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Biosynthetic routes for producing nanoparticles have created a wide 
interest due to their environmental friendliness, simplicity, affordability, 
and clean technology. They do not contain hazardous chemicals or 
produce contaminants or byproducts. This work affords a green synthesis 
approach for cerium oxide nanoparticles CeO2NP performed using 
hexane extract from Citrus aurantuim peels sourced from Karbala-Iraq. 
Gas Chromatography-Mass Spectrometry analysis of this hexane extract 
recognized key bioactive compounds inside the Citrus aurantuim peels 
extract, which included Limonene (35.72%), β-Pinene (25.43%), Myrcene 
(15.87%), and Linalool (12.34%) that elevated the stabilization of synthesis 
CeO2NP. XRD of synthesis CeO2NP revealed a cubic fluorite shape with a 
mean crystal size of 12nm. BET analysis indicated a specific floor area of 
85.6 m²/g and a mean pore diameter of 8.2 nm, ensuring a mesoporous 
structure. The perfect removal of 10 ppm of eosin yellow dye using 0.025 g 
of CeO2 NPs turned into pH 6 at 90 min which agreed with zeta potential 
analysis, and the adsorption process followed pseudo-second-order 
kinetics. The ∆Ho of adsorption is 13.430 kJ/mol due to this reaction being 
physical adsorption. The reusability study showed the CeO2NP could be 
successfully used up to the 3rd cycle before a loss of 50% from efficiency.

INTRODUCTION
Nanotechnology is a vital area of modern 

research that deals with the design, synthesis, 
and manipulation of particle structures ranging 
in size from 1 to 100 nm [1]. The prefix Nano is 

derived from the Greek word Nanos, which means 
“dwarf”, and refers to one billionth10-9m) in size 
[2]. Nanoparticles have numerous applications 
in fields such as health care, cosmetics, food 
and feed, environmental health, mechanics, 



2554

F. Kadhem et al. / Friendly Green Synthesis of CeO2 NPs

J Nanostruct 15(4): 2553-2571, Autumn 2025

optics, biomedical sciences, chemical industries 
and electronics, space industries, drug-gene 
delivery, energy science, electronics, catalysis, 
single-electron transistors, light emitters, 
nonlinear optical devices, and photoelectron 
chemical applications [3,4]. New advancements 
in nanotechnology are progressively driven by 
artificial intelligence (AI). Techniques like machine 
learning optimize synthesis processes, predict 
nanoparticle properties, and improve the material 
design. Hassan et al. highlighted how AI reduces 
resource use and fosters eco-friendly novelty, 
introductory new applications in environmental 
remediation, biomedicine, and energy storage [5]. 
There are numerous physical, chemical, biological, 
and hybrid methods for synthesizing various 
types of nanoparticles [6]. To synthesize NPs, 
the most common chemical approaches, such 
as chemical reduction using a variety of organic 
and inorganic reducing agents, electrochemical 
techniques, physicochemical reduction, and 
radiolysis, are widely used. The distinct properties 
of biologically synthesized NPs are preferred over 
physical-chemically produced nanomaterials 
[7,8]. Biologically synthesized nanoparticles hold 
great potential for advancing health care and 
environmental applications, offering eco-friendly 
and biocompatible solutions [9]. Green synthesis 
of NPs from metal ions is more eco-friendly, free of 
chemical contamination, less expensive, and safe 
for biological applications. Green chemistry allows 
us to obtain the necessary substance in the safest 
possible way. It provides the selection of raw 
materials and process schemes, which exclude 
harmful substances, and toxic and hazardous 

chemicals, and focuses on industrial processes that 
do not pollute the environment [10]. Currently, 
chemistry is witnessing a significant development 
with the emergence of a novel and comprehensive 
scientific trajectory known as “green” chemistry. 
The field of “green” chemistry encompasses 
various disciplines, including synthetic organic 
chemistry, analytical chemistry, physical chemistry, 
toxicology, microbiology, biotechnology, and 
engineering [11]. The goal of green chemistry is to 
develop technologies for more efficient chemical 
reactions. Green chemistry aims to prevent 
pollution in the very early stages of the planning 
and implementation of chemical processes 
and covers all types and aspects of chemical 
processes to minimize environmental risks [12]. 
The problems within the competence of green 
chemistry can be categorized into two main areas. 
The first relates to the processing and utilization of 
environmentally hazardous waste and by-products 
of the chemical industry [13,14] The second, 
more promising, involves the development of 
new industrial processes to eliminate or minimize 
the form In green chemistry, fundamentally new 
constructs such as ideal process, ideal product 
and ideal consumer are used, ideal process is a 
simple, eco-friendly, one-stage process, effective 
at the molecular level, with the use of renewable 
raw materials, which provides maximum yield, 
ideal product requires a minimum of energy and 
packaging, is safe, recyclable and fully degradable 
by microorganisms [15]. The green synthesis of 
CeO2 NPs using Citrus aurantuim peel extract 
entails the discount of cerium ions by way of 
bioactive compounds present in the extract, 

