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The surface of BiOCl nanosheets, prepared by a simple hydrothermal 
method, was decorated by carbon quantum dots (CQDs) through a 
microwave-assisted procedure. According to Diffuse Reflectance 
spectroscopy (DRS), light-harvesting properties improved significantly, 
which was explainable based on the bandgap of the final photocatalyst, 1.15 
eV. Elemental analysis results coupled with scanning electron microscopy 
(SEM) images proved changes in the morphological characteristics after 
adding CQDs to the support; While in powder X-ray diffraction (XRD) 
patterns, there was no indication of further crystalline phases on the surface 
of BiOCl nanosheets. The photocatalytic performance of the nanostructures 
was evaluated by Congo red dye removal under visible light at room 
temperature. The photoreaction obeyed first-order kinetics with the rate 
constant of 0.011 min-1. According to the experiments, photodegradation 
was noticeably affected by catalyst dosage, dye concentration, and pH, 
which were all optimized. The photocatalytic performance of the prepared 
nanostructure was mechanistically discussed, considering the desirable 
role of CQDs towards reaching superior photoactivity.     

INTRODUCTION
Photocatalytic processes are sorted as reliable 

methodologies to produce clean and renewable 
energy (through water splitting) and destroy 
harmful water pollutants taking advantage of 
cheap energy sources and affirmed productive 
mechanisms [1-5]. As the key point of such 
processes, the photogenerated reactive oxygen 
species (O2

·–, OH·, HO2
·), after absorbing the 

photons, promote various degrading kinds of 
organic pollutants [6-9]. TiO2 is the most famous 
photocatalyst with properties, e.g., least toxicity, 
low cost, easy preparation, and high stability; 
its practical application is limited because of the 
large bandgap (3.2 eV) and fast electron-hole 

recombination [10, 11]. Compared to TiO2-based 
photocatalysts, bismuth-based semiconductors 
such as BiOX compounds (X = Cl, Br, I) can have 
exhibited excellent photocatalytic performance 
under UV and visible light irradiation [12, 13]. This 
is due to the photo-corrosion stability and smaller 
bandgaps (3.2 eV, 2.7 eV, and 1.7 eV for BiOCl, 
BiOBr, and BiOI, respectively) [14-17].

Because of the characteristics, including two-
dimensional (2D) structures and strong internal 
static electric fields between the layers, which are 
highly important to reduce the charge carrier’s 
recombination, bismuth oxychloride (BiOCl) has 
received much attention during the last decades 
[18, 19]. However, the photocatalytic activity 
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of BiOCl is considerably restricted due to the 
surface defects (acing as likely centers to facilitate 
e-h recombination and light absorption ability 
properties [20-22]. Till now, many methods have 
been investigated to improve the photocatalytic 
activity of BiOCl based on the morphological 
control to reach ultra-thin atomic layers [23, 24], 
induction of oxygen vacancy [25, 26], surface 
modification with noble metals [27, 28], and 
coupling with other photocatalysts such as 
CdIn2S4 [29], Bi2WO6 [30], Mn3O4[31], carbon-
based polymeric structures [32, 33], etc. Ma et 
al. prepared MWCNTs/BiOCl composites via a 
routine hydrothermal process, which showed 
excellent ability to degrade organic contaminants 
compared to pure BiOCl under irradiation 
[34]. The increased photocatalytic activity was 
attributed to the controlled recombination rate 
of the electron-hole pairs due to the presence of 
MWCNTs in the composites [34]. Recently, Zhang 
et al. produced g-C3N4/BiOCl heterojunction with 
a two-step hydrothermal calcination method [35]. 
Heterojunction photocatalysts indicated 8.15 
times higher degradation ability for Rhodamine 
B (RhB) and 6.97 times higher H2 evolution rate 
than pristine g-C3N4 [35]. Lin et al. fabricated some 
novel graphene oxide/BiOCl composite films via 
a spread coating method, which exhibited prior 
photocatalytic activity of 12.2 times higher than 
pure BiOCl toward the removing RhB under visible 
light [36].

