 hours. Whatman No. 1 filter paper was used to
filter the hexane extract to remove solid residues,
and the extract was then concentrated, yielding
an effective source of bioactive compounds. The
steps of the bioactive compound extraction are
displayed in Fig. 2.

Synthesis of CeO, Nanoparticles
The synthesis technique commenced with the
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Fig. 2. The schematic diagram for the steps of the bioactive compounds extracted from citrus aurantuim peels in hexane.
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dissolution of 4 g of cerium chloride (CeCl,.6H,0)
in 100 mL of ethanol, making sure of complete
dissolution via 10 min of stirring. Subsequently, 1g
of the Citrus aurantuim peel extract was added,
allowing the bioactive compounds to interact with
the cerium ions as a template, capping agent, and
stabilizer for 10 min beneath non-stop agitation.
To facilitate oxide nanoparticle formation, the pH
must be between 9 and 10, observed by adding
drops of ammonia with stirring for 20 min. The
heating process at 80°Cfor 3 hours with continuous
stirring triggered was useful to grow the CeO, NP
as a brown precipitate. The produced precipitate
was washed with deionized water to cast off
chloride ion residues. In this manner, to remove all
chloride ions from the precipitate, must add drops
of AgNO, solution to the filter. The produced CeO,
was washed with ethanol to eliminate water and
then dried at 60°C for 2h. Finally, the calcination of
CeO, NPs yielded was performed at 600 °C for 3h
to remove all organic compounds.

Removal of Eosin yellow dye using CeO,
nanoparticles

Kinetic studies were done by taking different
volumetric flasks and placing them in each of the
25 mL with a concentration range of (5,10,15 and
20) ppm of each of the adsorbed solutions of Eosin
yellow dye. These solutions were contacted with
(0.010, 0.015, 0,020, and 0.025) g of adsorbent
surface (CeO, NPs), and then these flasks were
placed in a water bath equipped with a vibrator
at a different temperature within the range
(283-298) K. The acid function for the removal
process was adjusted within pH (3,4,5,6,7and 8).
The flasks were then withdrawn at contact times
between 15 min and 120 min, and the amount of
adsorption was measured. The residue of Eosin
yellow dye in solution after the adsorption process
was measured at the maximum wavelength (A )
equal to 516 nm [17,18]. The adsorption capacity
at various times gt in (mg/g) can be calculated
using [19, 20]:
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g. 3. Compounds Analysis of extract Citrus aurantuim peels by Retention Time Peak Area in (GC-MS) analysis.
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Where: C_is the actual dye concentration in the
solution, C is the concentration (mg/L) of dye at
different times, V is the volume of the dye solution
(L), and m is the mass of the adsorbent (CeO, NPs)
used in (g).

The adsorption efficiency E % can be calculated
by following the equation [21, 22]:

dt

E% =%"%x100 (2)
Co

The kinetic study of the adsorption of eosin

yellow dye is evaluated by using the following

equations depending on the adsorption capacity

at equilibrium (q ) as a maximum value in (mg/g)

and adsorption capacity at various times qt in

(mg/g).

a. Pseudo —first-order kinetic: [23, 24]
In(qe —qr) =Inge —ky t (3)

Here: k : is the rate constant in (sec™) of pseudo-
first order.
b. Pseudo-second order kinetic: [25,26].

1 1 . 1
= 4= 4
qc k93  qe @

Where: k,:is the rate constant in (L.M*.sec?) of
pseudo-second order.

RESULTS AND DISCUSSION

Characterization of extract Citrus aurantuim peels
Gas Chromatography-Mass Spectrometry (GC-

MS) analysis was used to identify and quantify

the bioactive compounds extracted from Citrus

aurantuim peels. These compounds are essential

oils as they facilitate the reduction and stabilization

of CeO,NPs during synthesis, as shown in Table 1
and Fig. 3.

The GC-MS analysis identified several key
bioactive compounds in the Citrus aurantuim peel
extract, GC/MS Analytical Condition, Injection:
amount = 1l Split ratio = 1:10 Heat of injection =
250 °C, Column oven: initial temperature is 50 °C
increase by 5 °C / min to 180 °C increase by 10 °C /
min to 250 °C hold 1 min, Sample Preparation: 100
pL of the sample is diluted with 5 mL of N-Hexane
(HPLC-Grade) before injection, and Gas flow ratio:
1 mL/min Pressure: 10 psi m/z Range:1 — 2000.