 

 

  

Fig. 1. Green synthesis of nanomaterial using Citrus aurantuim and application [13, 16].
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which includes flavonoids and phenolic acids 
[16].The goal of this study is a green synthesis 
technique for cerium oxide (CeO2) NPs using 
hexane extract from Citrus aurantuim peels. This 
method seeks to harness the natural antioxidant 
in the extraction beginning with the collection 
of fresh Citrus aurantium peels to provide CeO2 
NPs in a friendly environmental way. They take a 
look at will systematically look into the synthesis 
parameters to optimize the system, signify the 
ensuing nanoparticles in terms of size, crystallinity, 
and surface properties, and examine them in the 
removal of Eosin yellow dye. These studies have 
substantial implications for both nanotechnology 
and environmental sustainability as shown in Fig. 
1.

MATERIALS AND METHODS
Materials, Reagents, and instrumentations

The source of Citrus uranium peels is Karbala, 
Iraq, which serves as the renewable uncooked 
fabric. Hexane purity of 99% facilitated the 
extraction of bioactive compounds supplied by 
(BDH, England). The cerium chloride (CeCl3.6H2O) 
purity of 99% was bought from (Merck, Germany). 
Ethanol purity of 99% and ammonia of 35% 
were purchased by (BDH). Eosin yellow dye 
(C20H6Br4Na2O5) purity is 99% with acidic natural. 
The characterization of the nanoparticles was 
analyzed using a UV-visible spectrophotometer 
(UV-1900i, Shimadzu, Japan), Fourier Transform 

Infrared spectrophotometer (FT-IR) (IR Spirit, 
Shimadzu, Japan) using a KBr pellet with a scan rate 
of approximately 4 cm s−1 at 25 °C, field emission 
Scanning Electron Microscopy (Fe-SEM), Energy 
Dispersive X-ray spectroscopy (EDX) analysis (SU-
8000, Hitachi, Japan) at accelerating voltages of 
10 and 15 kV, and X-ray diffraction (XRD) (Rigaku 
Smart Lab spectrometer, Japan) with Cu-Kα 
radiation. A pH ION/EC/DO METER (MM-43X) was 
used to measure the pH of the solution.

Extraction of Citrus aurantuim peels
The extraction technique was started with 

the gathering of fresh Citrus aurantuim peels. 
Thorough washing the removal of impurities, and 
subsequent drying at room temperature for 48 
hours were done to eliminate moisture. The dried 
peels (800g) were powdered using a mechanical 
grinder. Consequently, Soxhlet extraction was 
used to extract the bioactive compounds. 
Specifically, 370 g of the floor peel powder 
underwent extraction with 200 mL of hexane for 
6 hours. Whatman No. 1 filter paper was used to 
filter the hexane extract to remove solid residues, 
and the extract was then concentrated, yielding 
an effective source of bioactive compounds. The 
steps of the bioactive compound extraction are 
displayed in Fig. 2.

Synthesis of CeO2 Nanoparticles
The synthesis technique commenced with the 

 

  
Fig. 2. The schematic diagram for the steps of the bioactive compounds extracted from citrus aurantuim peels in hexane.
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dissolution of 4 g of cerium chloride (CeCl3.6H2O) 
in 100 mL of ethanol, making sure of complete 
dissolution via 10 min of stirring. Subsequently, 1g 
of the Citrus aurantuim peel extract was added, 
allowing the bioactive compounds to interact with 
the cerium ions as a template, capping agent, and 
stabilizer for 10 min beneath non-stop agitation. 
To facilitate oxide nanoparticle formation, the pH 
must be between 9 and 10, observed by adding 
drops of ammonia with stirring for 20 min. The 
heating process at 80°C for 3 hours with continuous 
stirring triggered was useful to grow the CeO2 NP 
as a brown precipitate. The produced precipitate 
was washed with deionized water to cast off 
chloride ion residues. In this manner, to remove all 
chloride ions from the precipitate, must add drops 
of AgNO3 solution to the filter. The produced CeO2 
was washed with ethanol to eliminate water and 
then dried at 60°C for 2h. Finally, the calcination of 
CeO2 NPs yielded was performed at 600 °C for 3h 
to remove all organic compounds.