Carbon-based photocatalysts can be used 
to purify the environment, water disinfection, 
produce value-added chemicals, and produce 
renewable fuels [37-40]. Carbon quantum dots 
(CQDs) are a group of spherical carbon materials 
less than 10 nanometers in diameter. Since the 
discovery of CQDs in 2004, researchers have 
considered their unique properties such as low 
toxicity, reasonable production cost, chemical 
stability, high biocompatibility, and suitable 
charge separation [41, 42]. CQDs have become an 
attractive option in modifying several structures 
and improving photocatalytic activity due to 
trapping the photogenerated electrons and up-
conversion photoluminescence (UC-PL) [43, 44]. 
Based on the abovementioned reasons, CQDs 
have been used in designing several photocatalytic 
systems, including CQDs/Bi3O4Br [14], CQDs/
Bi2WO6 [45], CQDs/CoFe2O4 [46], CQDs/PbTiO3 
[47], etc. We are also aimed to reach prior 
photocatalytic performance taking advantage of 

the specific physicochemical properties of BiOCl 
and CQDs, which make them suitable candidates 
to prepare an efficient heterojunction with 
excellent photoactivity.

Herein, we synthesized a nanocomposite 
comprising BiOCl modified with CQDs using a 
facile hydrothermal method. The prepared CQDs/
BiOCl photocatalysts were well characterized using 
a multi-technique approach. The photocatalytic 
activity was evaluated for degrading the anionic 
dye Congo red in the aqueous phase. We also 
discussed the kinetics and possible mechanism 
of the decomposition process, highlighting the 
critical role of CQDs in improving the optical 
behavior of pristine BiOCl.

MATERIALS AND METHODS
BiOCl nanosheets

Bi (NO3)3.5H2O, 2 mmol, was dissolved in 0.1 M 
mannitol solution. The NaCl solution was added 
under vigorous stirring and sonicating conditions. 
The obtained suspension was then transferred 
to an autoclave which was kept at 423 K for 3 h. 
The white precipitate was collected, washed with 
distilled water repeatedly, and dried at 313 K 
overnight. 

CQDs preparation
10 mL of PEG 200 was added to 5 mL of distilled 

water at room temperature. 2 g of glucose was 
added under vigorous stirring and sonicating for 
10 min. The solution was treated in a microwave 
with 600 watts of power for 5 min. The product 
was a yellowish viscous solution contains CQDs. 

BiOCl/CQDs photocatalyst
0.1 g of the as-prepared BiOCl powder was 

added to the CQDs solution under vigorous stirring. 
The suspension was sonicated for 5 min at room 
temperature and then treated in the microwave 
for 5 min. After completing the reaction, the black 
precipitate was collected, washed with ethanol 
repeatedly, and dried at 313 K overnight. 

Photocatalytic tests
All the experiments were conducted in 

a cylindrical reactor made of quartz. The 
photocatalyst powder was dispersed in dye 
solution under stirring under dark for 15 min to 
reach adsorption-desorption equilibrium. The 
visible irradiation source, a 160 W OSRAM lamp, 
was then turned on, and the processes began. The 
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concentration of the dye compound solutions was 
directly determined using a UV spectrophotometer 
adjusted at dye λmax value, 500 nm. The details 
to perform the photodegradation tests over the 
prepared photocatalyst powder are described 
elsewhere [48].

RESULTS AND DISCUSSION 
Characterization of the photocatalysts
XRD

The Crystalline phase of the photocatalyst was 
explored by XRD analysis, as shown in Fig. 1. The 
diffraction peaks are all sharp and strong, which 
shows high crystallization of the photocatalytic 
structure. Pure BiOCl shows characteristic peaks 
attributed to the tetragonal phase of BiOCl 
(PDF#73–2060). The diffraction patterns indicate 
similarity between pure BiOCl sample and CQDs/
BiOCl. Thus, CQDs does not alter the crystal 
structure of BiOCl, which may be due to the 
high dispersion, low intrinsic crystallization, and 
low loaded amount of CQDs [44]. Besides, an 
insignificant amount of other impurity phases is 
detected in the CQDs/BiOCl sample, which could 
be related to the formation of Bi2O3.

