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In the current research, a hydrothermal synthesis was used to create a 
nanocomposite of titanium dioxide (TiO2), aluminum oxide (Al2O3), 
and molybdenum trioxide (MoO3) for use in possible environmental 
applications. With the assistance of calcination at temperatures of 400 
and 800 degrees Celsius, direct hydrothermal synthesis of TiO2-Al2O3/
MoO3 powder was effectively accomplished in the presence of ethanol 
at low pH values at 70 degrees Celsius. The zeta potential and dynamic 
light scattering techniques, together with scanning electron microscopy 
(SEM), were utilized in order to evaluate the physicochemical features 
of the nanoparticles (DLS). Additionally, energy dispersive x-ray (EDX) 
was utilized in order to do an element distribution analysis on the 
nanocomposite that was manufactured. According to the findings, a TiO2-
Al2O3/MoO3 nanocomposite with an average crystal size of 36.1 nm was 
successfully manufactured. According to the findings, the new features of 
this nanocomposite have the potential to be utilized in the development of 
future environmental applications.

INTRODUCTION 
Nanoparticles are used in many aspects of human 
existence, including in medical, industrial, and 
environmental applications because of their 
tunable physicochemical properties resulting from 
their ultrafine size and high surface area [1-5]. 
Numerous applications, including drug delivery, 
tissue engineering, biosensing, nanomedicine, 
photocatalysis, and electrochemical sensors, 
make extensive use of nanoparticles [5-10]. 
Nanoparticles are produced using a variety of 
techniques, including laser ablation, chemical 
coprecipitation, sonochemistry, sol-gel, and 
hydrothermal methods [10-15], the hydrothermal 

technique is the most effective way to produce 
nanoparticles of the methods mentioned. This 
process doesn’t require calcination; it merely 
uses heat and water as a solvent. The appropriate 
alignment of crystals and the requirement for 
their growth at high temperatures and pressures 
are additional advantages of this technology. 
Typically, a pressure of less than 25 MPa and a 
temperature of less than 300 °C are needed for 
a hydrothermal reaction [16]. Nano-adsorbents 
for treating wastewater have recently received a 
lot of attention due to their large surface areas 
and flexibility in surface modification [17]. TiO2 
and other photocatalyst nano-composites have 
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undergone extensive research as traditional 
photocatalysts in several sectors over the past few 
decades [18]. Wahyuono, Ruri, et al. also found that 
TiO2 mixed (WO3) nanocomposite photocatalyst 
was a powerful adsorbent for methylene blue in 
an aqueous media. [19]. Numerous investigations 
have demonstrated that connecting or doping 
other oxides can improve the performance activity 
of adsorption. Hanh, Nguyen Thi, et al. [20], for 
instance, were successful in synthesizing Co3O4/N, 
S-TiO2 nanoparticles to improve the properties 
for using accelerated degradation of Direct Blue 
under visual irradiation. 
Managing environmental quality will be of utmost 
importance in the near future. In fact, as a result 
of environmental pollution and/or shortage, 
regulatory systems would tighten in order to 
decrease the impact of waste pollutants on the 
environment and to allow for the recycling of the 
environment. The standards for tap water quality 
also need to be adjusted to account for the recently 
identified contaminants that are being found in 
rivers or soil. These commitments won’t be met 
until new, efficient, and effective water treatment 
technologies are developed. Nanomaterials are 
advancing the study of more effective oxidation 
processes [21]. Alternative operating procedures 
like photo-active nanoparticles, which influence 
the oxidation of pollutants found in industrial 
and wastewater effluents and work through the 
hydroxyl radical to influence the degradation 
of organic species, have drawn a lot of interest 
as alternative treatment methods (OH) [22,23]. 
Strong oxidizing agents and highly reactive hydroxyl 
radicals with one free electron pair act as the main 
catalyst for the breakdown of a variety of organic 
pollutants, such as dyes, aromatic compounds, 
or chlorinated hydrocarbons, into carbon 
dioxide, organic acids, and inorganic ions as end 
products [24]. The amount of high-temperature 
and high-pressure regions was increased due to 
the presence of semiconductor (i.e., TiO2, Al2O3) 
particles, which improved the process of breaking 
up the microbubbles produced by the ultrasonic 
irradiation into smaller bubbles [25] This causes 
an increase in the number of hydroxyl radicals 
produced, which attack the pollutant and cause it 
to degrade.
Additionally, nanocomposites are highly intriguing. 
To suggest environmentally responsible solutions 
to the world’s environmental challenges, this study 
has concentrated on the evaluation of a novel TiO2-

