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The increasing contamination of water by various heavy metals has 
emerged as a pressing global issue, threatening human health, aquatic 
ecosystems, and agricultural sustainability. These heavy metals are required 
to remove through cost effective and efficient removal approaches due to 
their toxicity, persistence and bioaccumulation. This review explores the 
transformative potential of nanocomposites as advanced adsorbents for 
heavy metal elimination. By investigating their synthesis, characterization, 
and functional classifications, the study highlights how these materials 
outperform conventional methods through enhanced surface properties and 
adsorption efficiency. A comparative analysis of adsorption mechanisms, 
such as ion exchange, electrostatic interactions, and complexation, is 
addressed, alongside evaluations of critical operational parameters like pH, 
contact time, and percentage removal. Additionally, the paper also outlines 
the limitations of current nanocomposite technologies, such as scalability 
challenges and environmental concerns, while potential future options for 
the removal of heavy metals. This review sets the groundwork for future 
nanomaterials developed to address global water decontamination by 
extending knowledge in this field.    

INTRODUCTION
One of the most essential needs for life is 

water. It is like lifeblood of our earth. It is silent 
hero, maintaining our universe from cellular 
processes to global ecosystem. Around 0.3% of 
the water resources in this world are drinkable[1]. 
Unfortunately, water pollution is now the most 
pressing global issue and it is urgent need to 
evaluate water management policy to tackle 

this problem[2]. Both developed and developing 
countries are facing this issue. Multiple organic 
and inorganic contaminants emitted from both 
natural and anthropogenic sources have caused 
the quality of water supplies to deteriorate 
drastically. When undesirable water bodies 
spread across a water system, the quality of the 
water changes, leading to water pollution[3-14]. 
There are many factors which can contribute 
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to water pollution. Rapidly growing population, 
fast industrialization, expanding urbanization, 
and inappropriate use of natural resources have 
all had a detrimental impact on water quality in 
recent decades[15]. More than 1500 substances 
have been identified as contaminants[16]. 
Organic matter, nutrients, drugs. and cosmetics, 
poly- and perfluoroalkyl compounds, chemicals, 
heavy metals, dyes, radioactive materials, plastic 
items, nanoparticles, and pathogens are the 
contaminants of the primary concern[17, 18]. 
Among these contaminants, heavy metals are 
the most toxic pollutants due to their poisonous 
nature and chemical reactivity. These heavy metals 
(Zn, Pb, Cu, Cd, Cr, Ni, Hg, Ag etc.) enter into water 
supplies directly or indirectly[19]. These metals 
remain in the environment for longer time as they 
are non-biodegradable and have various oxidation 
states. Heavy metals have potential to cover long 
distances in the environment. Therefore, it is 
very important to eliminate all these pollutants 
especially heavy metals from wastewater before 
they are released into water supplies.

A number of techniques have been reported 
for waste water treatment, including adsorption 
membrane filtration, precipitation flocculation, 
Coagulation, electrolytic extraction, Fenton’s 
process, ion exchange, reverse osmosis, 
Constructed Wetlands, biological removal, and 
reduction[20-22]. These methodologies, however, 
have certain limitations and challenges associated 
with their applications in water treatment [23-28]. 
High cost, less efficiency, production of waste as 
by-product, low reliability, expensive equipment, 
and complex operating system are some 
drawbacks of these listed techniques. Besides 
these techniques, adsorption is one of the best 
and simple method used for the elimination of the 
heavy metals from water [4-11, 13, 14, 29-40]. The 
adsorption approach for removing contaminants 
has been found to be highly efficient, economical, 
and simple to use. 

Various materials are employed for heavy 
metals removal from water. Nanoscale materials 
are widely used to treat water. These materials 
have unique properties because of their tiny size 
and high surface area to volume ratio. Due to 
these characteristics, nanocomposites exhibit high 
removal efficiency. Alongside their large surface 
area, nanocomposites show exceptional catalytic 
properties which make them suitable adsorbents 
for heavy metals removal from water. Their large 

surface area provides greater number of active 
sites for species to be removed. Therefore, 
they are the best materials for heavy metal 
decontamination. 