Removal of Eosin yellow dye using CeO2 
nanoparticles

Kinetic studies were done by taking different 
volumetric flasks and placing them in each of the 
25 mL with a concentration range of (5,10,15 and 
20) ppm of each of the adsorbed solutions of Eosin 
yellow dye. These solutions were contacted with 
(0.010, 0.015, 0,020, and 0.025) g of adsorbent 
surface (CeO2 NPs), and then these flasks were 
placed in a water bath equipped with a vibrator 
at a different temperature within the range 
(283-298) K. The acid function for the removal 
process was adjusted within pH (3,4,5,6,7and 8). 
The flasks were then withdrawn at contact times 
between 15 min and 120 min, and the amount of 
adsorption was measured. The residue of Eosin 
yellow dye in solution after the adsorption process 
was measured at the maximum wavelength (λmax) 
equal to 516 nm [17,18]. The adsorption capacity 
at various times qt in (mg/g) can be calculated 
using [19, 20]:

 

  
Fig. 3. Compounds Analysis of extract Citrus aurantuim peels by Retention Time Peak Area in (GC-MS) analysis.
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qt = (Co − Ct)V
m  

  

                                                     
(1)

Where: Co is the actual dye concentration in the 
solution, Ct is the concentration (mg/L) of dye at 
different times, V is the volume of the dye solution 
(L), and m is the mass of the adsorbent (CeO2 NPs) 
used in (g).

The adsorption efficiency E % can be calculated 
by following the equation [21, 22]:

E % = Co− Ct
Co

 x 100 

  

                                                   (2)

The kinetic study of the adsorption of eosin 
yellow dye is evaluated by using the following 
equations depending on the adsorption capacity 
at equilibrium (qe) as a maximum value in (mg/g)
and adsorption capacity at various times qt in 
(mg/g).

a.	 Pseudo –first-order kinetic: [23, 24]

  ln (qe − qt) = lnqe − k1 t 

  

                                          (3)                                         

Here: k1: is the rate constant in (sec-1) of pseudo-
first order.

b.	 Pseudo-second order kinetic: [25,26].

1
qt

= 1
k2qe2

+ 1
qe

 

  

                                                           
(4)

Where: k2:is the rate constant in (L.M-1.sec-1) of 
pseudo-second order.

RESULTS AND DISCUSSION
Characterization of extract Citrus aurantuim peels

Gas Chromatography-Mass Spectrometry (GC-
MS) analysis was used to identify and quantify 
the bioactive compounds extracted from Citrus 
aurantuim peels. These compounds are essential 
oils as they facilitate the reduction and stabilization 

of CeO2NPs during synthesis, as shown in Table 1 
and Fig. 3.

The GC-MS analysis identified several key 
bioactive compounds in the Citrus aurantuim peel 
extract, GC/MS Analytical Condition, Injection: 
amount = 1µL Split ratio = 1:10 Heat of injection = 
250 ℃, Column oven: initial temperature is 50 ℃ 
increase by 5 ℃ / min to 180 ℃ increase by 10 ℃ / 
min to 250 ℃ hold 1 min, Sample Preparation: 100 
µL of the sample is diluted with 5 mL of N-Hexane 
(HPLC-Grade) before injection, and Gas flow ratio: 
1 mL/min Pressure: 10 psi m/z Range:1 – 2000.

Limonene (35.72%) was the most abundant 
compound, followed by β-Pinene (25.43%), 
Myrcene (15.87%), and Linalool (12.34%). These 
compounds are known for their reducing and 
capping properties, which are essential in the 
green synthesis of nanoparticles. The presence of 
these compounds suggests their significant role in 
reducing cerium ions to CeO2 NPs and stabilizing 
them against aggregation.

Characterization of CeO2 nanoparticles
To comprehensively understand the properties 

and potential applications of the synthesized 
CeO2 nanoparticles, a series of advanced 
characterization techniques were employed. 
These analyses included (FT-IR) spectroscopy, X-ray 
Diffraction (XRD), field emission Scanning Electron 
Microscopy (FE-SEM), Energy dispersive X-ray 
spectroscopy (EDX), Bruner–Emmett–Teller (BET) 
surface area analysis and Zeta potential analysis. 
Each technique provided valuable insights into the 
composition, structure, morphology, and surface 
characteristics of the nanoparticles, further 
elucidating their functional capabilities.

X-ray Diffraction (XRD)Analysis
XRD was performed to determine the 

crystalline structure of the synthesized CeO2 NPs. 
The diffraction pattern provides information about 

Retention Time (min) Compound Name Molecular 
Formula 

Molecular Weight 
(g/mol) Peak Area (%) 

6.8 Limonene C10H16 136.23 35.72 
8.2 β-Pinene C10H16 136.23 25.43 

10.3 Myrcene C10H16 136.23 15.87 
12.6 Linalool C10H18O 154.25 12.34 
15.1 α-Terpineol C10H18O 154.25 6.64 
17.4 Neryl acetate C12H20O2 196.29 4.00 

 
  

Table1. Gas Chromatography-Mass Spectrometry (GC-MS) analysis of extract Citrus aurantuim peels.
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the phase and purity of the nanoparticles, as 
shown in Fig. 4. The XRD evaluation confirmed the 
crystalline nature of the nanoparticles, showing 
peaks corresponding to the cubic fluorite structure 
of CeO2 NPs [27]. This crystalline shape is essential 
for the catalytic and biological activities of the 
nanoparticles because it enables the redox biking 
between Ce³⁺ and Ce⁴⁺ states [28, 29].