Limonene (35.72%) was the most abundant
compound, followed by p-Pinene (25.43%),
Myrcene (15.87%), and Linalool (12.34%). These
compounds are known for their reducing and
capping properties, which are essential in the
green synthesis of nanoparticles. The presence of
these compounds suggests their significant role in
reducing cerium ions to CeO, NPs and stabilizing
them against aggregation.

Characterization of CeO, nanoparticles

To comprehensively understand the properties
and potential applications of the synthesized
CeO, nanoparticles, a series of advanced
characterization techniques were employed.
These analyses included (FT-IR) spectroscopy, X-ray
Diffraction (XRD), field emission Scanning Electron
Microscopy (FE-SEM), Energy dispersive X-ray
spectroscopy (EDX), Bruner—Emmett—Teller (BET)
surface area analysis and Zeta potential analysis.
Each technique provided valuable insights into the
composition, structure, morphology, and surface
characteristics of the nanoparticles, further
elucidating their functional capabilities.

X-ray Diffraction (XRD)Analysis

XRD was performed to determine the
crystalline structure of the synthesized CeO, NPs.
The diffraction pattern provides information about

Tablel. Gas Chromatography-Mass Spectrometry (GC-MS) analysis of extract Citrus aurantuim peels.

Retention Time (min) Compound Name Molecular Molecular Weight Peak Area (%)
Formula (g/mol)
6.8 Limonene CioH16 136.23 35.72
8.2 B-Pinene CioH16 136.23 25.43
10.3 Myrcene CioH16 136.23 15.87
12.6 Linalool Ci0H180 154.25 12.34
15.1 a-Terpineol CioH180 154.25 6.64
17.4 Neryl acetate C12H2002 196.29 4.00
J Nanostruct 15(4): 2553-2571, Autumn 2025 2557
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the phase and purity of the nanoparticles, as
shown in Fig. 4. The XRD evaluation confirmed the
crystalline nature of the nanoparticles, showing
peaks corresponding to the cubic fluorite structure
of CeO, NPs [27]. This crystalline shape is essential
for the catalytic and biological activities of the
nanoparticles because it enables the redox biking
between Ce3* and Ce** states [28, 29].

The characteristic peaks of the CeO, NPs
correspond to the (111), (200), (220), (311), (222),
and (400) planes. The strong peak at 28.6° for the
(111) plane indicates a high degree of crystallinity
and purity. The presence of these peaks confirms
the formation of the cubic fluorite structure
of CeO, NPs. The relative intensities of the
peaks provide insights into the crystallographic
orientation and crystal size [30]. The mean crystal
size was calculated using the Scherer equation
[30-33].

kA
- Bcosb (5)

Where D is the crystal size, k is the shape aspect
(typically 0.9), A is the X-ray wavelength (1.5406 A
for Cu Ka), 8 is the total width at half maximum
(FWHM) of the height, and ¢ is the Bragg attitude,
the calculated mean crystal size changed was
found to be 12 nm.

Counts

FT-IR Analysis

The FTIR spectrum of the hexane extract was
found to contain alcohols, phenols, aromatics,
carboxylic acids, nitro compounds, and alkanes,
as validated by the spectrum, as illustrated in Fig.
5A. A large peek at 3400-3600 cm™ that attributed
to O-H stretching vibrations, while another peak
at 3051 cm? assignments to the N-H bending.
The wide peak at 1408 cm™ was observed, which
was due to the bending of the O-H of carboxylic
acid [34,35]. The peak demonstrated at 1627cm’
!is an attitude to the presence of C=0. The peak
at 2850 cm™ was assigned to C-H stretching, and
the band at 1750 cm™ corresponds to the bending
of H-O-H which partly overlaps the O-C-O
stretching band. The prominent absorption bands
at 2927 and 1452 cm™ are responsible for CH and
CH, groups, respectively [36].