The objectives of this review are to address 
an urgent need for effective and sustainable 
solutions for heavy metal contamination in water.  
This includes exploring the latest advancements 
in the synthesis, structural characterization, and 
applications of nanocomposites for the adsorptive 
removal of heavy metals from aqueous solutions, 
evaluating the adsorption mechanisms, such as 
diffusion, electrostatic interactions, and redox 
reactions, Investigating the factors influencing 
adsorption performance, including pH, contact 
time, and surface modifications. Identifying the 
most efficient nanocomposite materials based 
on adsorption capacity, removal efficiency, and 
recyclibility to provide a comparative framework 
for material selection is main objective of this 
study. This review also discusses critical analysis 
of practical limitations of nanocomposite 
applications, such as high production costs, 
environmental concerns, and scalability, and 
suggesting possible solutions for overcoming these 
barriers.  This paper also proposes innovative 
strategies for developing eco-friendly and cost-
effective nanocomposites that can work efficiently 
and align perfectly with the global standards.

This review distinguishes itself by offering a 
multidisciplinary approach on the use of novel 
and efficient nanocomposites for heavy metal 
removal, bridging gaps between material science, 
environmental engineering, and sustainable 
development. Unlike previous studies, this 
paper compares the adsorption efficiencies of 
nanocomposites extensively and relates them 
to their structural and functional properties. 
Additionally, it offers an extensive review of 
the adsorption mechanisms, explaining the 
role of complexation, surface contacts, and 
redox processes in high removal percentage. 
The paper also presents the idea of integrating 
nanocomposites into hybrid water treatment 
systems to optimize their potential. In order 
to ensure that future advancements in water 
purification technologies are in line with the 
Sustainable Development Goals of the UN, this 
study provides a bedrock for future developments 
by addressing economic and environmental 
challenges and suggesting directions for green 
synthesis and recyclability.
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HEAVY METALS
Among all these toxic substances, heavy metals 

have the most adverse effect on environment 
because their concentration in water, soil and 
air is increasing tremendously as a result of 
anthropogenic activities. Any metal, irrespective 
of its density or atomic mass, that is hazardous 
is considered a heavy metal[41]. Some lighter 
elements such as aluminium, arsenic, selenium 
and metalloids are harmful for environment and 
considered as heavy metals while some heavy 
metals such as gold is non-toxic[42]. According to 
United States Environmental Protection Agency 
(USEPA), heavy metals can be arranged on the 
basis of maximum contaminant level (MCL) in 
following order[43]. Zinc (0.80) > Copper (0.25) > 
Nickel (0.20) > Chromium (0.05) > Arsenic (0.050) 
> Cadmium (0.01) > Lead (0.006) > Mercury 
(0.00003)  

Heavy metals can be classified into two main 
categories on the basis of their importance for 
plant and animal growth. Group 1 consists of 
elements such as B, Cu, Fe, Mo, Ni, and Zn which 
are considered vital for the plant and animal 
development. These metals become toxic when 
their concentration exceeds to a certain limit. 
Group 2 consists of As, Cd, Hg, and Pb which are not 
important for the animal and plants growth[44]. 

Rapid industrialization and urbanization along 
with extensive use of fertilizers and pesticides 
have posed serious threats to the environment 
due to increasing heavy metals concentration in 
our ecosystem[45]. Some of the primary sources 
of heavy metal pollution are Industries such as 
metal processing, electroplating, and chemical 
manufacturing often use and release heavy metals 
into the air, water, and soil, Improper disposal of 
electronic waste, batteries, auto-mobiles, and 
other metal-containing products can lead to heavy 
metal contamination of soil and water. Activities 
like leaching, dust emissions, wastewater discharge 
and natural activities such as Burning fossil fuels 
like coal and oil, volcanic eruption, metal corrosion, 
soil erosion, geological weathering release heavy 
metals into the atmosphere, which can then be 
deposited in soil and water bodies[46].