(MoO3)/Al2O3 nanocomposite for environmental 
applications that were hydrothermally synthesized 
and characterized.

MATERIALS AND METHODS
 Alumina (nano material), Sodium molybdate 
dihydrate (Na2MoO4.2H2O) from Merck, Germany 
Titanium isopropoxide (97%, Sigma-Aldrich), 
ethanol (99.9%), hydrochloric acid (37%), Ascorbic 
acid, Sodium decyl sulfate (SDS).4

Procedure
Prepare TiO2 nano articles was as carried out 
according to previous published study by 
Mahata, S., et al. [26]. With some modifications. 
In brief, a combination of (2.5 ml) ethanol and 
(3.5 ml) diluted HCl was stirred while titanium 
isopropoxide (5 ml) was added dropwise to 
generate a clear solution. 10 ml of SDS (1.0 wt%) 
was added, and after being stirred for 15 seconds 
at room temperature, the mixture was placed to 
an autoclave lined with Teflon and heated to 110 C 
for 24 hours. The product was centrifuged, rinsed 
with water and ethanol, then dried at 60  for 24 
hours after cooling to ambient temperature.
According to Michailovski, Alexej, and Greta R. 
Patzk [27] - MoO3 nano-belts have been prepared 
with some modifications by using 1 mmol of 
sodium molybdate dihydrate and 7 ml of diluted 
HCl (added in the form of drops) while stirring for 
15 mintues. Then, 10 ml of ascorbic acid solution 
was added while mixing with a magnetic stirrer. 
the mixture was transferred to steel Teflon tube 
autoclave and hydrothermal reaction was carried 
out at 180  for 6 hr , the result is also separated 
and washed with water and ethanol , and dried in 
an oven at 70  for 5 hr.
Using the ultrasonic technique, the TiO2- Al2O3/
MoO3 nanocomposite was made with a weight/
weight ratio of (0.25gm/0.5gm/0.25gm) 
accordingly.
The required quantities of (powder) nanomaterials 
were dissolved in ethanol and placed in each 
component’s own baker before being shocked for 
two hours at 70  with an ultrasonic frequency of 
60 HZ. The smaller solutions are then added to the 
bigger ones in the shape of drips while they are 
still in the ultrasonic at 70 . After that, the mixture 
is kept for an hour.
The product is then transferred from the solution 
to a magnetic stirrer while the ethanol is still 
liquid, washed with ethanol and water, and dried 
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overnight at 60 .
The material was calcined at a temperature of 400, 
or 800 °C for 2 hours in ambient air (Germany’s 
Nabertherm P320 Controller) as the last phase. 
These calcination temperatures were chosen 
to enhance the synthetic binary oxide systems’ 
physicochemical characteristics, such as their 
crystalline structure.

Characterization
The size and stability of nanocomposites were 
determined using DLS and Zeta potential, 
respectively. SEM was used in conjunction with EDX 
to analyze the surface morphology and determine 
the elemental composition of the samples.