FTIR spectrum of CeO, NPs in Fig. 5B showed
characteristic peaks. The new sharp peaks at
401 and 588 cm™ indicative of Ce-O and O-Ce-O
stretching vibrations, respectively [37,38].

FE-SEM Analysis

FE-SEM was used to observe the surface
morphology and find the particle size of the
synthesized CeO, NPs. This technique provides
a high-resolution image that reveals detailed
surface structure. FE-SEM images at different
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Fig. 4. XRD analysis of Green Synthesis of CeO, NP.
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magnifications revealed that the CeO, NPs are
predominantly spherical agglomerates like truffles,
as shown in Fig. 6 A. At 10,000x magnification,
the nanoparticles appeared well-dispersed with
minimal aggregation.

At higher magnifications (20,000x) more
detailed structures including clusters and surface
textures were observed. The uniformity in shape
and size suggests a controlled synthesis process,
which is beneficial for applications requiring
consistent nanoparticle characteristics. The
particle size was determined to range between
29.3 nm and 45 nm. Based on Fig. 6B, the EDX
spectrum demonstrated that the presence of
cerium in the sample is found to be 62.6%, as well
as the presence of oxygen observed at 25.5% and
carbon at 12% resulting in the substrate material.

N, Adsorption - desorption isotherm (BET) Analysis
BET analysis was conducted to determine the

specific surface area, total pore volume, and
average pore diameter of CeO, nanoparticles.
These parameters are critical for understanding
the surface properties and potential catalytic
activity of the nanoparticles. Based on Fig. 7A and
B, the BET analysis revealed a specific surface area
of 85.6 m%g, indicating a high surface area that is
beneficial in catalytic applications. The total pore
volume is found to be 0.35 cm¥g and an average
pore diameter is equal to 8.2 nm, these results
suggest that the nanoparticles have a mesoporous
structure [39]. This porosity enhances the
accessibility of reactants to the active sites on the
nanoparticle surface, making them suitable for
various applications such as catalysis adsorption.
The adsorption isotherms classification is
importantinthetheoretical modeling of adsorption
phenomena and practical reasons. That considers
the surface area measurements depending on the
BET method [40]. The international standards use
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Fig. 5. FTIR spectra (A) Citrus peel extract with hexane and (B) CeO, NPs by using extract of peel citrus aurantuim.
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this method in different applications depending on
the first IUPAC manual [39,40], which divides the
isotherms into five types. Fig. 7A is in agreement
with Adsorption isotherms type IV, and the
hysteresis loop was demonstrated in the relative
pressure (P/P ) range of 0.3~1.0, belonging to type
H3 [39]. The expected pore is open with the shape
may be as a cylinder [41].

Zeta Potential Analysis

Zeta potential analysis provides significant
insights into the surface charge and colloidal
stability of synthesized CeO, nanoparticles.
The zeta potential is an important parameter
affecting the diffusion and aggregation behavior
of nanoparticles in solution [42]. The results of the
zeta potential analysis are presented in Table 2.

At pH 3, CeO, NPs exhibited a zeta potential of
+15.2 mV, indicating a moderate colloidal state.
This positive charge indicates the presence of
protonated surface groups, contributing to the
electrostatic repulsion between the particles.
At pH 6, the zeta potential increased sharply to
+32.8 mV, indicating high stability[43]. This pH
value is optimal for dispersion and prevention of
aggregation of nanoparticles, which is useful for
applications that require stable suspensions. At
pH 8 the zeta potential is decreased and shifted to

41.71nm

29.03nm

[SEM HV: 15.00 kV WOD: 4.147 mm
[SEM MAG: 100.00 kx Det: inBeam
field: 2.167 um Date(m/dty): 04/18/24

-21.4 mV, indicating good stability due to negative
surface charge. The negative charge is apparently
due to the de-protonation of the surface hydroxyl
groups, resulting in explosive forces that prevent
aggregation.

Adsorption of Eosin Yellow Dye

The synthesized CeO, NPs using Citrus
aurantuim peel extract were evaluated to remove
the Eosin yellow dye. The adsorption efficiency and
kinetic adsorption constant (kd) were calculated at
various time intervals, pH levels, temperatures,
and initial dye concentrations. The mechanism of
dye removal is shown in Fig. 8.