Industrial effluent containing heavy metals 
have high solubility in water and get mixed with 
water and soil which alters the composition of 
these natural medium[47]. These heavy metals 
are non-biodegradable in nature so they mix with 
water and soil and cause contamination of the 

food chain[48]. The pollution caused by these 
heavy metals are mostly long lasting, adverse and 
irreversible in nature. Prolonged intake of heavy 
metals may cause internal abnormalities as body 
begins to accumulate these toxic substances 
and use as required elements[49]. Arsenic, lead, 
mercury, and cadmium are the heavy metals 
that the World Health Organization (WHO) has 
included among the top 10 toxic substances 
because of their high toxicity and ecological 
resilience[50]. The biotoxicity of the heavy metals 
like zinc, copper, lead, arsenic, aluminium, and 
mercury are diarrhea, tremors, gastrointestinal 
disorders, vomiting, paralysis, depression, liver 
damage, insomnia, carcinogen, rheumatoid 
arthritis, stomatitis, renal disorder, depression, 
nausea, convulsion and pneumonia[51]. Apart 
from humans, animals and plants are also severely 
affected by these toxic heavy metals. High lead 
concentration in soil decreases soil efficiency 
while low lead concentration can cease biological 
mechanisms like transpiration, photosynthesis 
and mitosis which result in dark green color of the 
leaves and short roots[52]. 

NANOCOMPOSITE 
Due to all these adverse effects of heavy metals, 

several materials are employed for the removal 
of the heavy metals. This review paper will focus 
on nanocomposites. The term “nano-composite 
material” developed over time to include a wide 
range of systems, including one, two, three, and 
amorphous materials, which are composed of 
specifically different components and assembled 
at the nanoscale[53]. Nanocomposites are the 
materials with nanoscale structure that enhance 
the macroscopic properties of the substance [54-
56]. The nanocomposite material is a customized 
modern materials with the ability to remove 
fillers from a number of different substrates[54]. 
Nanocomposite are actually nanomaterials that 
integrate more than one distinct components to 
produce a composite, at least one dimension in 
nano range (1nm=10-9m), which has the finest 
characteristics of each component. Nanoparticles 
such as clay, metals, carbon nanotubes serve as 
filler in nanocomposites. Nanocomposite have 
advance properties and advantages[57]. 1) Only 
a small concentration of nano-filler is required to 
enhances their properties. 2) These materials are 
lighter in weight as compared to other composites. 
3) Nanocomposites have improved properties that 
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depends upon size such as thermal, chemical, 
mechanical, optical, magnetic and electrical 
properties. 

          
Nanocomposite based purification

Conventional water treatment techniques 
such as coagulation-flocculation, reverse osmosis, 
chemical precipitation and ion exchange have 
some drawbacks which make them less suitable 
for removal of pollutants from water. Treatment 
techniques like chemical precipitation and 
coagulation-flocculation produce hazardous 
byproducts as waste and require high cost for 
operation[58]. Reverse osmosis is somehow 
effective while it is also expensive technique 
in terms of fueling, costly energy demand and 
high priced membrane[59]. Because of the 
limited applications of current water treatment 
technologies, it is now significant to develop 
and create novel and efficient materials at a low 
cost which offer improved characteristics, high 
efficiency and less cost.

 Nanocomposites are proved to be an efficient 
and novel materials for the decontamination of 
water and strong alternatives for the removal 
of toxic contaminants[60].  Compared to 
conventional techniques, nanocomposites which 
are made up of nanoparticles embedded in a 
matrix, exhibit improved membrane filtration, 
catalytic activity, and adsorption properties[61]. 
Heavy metals, organic dyes, and microbes are 
just a few of the pollutants that nanocomposites 

can successfully remove due to their massive 
surface area, tailored chemical compositions, 
and effective extraction techniques[62, 63]. 
Different types of nanocomposites degrade 
different type of pollutants [24, 27, 34, 55, 64-
74]. Metal oxide based nanocomposites like 
TiO2-ZnO, TiO2-Graphene, ZnO-Ag, Fe3O4 remove 
organic pollutants from water in the presence of 
light[75]. Carbon-based nanocomposites such 
as carbon nanotubes, graphene oxide exhibit a 
high potential to adsorb organic dyes and heavy 
metals[76-78]. Polymer-based nanocomposites 
(Chitosan- Fe3O4, PVA-TiO2, PVA-Ag) display 
antibacterial characteristics, making them useful 
for detoxification applications[79, 80].