The characteristic peaks of the CeO2 NPs 
correspond to the (111), (200), (220), (311), (222), 
and (400) planes. The strong peak at 28.6° for the 
(111) plane indicates a high degree of crystallinity 
and purity. The presence of these peaks confirms 
the formation of the cubic fluorite structure 
of CeO2 NPs. The relative intensities of the 
peaks provide insights into the crystallographic 
orientation and crystal size [30]. The mean crystal 
size was calculated using the Scherer equation 
[30- 33].

D = kλ
βcosθ  

                                                                  
 (5)

Where D is the crystal size, k is the shape aspect 
(typically 0.9), λ is the X-ray wavelength (1.5406 Å 
for Cu Kα), β is the total width at half maximum 
(FWHM) of the height, and θ is the Bragg attitude, 
the calculated mean crystal size changed was 
found to be 12 nm.

FT-IR Analysis
The FTIR spectrum of the hexane extract was 

found to contain alcohols, phenols, aromatics, 
carboxylic acids, nitro compounds, and alkanes, 
as validated by the spectrum, as illustrated in Fig. 
5A. A large peek at 3400-3600 cm⁻¹ that attributed 
to O-H stretching vibrations, while another peak 
at 3051 cm-1 assignments to the N-H bending. 
The wide peak at 1408 cm-1 was observed, which 
was due to the bending of the O-H of carboxylic 
acid [34,35]. The peak demonstrated at 1627cm-

1 is an attitude to the presence of C=O. The peak 
at 2850 cm-1 was assigned to C-H stretching, and 
the band at 1750 cm−1 corresponds to the bending 
of H–O–H which partly overlaps the O–C–O 
stretching band. The prominent absorption bands 
at 2927 and 1452 cm-1 are responsible for CH and 
CH2 groups, respectively [36].

FTIR spectrum of CeO2 NPs in Fig. 5B showed 
characteristic peaks. The new sharp peaks  at 
401 and 588 cm⁻¹ indicative of Ce-O and O-Ce-O 
stretching vibrations, respectively [37,38].

FE-SEM Analysis
FE-SEM was used to observe the surface 

morphology and find the particle size of the 
synthesized CeO2 NPs. This technique provides 
a high-resolution image that reveals detailed 
surface structure. FE-SEM images at different 

 

  

  

Fig. 4. XRD analysis of Green Synthesis of CeO2 NP.
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magnifications revealed that the CeO2 NPs are 
predominantly spherical agglomerates like truffles, 
as shown in Fig. 6 A. At 10,000x magnification, 
the nanoparticles appeared well-dispersed with 
minimal aggregation.

At higher magnifications (20,000x) more 
detailed structures including clusters and surface 
textures were observed. The uniformity in shape 
and size suggests a controlled synthesis process, 
which is beneficial for applications requiring 
consistent nanoparticle characteristics. The 
particle size was determined to range between  
29.3 nm  and  45 nm. Based on Fig. 6B, the EDX 
spectrum demonstrated that the presence of 
cerium in the sample is found to be 62.6%, as well 
as the presence of oxygen observed at 25.5% and 
carbon at 12% resulting in the substrate material.

N2 Adsorption - desorption isotherm (BET) Analysis
BET analysis was conducted to determine the 

specific surface area, total pore volume, and 
average pore diameter of CeO2 nanoparticles. 
These parameters are critical for understanding 
the surface properties and potential catalytic 
activity of the nanoparticles. Based on Fig. 7A and 
B, the BET analysis revealed a specific surface area 
of 85.6 m²/g, indicating a high surface area that is 
beneficial in catalytic applications. The total pore 
volume is found to be 0.35 cm³/g and an average 
pore diameter is equal to 8.2 nm, these results 
suggest that the nanoparticles have a mesoporous 
structure [39]. This porosity enhances the 
accessibility of reactants to the active sites on the 
nanoparticle surface, making them suitable for 
various applications such as catalysis adsorption.