Effect of Removal Time

The data in Fig. 9 elucidates the temporal
evolution of Eosin yellow dye adsorption by the
synthesized CeO, nanoparticles. A substantial
increase in the efficiency of dye removal and the
adsorption constant values over time signifies
the effective adsorption of the dye, this behavior
is due to an increase in the kinetic energy for
dye particles that enhances the diffusion and
adsorption on active sites of the CeO,NP surface
until saturated[44]. The adsorption efficiency
increased significantly from 26.18% at the initial
15 min to 70.66% after 120 min. Simultaneously,
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Fig. 6. A) FE-SEM micrographs of Green Synthesis CeO, NP and B) EDX spectrum of Green Synthesis CeO, NP.
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the adsorption constant (kd) increased, peaking
at 2.4270 min™" at 90 min and staying similar with
continuous time.

The kinetic results as shown in Fig. 10 and Table
3. The values of the correlation coefficients for the
pseudo-second-order model are relatively high,
and the amount of adsorbed material calculated
by this model is close to the value determined
by experiments. The value of the correlation
coefficient for the pseudo-first-order model of the
adsorption system is not convincing. Therefore,
the pseudo-second-order model is more accepter
for describing the adsorption kinetic, so the rate-
limited step depends on the Eosin yellow dye
molecule and the CeO, nanoparticles surface.
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Effect of Initial Dye Concentration on the Removal
Process

The influence of varying initial dye
concentrations on the adsorption process is
encapsulated in Fig. 11 a discernible inverse
relationship emerges between the initial dye
concentration and the adsorption efficiency after
increasing the dye concentration by more than
10 ppm. Specifically, the maximum efficiency was
found at a concentration of 10 mg/L yielded an
impressive 70.82%, while efficiencies decreased
by using high concentrations, which reached 20
mg/L, resulting in a substantial to 26.58%. This
observation can be attributed to the limited
availability of active sites on the nanoparticle
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Fig. 7. (A) N, adsorption-desorption isotherms of Green Synthesis CeO, nanoparticles. (B) the corresponding Barrett-Joyner-
Halenda pore size distribution curve of Green Synthesis CeO, nanoparticles.

Table 2. Zeta Potential Analysis of Green Synthesis CeO, nanoparticles.

Sample pH Zeta Potential (mV) Stability
3 +15.2 Moderate
CeO2-NP 6 +32.8 High
8 -21.4 Good
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surface at higher dye concentrations, thereby
hindering the adsorption and subsequent
adsorption  process [45,46]. Consequently,
optimizing the initial dye concentration is crucial
to maximize the potential of CeO, nanoparticles.

Effect of CeO, NP Dose

Fig. 12 encapsulates the effect of various
dosages of CeO, NPs at the adsorption method.
A clear positive correlation emerges between

the nanoparticle dose and the adsorption
performance, with the best efficiency of 70.82%
achieved at a dose of 0.025 g. This trend may be
attributed to the improved availability of energetic
sites at the nanoparticle surface, which helps
greater efficient adsorption and next adsorption
of the dye molecules. However, it is crucial to
strike a balance between the nanoparticle dosage
and the associated costs, as an immoderate dose
might not yield commensurate enhancements
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Fig. 8. Mechanism of eosin yellow dye removal using CeO, NP surface.
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Fig. 9. Relationship of E% and kd contact vs time (min) for adsorption of Eosin yellow dye on green synthesis CeO, nanoparticles
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in efficiency. The results show that increasing
the dosage of CeO, NPs led to higher adsorption
efficiencies, with the best result observed at a dose
of 0.025 g. The increase in the removal of dyes
with adsorbent dose is due to the introduction of
more binding sites for adsorption [47, 48].
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Thermodynamic Parameters

Thermodynamic characteristics are essential for
determining the kind of adsorption process that
occurs on any solid surface. The thermodynamics
parameters such as activation energy, Gibb’s free
energy change, entropy, and isotherm heat of
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Fig. 10. A: Pseudo- first order B: Pseudo- second order kinetic study of Eosin yellow dye adsorption on CeO,NPs surface at 298 K
at initial pH equal to 8.
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Fig. 11. Effect of Initial concentration of Eosin Yellow Dye on adsorption process by green synthesis of CeO, NPs at
initial pH equal to 8.