Adsorption 
Upto the start of 21st century, eradication 

of pollutant especially dyes and heavy metals 
involved only basic water purification processes 
such as equalization and sedimentation[81]. There 
is need to develop treatment methods of water 
that are more economical and reliable. Among 
the number of  available methods, adsorption has 
emerged as a superior, preferred and prominent 
technique[31]. The surface phenomenon in which 
accumulation of particular component at the 
surface or at the interface between two phases 
occurs is called adsorption[82]. Simple operation, 
high effectiveness[83], cost effective, no 
production of toxic byproducts[84], production of 
high quality treated effluent, resistance for harmful 
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Fig. 1. Classification of nanocomposite on the basis of matrix.



1243J Nanostruct 14(4): 1239-1251, Autumn 2024

A. Taher et al. / Applications of Nano Composites for Heavy Metal Removal from Water 

chemicals[85], small maintenance, exceptional 
versatility, [86], capability of treatment of highly 
concentrated colourants[31], regeneration and 
use of adsorbent again and again are some of the 
unique characteristics of adsorption process which 
make this process the best and the most reliable 
among all other methods available. Adsorbents 
may adsorb heavy metal ions present in water 
through chemical or physical attraction. Chemical 
adsorption is more reliable for the removal of 
heavy metals because heavy metals ions are 
strongly attracted towards functional groups 
present on the surface of the adsorbent[43]. 

Role of nanocomposite in water treatment through 
adsorption

Water contamination is increasing day-by-
day and heavy metals are playing their role 
dangerously due to their toxic nature, chemical 
and physical stability, and bioaccumulation.  
Nanocomposites are now appealing materials for 
the removal of heavy metals from water through 

adsorption because of their unique physiochemical 
characteristics. These nanocomposites can remove 
highly toxic heavy metals with high percentage 
removal at very low concentration[87].

  
Synthesis of nanocomposites 

Nanocomposites are made up of matrix (polymer, 
metal) and nanofiller (nanomaterials, nanotubes). 
This interaction between matrix and nanofiller 
give unique properties to nanocomposites such 
as improved thermal. electrical, and mechanical 
properties. Nanocomposites can be synthesized 
by various ways, however, their synthesis methods 
are broadly divided into top down and bottom up 
approaches. Table 1 describes the comprehensive 
outlook of synthesis, properties, and applications 
of the nanocomposites types.

The top-down approach uses mechanical and 
physical techniques to break down bulk materials 
into nanoscale structures. Commonly employed 
methods include ball milling, laser ablation, and 
mechanical milling. For instance, mechanical milling 
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Fig. 2. Recent advances in removal of heavy metals by adsorption (a) and nanocomposites (b).
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reduces the size of bulk materials into nano-range 
while preserving their structural and chemical 
strength by using extremely powerful crushing. 
By directing high-energy lasers onto a substance 
and forcing it to evaporate into tiny particles, laser 
ablation produces nanoparticles[88]. Even though 
these techniques work smoothly, these methods 
frequently demand high amount of energy[89].  
While the bottom-up approach employs chemical 
or biological processes to assemble nanostructures 
from atomic or molecular precursors. Common 
techniques include co-precipitation, sol-gel 
synthesis, and hydrothermal techniques. Sol-gel 
produces nanocomposites with uniform size and 
shape by hydrolyzing and condensing monomers. 
Metal oxide nanocomposites are synthesized most 

effectively by co-precipitation, whereas 
hydrothermal techniques produce homogeneous, 
highly crystalline nanostructures under controlled 
pressure and temperature[90].