The adsorption isotherms classification is 
important in the theoretical modeling of adsorption 
phenomena and practical reasons. That considers 
the surface area measurements depending on the 
BET method [40]. The international standards use 

 

 

 

 

 

  

  

(A) 

 

(B) 

9(( 

Fig. 5. FTIR spectra (A) Citrus peel extract with hexane and (B) CeO2 NPs by using extract of peel citrus aurantuim.
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this method in different applications depending on 
the first IUPAC manual [39,40], which divides the 
isotherms into five types. Fig. 7A is in agreement 
with Adsorption isotherms type IV, and the 
hysteresis loop was demonstrated in the relative 
pressure (P/P0) range of 0.3~1.0, belonging to type 
H3 [39]. The expected pore is open with the shape 
may be as a cylinder [41].

Zeta Potential Analysis
Zeta potential analysis provides significant 

insights into the surface charge and colloidal 
stability of synthesized CeO2 nanoparticles. 
The zeta potential is an important parameter 
affecting the diffusion and aggregation behavior 
of nanoparticles in solution [42]. The results of the 
zeta potential analysis are presented in Table 2.

At pH 3, CeO2 NPs exhibited a zeta potential of 
+15.2 mV, indicating a moderate colloidal state. 
This positive charge indicates the presence of 
protonated surface groups, contributing to the 
electrostatic repulsion between the particles. 
At pH 6, the zeta potential increased sharply to 
+32.8 mV, indicating high stability[43]. This pH 
value is optimal for dispersion and prevention of 
aggregation of nanoparticles, which is useful for 
applications that require stable suspensions. At 
pH 8 the zeta potential is decreased and shifted to 

-21.4 mV, indicating good stability due to negative 
surface charge. The negative charge is apparently 
due to the de-protonation of the surface hydroxyl 
groups, resulting in explosive forces that prevent 
aggregation.

Adsorption of Eosin Yellow Dye
The synthesized CeO2 NPs using Citrus 

aurantuim peel extract were evaluated to remove 
the Eosin yellow dye. The adsorption efficiency and 
kinetic adsorption constant (kd) were calculated at 
various time intervals, pH levels, temperatures, 
and initial dye concentrations. The mechanism of 
dye removal is shown in Fig. 8.

Effect of Removal Time
The data in Fig. 9 elucidates the temporal 

evolution of Eosin yellow dye adsorption by the 
synthesized CeO2 nanoparticles. A substantial 
increase in the efficiency of dye removal and the 
adsorption constant values over time signifies 
the effective adsorption of the dye, this behavior 
is due to an increase in the kinetic energy for 
dye particles that enhances the diffusion and 
adsorption on active sites of the CeO2NP surface 
until saturated[44]. The adsorption efficiency 
increased significantly from 26.18% at the initial 
15 min to 70.66% after 120 min. Simultaneously, 

 

(A) (B) 

 

  

Fig. 6. A) FE-SEM micrographs of Green Synthesis CeO2 NP and B) EDX spectrum of Green Synthesis CeO2 NP. 
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the adsorption constant (kd) increased, peaking 
at 2.4270 min⁻¹ at 90 min and staying similar with 
continuous time.

The kinetic results as shown in Fig. 10 and Table 
3. The values ​​of the correlation coefficients for the 
pseudo-second-order model are relatively high, 
and the amount of adsorbed material calculated 
by this model is close to the value determined 
by experiments. The value of the correlation 
coefficient for the pseudo-first-order model of the 
adsorption system is not convincing. Therefore, 
the pseudo-second-order model is more accepter 
for describing the adsorption kinetic, so the rate-
limited step depends on the Eosin yellow dye 
molecule and the CeO2 nanoparticles surface.

Effect of Initial Dye Concentration on the Removal 
Process

The influence of varying initial dye 
concentrations on the adsorption process is 
encapsulated in Fig. 11 a discernible inverse 
relationship emerges between the initial dye 
concentration and the adsorption efficiency after 
increasing the dye concentration by more than 
10 ppm. Specifically, the maximum efficiency was 
found at a concentration of 10 mg/L yielded an 
impressive 70.82%, while efficiencies decreased 
by using high concentrations, which reached 20 
mg/L, resulting in a substantial to 26.58%. This 
observation can be attributed to the limited 
availability of active sites on the nanoparticle 
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Fig. 7. (A) N2 adsorption-desorption isotherms of Green Synthesis CeO2 nanoparticles. (B) the corresponding Barrett-Joyner-
Halenda pore size distribution curve of Green Synthesis CeO2 nanoparticles.

Table 2. Zeta Potential Analysis of Green Synthesis CeO2 nanoparticles.
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surface at higher dye concentrations, thereby 
hindering the adsorption and subsequent 
adsorption process [45,46]. Consequently, 
optimizing the initial dye concentration is crucial 
to maximize the potential of CeO2 nanoparticles.