FTIR
Fig. 2 shows the FTIR spectra of BiOCl and CQD/

BiOCl photocatalysts implying the presence of 
many significant functional groups. Both spectra 
show sharp bands at 519 cm−1 and 527 cm−1 which 
can be attributed to the Bi-O stretches vibrations 
[18, 26]. The peak at 1070 cm−1 corresponds to C-O 

stretching vibrations of the CQDs [49]. The peaks 
at 2852 and 2923 cm−1 are related to –CH2 groups, 
originating from the surfactant residues used 
during BiOCl nanosheets preparation [18, 50]. The 
observable peak at 1381 cm−1 could be ascribed 
to nitrate ions of bismuth precursor [51]. The 
peak around 3100−3600 cm−1 and 1637 cm−1 are 
assigned to the stretching mode of the hydroxyl 
groups [52]. From the obtained results, the O-H 
band intensity in CQDs/BiOCl is considerably 
weakened compared to BiOCl. Therefore, the 
presence of bismuth and carbon functional groups 
in the final product is confirmed.

DRS
The optical properties of the photocatalysts 

were studied by diffuse reflectance spectroscopy 
(DRS). Fig. 3 shows the DRS spectra of BiOCl 
and CQDs/BiOCl photocatalyst. Although BiOCl 
doesn’t indicate significant absorption in the 
visible light region, CQDs-modified BiOCl offers 
broad absorption in the sunlight spectrum. This is 
probably because of the particle size distribution 
and the up-conversion effect of CQDs, which affect 
pristine BiOCl nanosheets. Based on the Tauc 
method to find the bandgap, plotting (Ahν)1/2 and 
(Ahν)2 versus hν, the gap energy (Eg) of pure BiOCl 
and CQDs/BiOCl were estimated to be 3.16 eV and 
1.15 eV, respectively [53, 54].

TGA
The thermal stability of the prepared 

photocatalysts was explored by TGA analysis. 

 

 Fig. 1. XRD patterns of pure BiOCl and BiOCl/CQD photocatalysts.
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Fig. 2. FT-IR plots of pure BiOCl (up) and BiOCl/CQD (down).

Fig. 3. The results of UV–vis diffuse reflectance analysis.
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According to Fig. 4, the weight loss after the total 
heating treatment was 11.3% and 16.6% for BiOCl 
and CQDs/BiOCl, respectively. Weight loss at lower 
than 490 °C is most possibly due to removing 
water from the structure and other impurities 
[54]. Weight loss with a steep slope above 600 °C 
is due to the collapse of the graphitic structure and 
the cleavage of the functional group of CQDs, as 
is obvious in the curves [42]. In opposition, BiOCl 
decomposes to BiO and gaseous Cl2 at 610 °C and 
begins to lose more weight at higher temperatures, 
meaning that BiOCl transformed to Bi2O3 [55, 56]. 
The results of this analysis demonstrate the effect 
of CQDs on improving the thermal properties of 
the photocatalyst leading to introduce an efficient 
heterojunction for the removal of wastewaters.

SEM
The morphology of the prepared 2D sheet-

like photocatalysts, including BiOCl and CQDs/
BiOCl, is investigated by SEM analysis (Fig. 5 and 
Fig. 6). The mean particle size is below 200 nm. 
Also, the sheet thickness in both pure BiOCl and 
CQDs/BiOCl structures is less than 100 nm. From 
the images, the CQD/BiOCl sheets are thicker 
than BiOCl, resulting in the increase of the specific 
surface area after modifying BiOCl with CQDs. 
The EDS mapping results for BiOCl and CQDs/
BiOCl nanostructures are shown in Fig. 5 and 
Fig. 6, which prove the purity of the synthesized 
materials in terms of elemental distribution 
percentage. The EDS mapping images demonstrate 
the uniform distribution of CQDs on the surface of 

BiOCl nanosheets, which is of great importance 
toward reaching more efficient photocatalytic 
performance.