Characterization of nanocomposites 
Mechanical charcterization

Nanocomposites are characterized 
mechanicallly through various theoritical and 
empirical approaches. These techniques determine 
mechanical parameters of the nanocomposites. 
These analysing techniques include Compression 
analysis, tensile analysis, the Flexure analysis, the 
Hardness analysis, Dynamic Mechanical analysis 
(DMA), Universal testing machine (UTM), the 
Shear test, impact test and many others[91]. 
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Type of nanocomposite Synthesis techniques Examples Properties Applications Reference 

Polymer nanocomposites In-situ, solution blending, sol-gel Clay, graphene, carbon 
nanotubes 

Thermal stability, better toughness, 
increased moisture resistance 

Automotive industry, packaging, electronic [91] 

Ceramic nanocomposites Hot pressing, sintering, sol-gel Aluminium-zirconia, Alumina 
polymer 

High stiffness, improved chemical 
stability, thermal condusctivity 

Composites, energy storage applications, 
electronics 

[92] 

Metal matrix nanocomposites In-situ, mechanical alloying, 
powder metalluragy 

Aluminium-alumina, 
magnesium carbon 

nanotubes 

Hardness, wear resistance, corrison 
resistance, stifness 

Biomedical industry, aeroscpace, defence, 
automative industry 

[93] 

Carbon-based nanocomposites Chemical vapor deposition, 
physical vapor deposition, 

Graphene epoxy, CNT-
polyamide, CF epoxy 

High stiffness, chemical and thermal 
stability 

Sensors, electronics, energy storage [94] 

Semiconductor nanocomposites CVD, PVD, sol-gel ZnS-quantum dots, ZnO-CdS Catalytics properties, optical 
properties 

Solar cells, catalysts, sensors [95] 

Biopolymer nanocomposites Melt mixing, in-situ, 
polymerization 

Starch-clay, chitosin-silver Antimacrobial activity, barrier 
capacity, thermal stability 

Agriculture, packaging, biomedical 
applications 

[96] 

 

Table 1. Summary of nanocomposite types.

Fig. 3. Schematic representation of top-down and bottom-up approach.
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The durability of particular material in real world 
applications can be estimated from mechanical 
tests of various components. UTM determines 
compressive and tensile strength, whereas DMA 
investigates viscoelastic behavior under oscillatory 
stress. As nanocomposites are uniformly 
distributed, adding nano fillers to matrix often 
results in higher mechanical strength and stiffness. 
For example, graphene and the substrate material 
have a strong interfacial interaction, as a result, 
graphene oxide-based nanocomposites offer 
excellent tensile strength. A single test cannot 
assess mechanical strengths of target material 
since various materials interact differently to a 
particular set of conditions. 

Thermal characterization 
The aim of thermal characterization of 

nanocomposites is to examine how the materials 
behave under varying conditions of heat, 
temperature, and moisture in order to evaluate 
parameters such as melting points, coefficients of 
expansion, glass transition temperatures, dilations, 
heat stresses, strains, and thermomechanical 
characteristics, etc. Various experimental and 
theoretical investigations were conducted to 

test heat resistance and thermal stability of 
the materials. These tests include the Thermo-
Gravimetric Analysis (TGA), Thermo-Mechanical 
Analysis (TMA), the Differential Scanning 
Calorimetry (DSC), the Hygroscopicity Test and the 
Melt Index Rheology Analysis (MI-RA)[91-93]. 

DSC determines crystallization points, glass 
transition, and melting points, giving insights 
into thermal changes. TGA examines loss in 
weight as an index of temperature, providing 
thermal degradation temperatures and material 
stability. Polymer-based nanocomposites often 
show enhanced heat stability because fillers 
hinder the mobility of the polymer chains. These 
characterizations are helpful in determining the 
suitability of these nanocomposite materials for 
industrials applications where temperature varies 
significantly. These tests are helpful in giving a 
broad picture of how the material would break 
down or transform under particular events.