RESULTS AND DISCUSSION
The process of hydrothermal synthesis is the most 
widely used method for creating nanomaterials. 
It essentially employs a methodology based on 
solutions and reactions. From very low to very 
high temperatures, hydrothermal synthesis can 
be used to create nanomaterials. Low-pressure 
or high-pressure circumstances can be used to 
regulate the morphology of the materials to be 

synthesized, depending on the vapor pressure of 
the primary component in the process.
Both Al2O3 and TiO2 are utilized as distinct catalysts 
for numerous chemical activities and have a 
number of benefits. Particularly, TiO2 has high 
photocatalytic activity under UV irradiation but 
a very small specific surface area, whereas Al2O3 
has better heat stability and a higher specific 
surface area but worse catalytic properties. Many 
researchers have tried to address these issues 
[28]. By combining the distinctive structural 
characteristics of the different oxides, materials 
with the benefits of the different oxides can be 
created, such as Mo/TiO2 materials for high-
performance oxidative desulfurization [29].
Figs. 1a and b show the synthesized 
nanocomposite’s DLS and Zeta potentials analyses. 
The samples with 154 nm particle size, high (41.0 
mV) Zeta potentials, and good values (0.700) of 
polydispersity index are suggestive of an efficient 
synthesis, according to the data (PDI),
Nano size is one of the essential properties of the 
synthesized material due to its effect on surface 
area. 
SEM and EDX studies were used to identify the 

 

  

 

  Fig. 1. The size distribution of prepared nanocomposite by dynamic light scattering DLS and Zeta potential value of prepared 
Nanocomposite
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morphology and components of the composite.
SEM images are displayed in Fig. 2A and the EDX 
Fig 2C.

The generated oxide NPs have a similar shape.
The NPs materials revealed aggregated spherical 
particles with average size about 35 nm. The purity 

 

  

 

  

Fig. 2. A) SEM image, B) particle size distribution, C) EDX spectrum, and D) elemental analysis of prepared TiO2- Al2O3/MoO3 
nanocomposite respectively.

Fig. 3. The XRD patterns of prepared nanocomposite.
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of the TiO2- Al2O3/MoO3 NPs was confirmed by an 
EDX test (Fig. 2C,D)
Therefore, while colloids with low zeta potentials 
coagulate or flocculate, those with high negative 
or positive zeta potentials are stabilized [23,24]. 
Intermolecular interaction, lattice mismatch, and 
the presence of residual oxides were thought to 
be the causes of the variance in surface shape 
[64]. EDX examination, which exclusively detects 
aluminum, titanium, molybdenum, and oxygen, 
proved the purity of TiO2- Al2O3/MoO3 NPs.
The crystalline phases of anatase TiO2 and MoO3 
and Al2O3 observed in the XRD patterns
of composite are shown in Fig. 3 and the patterns 
are well correlated with the JCPDS files (01-
071-1167, 00-005-0506, and JCPDS 46-1212)).), 
respectively. It confirms the formation of crystalline 
MoO3 and alumina phase on the titanium dioxide 
surface Fig. 3.
The FT-IR spectra for all of the materials contained 
four characteristic bands: for stretching vibrations 
of ≡Ti–O (623 cm−1)  and Al–O–Ti/Mo (690 cm−1) 
and for hydroxyl group (–OH) bending vibrations 
(1600 cm−1)  and stretching vibrations (3500 cm−1) 
(Fig. 4).  The calcination temperature was found 
to influence the intensity of the characteristic 
bands for Ti–O and Al–O–Ti-Mo. The FT-IR analysis 
proved the effectiveness of the proposed synthesis 
methodology.

CONCLUSION
In conclusion, we have created a simple 
hydrothermal process that has produced a well-

characterized TiO2-Al2O3/MoO3 nanocomposite.
The shape of the TiO2-Al2O3/MoO3 nanocomposite, 
size distribution, stability, dispersity, and zeta 
potentials all supported the validity of the good 
formation findings. In each of the aforementioned 
scenarios, we have identified how temperature 
and pressure affect the physicochemical properties 
of the TiO2-Al2O3/MoO3 nanocomposite intended 
for environmental applications.
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