Table 3. The kinetic results of pseudo-first-order and pseudo-second order reaction parameters of Eosin yellow dye on the CeO, NPs

surface.
Samples Pseudo-first order Pseudo-second order
ki(min) Qe(me/e) R? k2 (g/mg.min) Qe(me/e) R?
CeO: NP 0.0576 20.97434 0.948 0.00173 10.6951 0.9495




adsorption are vitally required. These parameters
are critical design variables in estimating the
performance and predicting the mechanism of
an adsorption separation process First, using
equation 7, the sorption distribution coefficient
(kd) [49,50] was determined.

where C__is the amount of adsorbate (dye) on
the solid surface equilibrium (mg/L) and Ce is the
amount of leftover dye (mg/L) in an equilibrium
solution.

The Van’t Hoff formula was used to estimate
the changes in the standard entropy AS’ and the
standard enthalpy AH’ [51, 52], as shown in Fig.
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Fig. 12. Effect of Initial concentration of Eosin Yellow Dye on adsorption process by green synthesis of CeO, NPs
at initial pH equal to 8.
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Fig. 13. (A)Relation between In kd and (1000/T) and (B) Relation of AG’ versus temperature for an endothermic process of Eosin
yellow dye adsorption on green synthesis CeO, NPs surface at initial pH equal to 8.



—AH® N AS° (7)
RT R

lnkd =

Here, R stands for the universal gas constant (J/
mol. K) and T is the absolute temperature in Kelvin.
Using the Nernst equation (equation 9), the
standard Gibbs free energy (AG’) was determined

[53,54], and the relation between AG’ and
temperature is plotted in Fig. 13B.
AG® = —RTInky (8)

However, equation) 10(was used to get the
activation energy (Ea) [55].

E, = AH® + RT (9)

Based on Figs. 13A and B, Table 3 elucidates the
thermodynamic parameters predominated on the

adsorption manner. The Gibbs free energy (AG’)
values are positive indicating the adsorption of
Eosin yellow dye by green synthesized CeO, NP is
a non-spontaneous reaction. The positive AH’ of
this reaction was found to be 13.430 kJ/mol, this
value suggests that the adsorption type of the
adsorption is physical (AH° less than 20-40 kJ/mol)
and the system is endothermic [56]. Furthermore,
the small value of AS® (0.0423 kJ/mol. K) ensures
the decline in the randomness of the solid-solution
interface in the course of the adsorption system
[57].

Effect of pH of Eosin dye on the Adsorption Process

This parameter shall describe via many
phenomena that can be happened, which caused
the change in surface charge properties of the
nanoparticles and the solubility or ionization state
of dye. Fig. 14 encapsulates the pivotal role of pH
in modulating the adsorption of Eosin yellow dye.
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Fig. 14. Effect of initial pH of Eosin yellow dye on adsorption process using green synthesis CeO, NP.

Table 4. The Thermodynamic Parameters for Eosin yellow dye adsorption on green synthesis of CeO, NP surface at (283-298) K.

Temperature 1/T kd AH® AS° AG’

0,

Temperature °C (K) K1 min?t In kd kJ/mol kJ/mol.K kJ/mol
10 283 0.00353 0.5473 -0.6027 1.4181
15 288 0.00347 0.5726 -0.5576 1.3352
20 293 0.00341 0.6877 -0.3744 13430 0.0423 0.9121
25 298 0.00336 0.7082 -0.3450 0.8548




The efficiency increases from pH 3 to pH 6 and
gives a maximum adsorption efficiency 97.48%.
The results indicate the maximum adsorption
efficiency at pH 6 was accepted with the result
of zeta potential at maximum value at pH 6. The
protonation of surface enhances the anionic dye
adsorption owing to the electrostatic attraction
[58]. Conversely, the adsorption efficiency
diminished from pH 7 to 8 that attitude to excess
the hydroxyl ions in surface that increases the
repulsive force with this negative dye [59].