Effect of CeO2 NP Dose
Fig. 12 encapsulates the effect of various 

dosages of CeO2 NPs at the adsorption method. 
A clear positive correlation emerges between 

the nanoparticle dose and the adsorption 
performance, with the best efficiency of 70.82% 
achieved at a dose of 0.025 g. This trend may be 
attributed to the improved availability of energetic 
sites at the nanoparticle surface, which helps 
greater efficient adsorption and next adsorption 
of the dye molecules. However, it is crucial to 
strike a balance between the nanoparticle dosage 
and the associated costs, as an immoderate dose 
might not yield commensurate enhancements 
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Fig. 8. Mechanism of eosin yellow dye removal using CeO2 NP surface.

Fig. 9. Relationship of E% and kd contact vs time (min) for adsorption of Eosin yellow dye on green synthesis CeO2 nanoparticles 
surface at initial pH equal to 8.



in efficiency. The results show that increasing 
the dosage of CeO2 NPs led to higher adsorption 
efficiencies, with the best result observed at a dose 
of 0.025 g. The increase in the removal of dyes 
with adsorbent dose is due to the introduction of 
more binding sites for adsorption [47, 48].

Thermodynamic Parameters
Thermodynamic characteristics are essential for 

determining the kind of adsorption process that 
occurs on any solid surface. The thermodynamics 
parameters such as activation energy, Gibb’s free 
energy change, entropy, and isotherm heat of 
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Table 3. The kinetic results of pseudo-first-order and pseudo-second order reaction parameters of Eosin yellow dye on the CeO2 NPs 
surface.
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Fig. 11. Effect of Initial concentration of Eosin Yellow Dye on adsorption process by green synthesis of CeO2 NPs at 
initial pH equal to 8.



adsorption are vitally required. These parameters 
are critical design variables in estimating the 
performance and predicting the mechanism of 
an adsorption separation process First, using 
equation 7, the sorption distribution coefficient 
(kd) [49,50] was determined.

kd=
Cads
Ce

 

  

                                                                   
 (6)

where Cads is the amount of adsorbate (dye) on 
the solid surface equilibrium (mg/L) and Ce is the 
amount of leftover dye (mg/L) in an equilibrium 
solution.

The Van’t Hoff formula was used to estimate 
the changes in the standard entropy ΔS⁰ and the 
standard enthalpy ΔH⁰ [51, 52], as shown in Fig. 
13A.
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Fig. 12. Effect of Initial concentration of Eosin Yellow Dye on adsorption process by green synthesis of CeO2 NPs 
at initial pH equal to 8.



lnkd = −∆Ho

RT + ∆So
R  

  

                                    
(7)

Here, R stands for the universal gas constant (J/
mol. K) and T is the absolute temperature in Kelvin.

Using the Nernst equation (equation 9), the 
standard Gibbs free energy (ΔG⁰) was determined 
[53,54], and the relation between ΔG⁰ and 
temperature is plotted in Fig. 13B.

∆Go = −RTlnkd 

  
                                                         (8)

However, equation) 10(was used to get the 
activation energy (Ea) [55].

Ea = ∆Ho + RT 

  

                                                          (9)

Based on Figs. 13A and B, Table 3 elucidates the 
thermodynamic parameters predominated on the 

adsorption manner. The Gibbs free energy (ΔG⁰) 
values are positive indicating the adsorption of 
Eosin yellow dye by green synthesized CeO2 NP is 
a non-spontaneous reaction. The positive ΔH⁰ of 
this reaction was found to be 13.430 kJ/mol, this 
value suggests that the adsorption type of the 
adsorption is physical (∆H₀ less than 20-40 kJ/mol) 
and the system is endothermic [56]. Furthermore, 
the small value of ΔS⁰ (0.0423 kJ/mol. K) ensures 
the decline in the randomness of the solid-solution 
interface in the course of the adsorption system 
[57].

Effect of pH of Eosin dye on the Adsorption Process
This parameter shall describe via many 

phenomena that can be happened, which caused 
the change in surface charge properties of the 
nanoparticles and the solubility or ionization state 
of dye. Fig. 14 encapsulates the pivotal role of pH 
in modulating the adsorption of Eosin yellow dye. 
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Temperature ⁰C Temperature 
(K) 

1/T 
K-1 

kd 
min-1 ln kd ΔH⁰ 

kJ/mol 
ΔS⁰ 

kJ/mol.K 
ΔG⁰ 

kJ/mol 

10 283 0.00353 0.5473 -0.6027 

13.430 0.0423 

1.4181 
15 288 0.00347 0.5726 -0.5576 1.3352 
20 293 0.00341 0.6877 -0.3744 0.9121 
25 298 0.00336 0.7082 -0.3450 0.8548 

Table 4. The Thermodynamic Parameters for Eosin yellow dye adsorption on green synthesis of CeO2 NP surface at (283-298) K.

Fig. 14. Effect of initial pH of Eosin yellow dye on adsorption process using green synthesis CeO2 NP.