Chemical characterization 
Chemical composition, number and type of 

bonds, chemical stability and reactivity of the 
nanocomposites can be identified by various 
chemical characterization techniques. These 
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 Fig. 4. Visual representation of possible heavy metals adsorption mechanism.
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techniques include X-Ray Diffraction (XRD), 
Scanning Electron Microscopy (SEM), Transmission 
Electron Microscopy (TEM), X-ray Absorption 
Spectroscopy (XAS), the Fourier Transform 
Infra-Red (FTIR) Spectroscopy[94], Electron-
Paramagnetic Resonance (EPR) Spectroscopy, the 
Raman Spectroscopy and the Energy Dispersive 
Spectroscopy (EDS), Mass spectrometry, X-ray 
Photoelectron Spectroscopy (XPS)[95, 96]. 

FT-IR determines particular functional groups 
vibrations of nanocomposites [33, 35, 97-99] while 
XPS gives detail about composition and varying 
oxidation states. Glow discharge spectrometry 
and induced coupled plasma spectroscopy 
are 2 techniques that are currently effective 
in determining the deposited layer’s surface 
concentration[91]. These techniques are especially 
beneficial for understanding how chemical 
interactions, such as covalent bonds or hydrogen 
interactions, between nanomaterials and matrix 
components affect adsorption capacities in water 
treatment applications.

To optimize the performance and customize 
nanocomposites for particular uses, an intensive 
understanding of the mechanical, thermal, 
and chemical characteristics, achieved through 
integrating these methods, is necessary.

ADSORPTION MECHANISM OF HEAVY METALS 
USING NANOCOMPOSITES

Nanocomposites have showed high removal 

efficiency of heavy metals through adsorption 
process due to their unique properties such as 
large surface area, better selectivity, and high 
adsorption capacity. Table 2 shows adsorption 
capacity of different nanocomposites for heavy 
metals. Adsorption mechanism of heavy metals 
using nanocomposites involves physical and 
chemical adsorption approaches.    

In diffusion mechanism, heavy metals from 
solution move onto the surface of the adsorbent 
through diffusion and get adsorbed on the active 
sites (pores) of the nanocomposites materials 
(adsorbent). Weak Vander waal forces develop 
between heavy metals ions and adsorbent 
surface[100]. In porous nanocomposites, such 
as metal organic based nanocomposites, where 
diffusion through small pores is critical, this 
technique is commonly used. There are two stages 
of diffusion: intra-particle diffusion (movement 
within porous structures) and external diffusion 
(displacement to the outside surface of the 
material). Adsorptive removal of Pb(II) on activated 
CN tubes is example of surface adsorption[101]. 

Some nanocomposites have negatively charged 
functional group (-OH-, -COOH-, -NH2) on their 
surface which attract positively charged heavy 
metals ions in solution. The chemical reactions 
between nanocomposite and heavy metal ions are 
highly pH sensitive because the electrical charge 
on the surface of nanocomposite varies with 
pH. Electrostatic interaction between functional 

2 
 

 
Nanocomposite Heavy metal pH Contact time 

(min) 
Adsorption capacity (mg/g) % Removal Reference 

ZnO-CNT Cd(II) 6.0 90 135 91.5 [114] 

Chitosan-TiO2 Cr(VI) 3.0 60 165.3 88 [115] 

GO-Fe3O4 Pb(II) 5.5 120 200 95.5 [116] 

MnO2-GO As(III) 7.0 180 240 93 [117] 

CNF-Fe3O4 Cu(II) 6.0 100 150.5 90 [118] 

Silica-embedded Ag Hg(II) 5.0 60 205 94.7 [119] 

MOF-199 composite Zn(II) 6.8 105 175 85 [120] 

ZnO-SiO2 Cu(II) 5.7 90 146 85.5 [121] 

TiO2-CeO2 Cr(VI) 7.0 100 180 91 [122] 

Ag-Al2O3 Pb(II) 6.5 125 250 96 [123] 

Lignin-Mg(OH)2 Ni(II), Pb(II), 
Cd(II) 

7 90 88 91 [124] 

 

Table 2. Applications of nanocomposites for the adsorptive removal of heavy metals.
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groups of nanocomposites and heavy metal ions 
cause removal of heavy metals from aqueous 
solution e.g. removal of Cu(II) through graphene 
oxide[102]. Chitosan-based nanocomposites 
effectively removed heavy metal from water due 
to interaction between NH2 and OH functional 
groups and heavy metals ions[103]. This 
mechanism is particularly useful for heavy metals 
with low concentration as electrostatic interaction 
increases rapidly at initial stage. 