Adsorption Isotherms

In this study, we used Freundlich, Langmuir,
and Temkin’s isotherm equations to match the
experimental data for eliminating eosin dye at
different concentrations. The adsorption isotherm
describes the relationship between the amount of
removed dye and the remaining concentration at

equilibrium. This work used non-linear Langmuir
and Freundlich models to analyze adsorption
isotherm data and characterize the process.
The monolayer adsorption of the adsorbate
on homogeneous sites within the adsorbent is
characterized as:

Isotherm Langmuir

Definition of Langmuir isotherm (Equation10)
states the adsorption process takes place across
homogeneous sites of the adsorbent [ 60].

abC,

Qe =177,

(10)

Where; Qe = defined as the quantity of eosin
yellow adsorption at the time of equilibrium(mg/g).
(a, b) are the constants of Langmuir.
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Fig. 15. A) Langmuir isotherms for eosin yellow dye using the surface of the CeO, NPs at 25°C, B) Freundlich isotherm eosin yellow
dye using surface the CeO, NPs at 25°C and C) Temkin isotherm eosin yellow dye using the surface of the CeO, NPs at 25 °C.

Table 5. Adsorption isotherm values each of Langmuir, Freundlich, and Temkin at 25 °C.

Models Langmuir isotherm Models ereundllch Models Tekmin isotherm
isotherm
a (L/mg) 0.058336 KE 0.807833 8 0.5447
b (mg/g) 3500128 n 3.19081 Ar 1.613490751
R 0.461528 R 0.4103 R? 0.483

R? 0.2307




1

RR=———
L7 1 4pC,

(11)

Where: RL = meaning refer to adsorption kinds
is Irreversible (R =0), Likely (0< R < 1) linear (R =1)
[56]. The (a) and (b) values are calculated from the
slopes (1/a) and intercepts (1/ab) of linear plots of
Ce /Qe versus Ce are shown in Fig. 15A.

Isotherm Freundlich

Multi-layered adsorption over heterogeneous
active sites is indicated by the Freundlich isotherm
pattern of adsorption. Freundlich isothermal. [
57].

1
LogQ. = LogKg + HLogCe (12)

Where: k, n =Freundlich’s constants. Fig. 15B
shows the applicability of the Freundlich equation
well when plotting Log Qe against the values of
Log Ce

Temkin Isotherm
The following is how it is frequently used [57]:

Q. = BlnAt + BInC, (13)

Where: A_ is the equilibrium binding constant.
B = associated with the heat of adsorption. where

the eosin yellow dye adsorption Temkin isotherm
curves are shown in Fig. 15C.

The (a, b, RL) for Langmuir constants, (n,
KF) for the Freundlich pattern and the Temkin
pattern constants (B, AT) with linear correlation
coefficients are shown in Table 5.

From the results the (R?) values in Table 5 for
Langmuir, Freundlich and Temkin it turns out that
the best results are in the Freundlich and Temkin
values [60,61]. The Freundlich constant n is found
to equal 3.198 that agreement with the actual
this reaction is a multilayer (physical adsorption)
and this process is favorable for the studied dye
because the n value ranges between 1 and 10 [62].
The RL value is obtained less than 1, hence this
reaction is Likely [60]. The R?is low which indicates
the adsorption of dye on the surface of CeO, NP is
heterogeneous.

Effect of Addition the Oxidation Agents on Eosin
yellow dye removal process

Fig. 16 encapsulates have an impact on
supplementary oxidizing dealers, specifically
hydrogen peroxide (H,0,) and ferrous ions (Fe?*),
at the adsorption of eosin yellow dye. The records
show that the addition of these oxidizing agents
enhanced the adsorption performance, with the
Fenton response (related to both H,0, and Fe?*)
yielding an outstanding efficiency of 96.37%.
This synergistic effect may be ascribed to the
era of especially reactive hydroxyl radicals (¢OH)

100

80
2 60
s 40

w e

20

Fenton

96.37224

Fig. 16. Effect of oxidizing agents on adsorption efficiency of eosin yellow dye on green synthesis CeO,
NPs surface at initial pH equal to 6.