The efficiency increases from pH 3 to pH 6 and 
gives a maximum adsorption efficiency 97.48%. 
The results indicate the maximum adsorption 
efficiency at pH 6 was accepted with the result 
of zeta potential at maximum value at pH 6. The 
protonation of surface enhances the anionic dye 
adsorption owing to the electrostatic attraction 
[58]. Conversely, the adsorption efficiency 
diminished from pH 7 to 8 that attitude to excess 
the hydroxyl ions in surface that increases the 
repulsive force with this negative dye [59].

Adsorption Isotherms
In this study, we used Freundlich, Langmuir, 

and Temkin’s isotherm equations to match the 
experimental data for eliminating eosin dye at 
different concentrations. The adsorption isotherm 
describes the relationship between the amount of 
removed dye and the remaining concentration at 

equilibrium. This work used non-linear Langmuir 
and Freundlich models to analyze adsorption 
isotherm data and characterize the process. 
The monolayer adsorption of the adsorbate 
on homogeneous sites within the adsorbent is 
characterized as:

Isotherm Langmuir
Definition of Langmuir isotherm (Equation10) 

states the adsorption process takes place across 
homogeneous sites of the adsorbent [ 60].

Qe = abCe
1 + bCe

                                                         (10) 

  
                                                       

 (10)

 
Where; Q𝑒 = defined as the quantity of eosin 

yellow adsorption at the time of equilibrium(mg/g). 
(a, b) are the constants of Langmuir.
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Fig. 15. A) Langmuir isotherms for eosin yellow dye using the surface of the CeO2 NPs at 25°C, B) Freundlich isotherm eosin yellow 
dye using surface the CeO2 NPs at 25°C and C) Temkin isotherm eosin yellow dye using the surface of the CeO2 NPs at 25 °C.

Table 5. Adsorption isotherm values each of Langmuir, Freundlich, and Temkin at 25 °C.



   RL = 1
1 + bCe

                                                              

  
                                                           

(11)

Where: 𝑅𝐿 = meaning refer to adsorption kinds 
is Irreversible (RL=0), Likely (0< RL< 1) linear (RL=1) 
[56]. The (a) and (b) values are calculated from the 
slopes (1/a) and intercepts (1/ab) of linear plots of 
Ce /Qe versus Ce are shown in Fig. 15A.

Isotherm Freundlich
Multi-layered adsorption over heterogeneous 

active sites is indicated by the Freundlich isotherm 
pattern of adsorption. Freundlich isothermal. [ 
57].

LogQe = LogKF + 1
n LogCe 

  
                                 

(12)

Where: kF, n =Freundlich’s constants. Fig. 15B 
shows the applicability of the Freundlich equation 
well when plotting Log Qe against the values of 
Log Ce

Temkin Isotherm
The following is how it is frequently used [57]:

Qe = βlnAT + βlnCe 

  
                                                  

(13)

Where: AT is the equilibrium binding constant. 
β = associated with the heat of adsorption. where 

the eosin yellow dye adsorption Temkin isotherm 
curves are shown in Fig. 15C.

The (a, b, RL) for Langmuir constants, (n, 
KF) for the Freundlich pattern and the Temkin 
pattern constants (β, AT) with linear correlation 
coefficients are shown in Table 5.

From the results the (R2) values in Table 5 for 
Langmuir, Freundlich and Temkin it turns out that 
the best results are in the Freundlich and Temkin 
values [60,61]. The Freundlich constant n is found 
to equal 3.198 that agreement with the actual 
this reaction is a multilayer (physical adsorption) 
and this process is favorable for the studied dye 
because the n value ranges between 1 and 10 [62]. 
The RL value is obtained less than 1, hence this 
reaction is Likely [60]. The R2 is low which indicates 
the adsorption of dye on the surface of CeO2 NP is 
heterogeneous.

Effect of Addition the Oxidation Agents on Eosin 
yellow dye removal process

Fig. 16 encapsulates have an impact on 
supplementary oxidizing dealers, specifically 
hydrogen peroxide (H₂O₂) and ferrous ions (Fe²⁺), 
at the adsorption of eosin yellow dye. The records 
show that the addition of these oxidizing agents 
enhanced the adsorption performance, with the 
Fenton response (related to both H₂O₂ and Fe²⁺) 
yielding an outstanding efficiency of 96.37%. 
This synergistic effect may be ascribed to the 
era of especially reactive hydroxyl radicals (•OH) 

 

  

  

0
20
40
60
80

100

None

H2O2

Fe2+

Fenton

97.47634
80.914

60.88328

96.37224

E re
m

ov
al
%

Fig. 16. Effect of oxidizing agents on adsorption efficiency of eosin yellow dye on green synthesis CeO2 
NPs surface at initial pH equal to 6.