BET and BJH
The porosity of the pure BiOCl and CQDs/

BiOCl nanostructures was investigated using N2 
adsorption/desorption isotherms (BET analysis, 
Fig. 7). According to the summary of analysis 
results shown in Table 1, after modifying 
BiOCl with CQDs, the specific surface area was 
remarkably increased. Also, the pore volume and 
pore size distribution decreased, which could be 
due to the filling of some mesoporous pores with 
CQDs. Therefore, implying that the presence of 
CQDs segments in the final structure. Based on the 
BJH analysis, the Maximum pore diameter is 39.3 
nm and 1.3 nm for BiOCl, CQD/BiOCl, respectively. 
Hence, by adding CQDs to mesoporous BiOCl, the 
final structure is classified as micropores material.

Photocatalytic degradation of Congo red solution
Congo red solutions were degraded over the 

prepared photocatalysts under visible light at 
room temperature, and the results are shown in 
Fig. 8 a-c. The CQDs enhanced the photocatalytic 
activity of BiOCl significantly, as was expected 
from the DRS analysis results, which confirmed 
the improvement of light-harvesting properties. 
From Fig. 8, the concentration of Congo red 
didn’t decrease remarkably in the absence of an 
illumination source at the same time, meaning 
that an insignificant amount of removal is due to  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. TGA weight loss curves of pure BiOCl and CQDs/BiOCl.
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Fig. 5. SEM images of the pure BiOCl; and EDS mapping images of the Bi, O, and Cl.

Fig. 6. SEM images of the CQDs/BiOCl; and EDS mapping images of the Bi, O, Cl, and C.
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 BET BJH 

Photocatalyst Surface area (m2 g-1) Pore volume (cm3 g-1) Pore size (nm) 
BiOCl 12.3 0.14 39.3 
BiOCl/CQDs 19.7 0.11 1.2 

 
 

Fig. 7. N2 adsorption-desorption isotherms and (the inset) corresponding BJH pore-size distribution curves of the Pure BiOCl, CQDs/
BiOCl structures.

Table 1. Summarized surface properties of pristine BiOCl and BiOCl/CQDs photocatalysts.

 
 

Fig. 8. The results of congo red removal under different conditions (a), UV-vis spectra of the dye compound solutions during the 
photocatalytic treatment (b) and kinetic fitting of the photoreaction (c).
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adsorption on the surface of the photocatalyst. 
Moreover, the photoreaction obeyed first-order 
kinetics with the rate constant of 0.011 min-1, 
deduced from plotting Ln (A0/A) versus reaction 
time. The results of the photolysis experiment, 
treating the dye solution with just irradiation and 
without any photocatalyst powder, implied no 
decrease in dye concentration during 180 min 
of the reaction time. From the abovementioned 
statements, the main process that occurred in the 
reaction vessel was “photocatalytic degradation” 
over the prepared nanostructures. 

To reach the optimum conditions and highest 
removal efficiency, the photodegradation was 
explored with different amounts of photocatalyst 
powder, pH, and various concentrations of Congo 
red. Catalyst dosage changed from 5 to 40 mg; the 
results showed that the optimum dosage could 
be 25 mg which led to the fastest degradation 
during 3 h of the reaction time, Fig. 9 a. Higher 
amounts of the photocatalyst powder blurred 
the medium resulting in a decrease of photon 
absorption by the photosensitive particles which 

affects photocatalytic performance adversely. 
Also, the presence of CQDs on the surface 
enhanced the chance of aggregation in the 
aqueous medium, a phenomenon that affects 
the number of photocatalytic active sites on the 
surface negatively.