through the Fenton technique, which augments
the oxidative adsorption of the dye molecules.
Consequently, the judicious incorporation of
such oxidizing agents presents a viable strategy
to further optimize the adsorption performance
of the CeO, nanoparticles. The results indicate
that the addition of hydrogen peroxide alone
and ferrous ions alone depress the adsorption
efficiency. This behavior due to the Fe?* may be
compared to the dye on occupies active sites in
the cerium oxide nanoparticles via the adsorption
process. Moreover, the H,0, shall oxide the
semiconductor surface to give a positive charge
with hydroxyl ion and hydroxyl radical, and the
last species will adsorption on the surface and
decrease the negative dye adsorption (eosin
yellow dye) this result is in agreement with result
that reported in reference [63,64]. Whereas, using
the Fenton reaction, which involves both H,0, and
Fe?* resulted in an adsorption efficiency of 96.37%,
very close to the efficiency observed without any
additional oxidizing agents to generate equivalent
positive and negative charges at the same time. As
in the following equations [63-65].

Fe?* + H,0, — Fe3* + HO™ (14)

Fe3* + HO, - Fe?* + H* + 0, (16)
Fe?* + HO, — Fe3* + HO, (17)
Fe?* + HO — Fe®* + HO™ (18)
HO, + HO - H,0 + 0, (19)

Reusability of CeO, nanoparticles

The statistics provided in Fig. 17 shed mild on
the reusability of the synthesized CeO, NPs for
packages. While the nanoparticles exhibited an
impressive 97.48 % removal efficiency performance
in the preliminary cycle, a gradual decline in
performance was found with subsequent reuse
cycles. This phenomenon can be ascribed to the
capacity deactivation by saturated or blocking the
active sites of surface by dye molecules, or fouling
of the nanoparticle surface, which may restrict
the adsorption and adsorption strategies [66].
Nevertheless, the nanoparticle’s proven ability to
perform well during the first three rounds pastime
more than one cycle underscores their potential
for sustainable and fee-effective applications. The
results indicate a decline in adsorption efficiency
with a continuous reuse cycle when used five
times. it maintained its warranty until the third
time because the dye molecules are gradually
accumulating and preventing interaction with
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Fig. 17. Reusability of CeO, NPs surface for Eosin yellow dye adsorption at initial pH equal to 8.



the surface [67,68]. However, the nanoparticles
still exhibited significant adsorption activity
after multiple cycles. The results observed good
reusability, which is the acceptable loss in the
sorption ability after five circulations.

CONCLUSION

Green synthesis of CeO, NPs using Citrus
aurantuim peel extract was successfully prepared
and it provided a sustainable and environmentally
friendly method. The synthesized CeO, NP was
characterized by X-ray diffraction (XRD), field
emission scanning electron microscopy (FE-
SEM), Energy dispersive X-ray spectroscopy
(EDX), Bruner—Emmett-Teller (BET) surface
area analysis and Zeta potential analysis. Based
on the XRD data, the CeO, NP structure was
estimated as a cubic fluorite with a crystal size
of 12 nm. The nanoparticles demonstrated good
adsorption and antioxidant properties, making
them suitable for a wide range of applications
and emphasizing the need for further research
to fully exploit their advantages. Based on kinetic
studies and isothermal fitting, the second-
order model was investigated as an appropriate
model to express the adsorption behavior of dye
on synthesized CeO, NP. The thermodynamic
study indicated that the adsorption mechanism
between synthesized CeO, NP and Eosin yellow
dye was non- spontaneous and endothermic
process. The Adsorption activity was studied by
way of the preliminary dye concentration, pH,
and temperature. Higher adsorption efficiencies
were located at 10ppm dye concentrations, with
a finest pH of 6, and multiplied interest at 25°C
temperature. Additionally, the green synthesis
technique by leveraging agricultural —products,
this observation aims to contribute to sustainable
improvement and pollutant reduction, at the
same time as exploring the practical packages
of green—synthesized CeO, NPs in various fields
such as environmental remediation. Research
into the future Environmentally friendly and non-
toxic preparation of Cerium oxide nanoparticles,
including green synthesis. Characterize produced
surfaces with TEM, TGA, and XPS to determine
surface  properties and bending energy.
Investigating the impact of several parameters
on adsorption, including ionic strength, and
shaking speed. Examined the biological activity of
produced materials.
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