In ion exchange mechanism, Heavy metal ions 
in solution are replaced by positively charged ions 
such as Na+, K+, Mg+2 present on surface of the 
nanocomposite. These cations don’t cause water 
pollution.  This type of mechanism is very effective 
in layered nano range materials like zeolites and 
clay. These cations don’t cause water pollution. 
Na+ of zeolite are exchanged by Pb(II) is an 
example of ion exchange mechanism[104]. Due to 
its reversible nature, this mechanism is particular 
effective. 

In complexation, some nanocomposites 
have functional groups such as carboxyl and 
amine on their surface which form coordination 
complex with heavy metal ions. This method is 
extremely specific to the selected metal’s and 
the nanocomposite’s chemical compositions. This 
phenomenon results in elimination of the heavy 
metals from water. In [105], thiol-functionalized 
carbon nanotubes form stable complexes with 
Hg(II) ions, radically enhancing their removal 
capability. Chitosan based nanocomposites form 
stable complexes with Cr(III) in water[106].  

The redox mechanism involves a chemical 
reaction which takes place between heavy metal 
and surface of the adsorbent, making heavy metals 
less toxic. Surface of the nanocomposite acts as 
oxidizing or reducing agent. This method is specific 
with metals having variable oxidation state such as 
Cr(VI). Fe2O3  nanocomposite materials reduces 
Cr(IV) to Cr(III)[107]. 

CONCLUSION AND FUTURE OUTLOOK
Heavy metals contamination is common 

form of global water pollution. Several human 
and natural activities produce heavy metals 
such as Cu, Fe, Mo, Ni, Pb, Cd, Hg, Cr. All these 
metals cause serious issues for aquatic and 
terrestrial ecosystem. Addressing this issue 
requires efficient, scalable, and environmentally 
friendly solutions. Nanocomposites are highly 
efficient materials for removal of heavy metals 

from aqueous solution due to their high surface 
area, porosity, and multifunctional reactivity. 
The review highlights the exceptional adsorption 
capacities of nanocomposites like ZnO-CNT, GO-
Fe3O4, MnO2-GO, CNF-Fe3O4, Ag-Al2O3, and TiO2-
CeO2, which achieve removal efficiencies higher 
than 90% for several metals, including lead, 
cadmium, and chromium. Adsorption is superior 
technique because of high efficiency, affordability 
and reliability. Despite these advancements 
and developments, many challenges such 
as the high cost of synthesis, variability, 
and limited environmental sustainability of 
current nanocomposites remain significant. 
An interdisciplinary approach that combines 
innovations in material science with economical 
and environmentally friendly production 
techniques is needed to overcome these barriers. 
The future of water treatment proposes improved 
efficiency, lower cost, and environmental 
compatibility through the incorporation of 
nanocomposites with cutting-edge methods like 
photocatalysis or hybrid filtration methods.

In future, Nanocomposites have the potential 
to advance economical, effective, and ecological 
solutions for water purification. In order to reduce 
the impact on the environment, new research 
should focus on developing green synthesis 
techniques that make use of biopolymers, 
agricultural waste, and renewable resources. 
It will be significant to improve the adsorption 
capacity of nanocomposites through making 
structural changes such as enlarging their surface 
area, adjusting their pore size, and functionalizing 
their surfaces with certain chemical groups. 
Additionally, the effectiveness of water treatment 
could potentially be increased by incorporating 
nanocomposites into hybrid systems that include 
adsorption, photocatalysis, and modified filtration 
systems. Another critical area of attention is the 
life cycle analysis of these materials, emphasizing 
recyclability and biodegradability to reduce 
additional contamination. With the goal to scale 
up these breakthroughs for practical uses and 
make sure that future nanocomposites meet 
the objectives of environmental sustainability 
and economic growth, cooperation across the 
academic, industrial, and regulatory sectors will 
be crucial. 
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