through the Fenton technique, which augments 
the oxidative adsorption of the dye molecules. 
Consequently, the judicious incorporation of 
such oxidizing agents presents a viable strategy 
to further optimize the adsorption performance 
of the CeO2 nanoparticles. The results indicate 
that the addition of hydrogen peroxide alone 
and ferrous ions alone depress the adsorption 
efficiency. This behavior due to the Fe2+ may be 
compared to the dye on occupies active sites in 
the cerium oxide nanoparticles via the adsorption 
process. Moreover, the H₂O₂ shall oxide the 
semiconductor surface to give a positive charge 
with hydroxyl ion and hydroxyl radical, and the 
last species will adsorption on the surface and 
decrease the negative dye adsorption (eosin 
yellow dye) this result is in agreement with result 
that reported in reference [63,64].   Whereas, using 
the Fenton reaction, which involves both H₂O₂ and 
Fe2+ resulted in an adsorption efficiency of 96.37%, 
very close to the efficiency observed without any 
additional oxidizing agents to generate equivalent 
positive and negative charges at the same time. As 
in the following equations [63-65].

Fe2+ + H2O2 → Fe3+ + HO− 

  
                     

  (14)

HO− + H2O2 → HO2 + H2O 

  
                              (15)

Fe3+ + HO2
∙ → Fe2+ + H+ + O2 

  
                      

(16)

Fe2+ + HO2
∙ → Fe3+ + HO2 

  

                      (17)
Fe2+ + HO∙ → Fe3+ + HO− 

  
                                   (18)

HO2 + HO∙ → H2O + O2 
                          

 (19)

Reusability of CeO2 nanoparticles
The statistics provided in Fig. 17 shed mild on 

the reusability of the synthesized CeO2 NPs for 
packages. While the nanoparticles exhibited an 
impressive 97.48 % removal efficiency performance 
in the preliminary cycle, a gradual decline in 
performance was found with subsequent reuse 
cycles. This phenomenon can be ascribed to the 
capacity deactivation by saturated or blocking the 
active sites of surface by dye molecules, or fouling 
of the nanoparticle surface, which may restrict 
the adsorption and adsorption strategies [66]. 
Nevertheless, the nanoparticle’s proven ability to 
perform well during the first three rounds pastime 
more than one cycle underscores their potential 
for sustainable and fee-effective applications. The 
results indicate a decline in adsorption efficiency 
with a continuous reuse cycle when used five 
times. it maintained its warranty until the third 
time because the dye molecules are gradually 
accumulating and preventing interaction with 
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 Fig. 17. Reusability of CeO2 NPs surface for Eosin yellow dye adsorption at initial pH equal to 8.



the surface [67,68]. However, the nanoparticles 
still exhibited significant adsorption activity 
after multiple cycles. The results observed good 
reusability, which is the acceptable loss in the 
sorption ability after five circulations.

CONCLUSION
Green synthesis of CeO2 NPs using Citrus 

aurantuim peel extract was successfully prepared 
and it provided a sustainable and environmentally 
friendly method. The synthesized CeO2 NP was 
characterized by X-ray diffraction (XRD), field 
emission scanning electron microscopy (FE-
SEM), Energy dispersive X-ray spectroscopy 
(EDX), Bruner–Emmett–Teller (BET) surface 
area analysis and Zeta potential analysis. Based 
on the XRD data, the CeO2  NP structure was 
estimated as a cubic fluorite with a crystal size 
of 12 nm. The nanoparticles demonstrated good 
adsorption and antioxidant properties, making 
them suitable for a wide range of applications 
and emphasizing the need for further research 
to fully exploit their advantages. Based on kinetic 
studies and isothermal fitting, the second-
order model was investigated as an appropriate 
model to express the adsorption behavior of dye 
on synthesized CeO2 NP. The thermodynamic 
study indicated that the adsorption mechanism 
between synthesized CeO2 NP and Eosin yellow 
dye was non- spontaneous and endothermic 
process. The Adsorption activity was studied by 
way of the preliminary dye concentration, pH, 
and temperature. Higher adsorption efficiencies 
were located at 10ppm dye concentrations, with 
a finest pH of 6, and multiplied interest at 25˚C 
temperature. Additionally, the green synthesis 
technique by leveraging agricultural –products, 
this observation aims to contribute to sustainable 
improvement and pollutant reduction, at the 
same time as exploring the practical packages 
of green–synthesized CeO2 NPs in various fields 
such as environmental remediation. Research 
into the future Environmentally friendly and non-
toxic preparation of Cerium oxide nanoparticles, 
including green synthesis. Characterize produced 
surfaces with TEM, TGA, and XPS to determine 
surface properties and bending energy. 
Investigating the impact of several parameters 
on adsorption, including ionic strength, and 
shaking speed. Examined the biological activity of 
produced materials.
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