Exploring the effect of dye concentration on 
the photocatalytic efficiency indicated that the 
best concentration to reach the fast degradation 
is 10 ppm, Fig. 9 b. More than 10 ppm of Congo 
red concentration decreased photodegradation 
efficiency significantly, which is explainable 
based on the interference of the excessive 
number of dye molecules with incident light 
photons to reach the photocatalyst surface. 
As a result, photolysis was likely much more 
than photocatalytic degradation, and removal 
efficiency reduced. To examine the effect of pH 
on the reaction efficiency, photodegradation 
was investigated in three pH values. From the 
results, Fig. 9 c, the highest efficiency obtained 
in pH= 6.5 while pH of 2.0 and 10.0 affected the 
photoreaction adversely. This might be due to the 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 9. The effect of catalyst dosage (a), dye concentration (b), and pH (c) on the photocatalytic degradation of congo red and the 
results of recycling experiments (d).
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chemical structure of Congo red, an anionic dye 
compound, which could be effectively adsorbed 
on the surface of the photocatalytic particles in a 
mildly acidic medium (pH of 6.5). In the alkaline 
medium, although the hydroxyl ions are expected 
to enhance the production of OH radicals and 
facilitate photocatalytic degradation, these 
negatively-charged species compete with the 
anionic Congo red molecules for being adsorbed 
on the surface of the solid particles. As a result, 
Congo red photocatalytic degradation over CQDs/
BiOCl showed the lowest efficiency in pH of 10.0 
under visible light. 

Recycling experiments were performed 
to examine if the prepared nanostructure is a 
promising photocatalyst for practical applications. 
According to the obtained results, Fig. 9 d, 
the removal efficiency reduced from 96.8% to 
65% after five times repeated use, which is an 
adverse signal. This considerable decrease in 
photocatalytic performance might be due to 
the weak interactions between the nanosheets 
surface and CQDs or significant corrosion of the 
sheets surface during the subsequent contacts 
with a non-neutral aquatic medium that poison 
the active sites. To overcome such obstacles about 
the current photocatalyst, insertion of CQDs into 
platform bulk structure during the formation of 
BiOCl nanosheets could be an effective procedure.

From a mechanistic point of view, the electrons 
of the BiOCl valence band are excited to the 
conduction band after absorbing the light photons, 
resulting in electron-hole pairs generation on the 
surface of the suspended particles. According to 
the reports, the semiconductors with much more 
negative conduction bands and positive valence 
bands are suitable for this purpose. They are 

used as promising photocatalytic material toward 
removing organic contaminants [57]. While these 
quantities are favorable about BiOCl (-0.56 and 
2.66 eV for its conduction and valence bands, 
respectively), BiOCl photoactivity is predominantly 
restricted to the ultraviolet region of the solar 
light. CQDs can trap the photogenerated electrons 
of the conduction band and delay electron-hole 
recombination. This phenomenon enhanced 
photodegradation efficiency under visible 
light according to the well-known reactions 
producing free radicals such as •OH and •O2

͞ . The 
photogenerated positive holes can also oxidize 
dye molecules directly to produce photooxidation 
products. This is schematically shown in Fig. 10. 
The photoactivity of pure BiOCl is limited in the 
visible region due to its large bandgap. However, 
the prominent role of CQDs causes it to provokes 
it by emitting ultraviolet photons resulting in the 
generation of electron-hole pairs [58].  

CONCLUSIONS 
CQDs decorated BiOCl nanostructures were 

prepared via a microwave-assisted hydrothermal 
method. According to DRS analysis, the bandgap 
was remarkably decreased from 3.16 eV for pure 
BiOCl to 1.15 eV for CQDs/BiOCl nanostructure. 
The results of TGA and EDS analyzes confirmed 
the presence of CQDs on the surface, which 
were morphologically discussed based on SEM 
micrographs too. According to the photocatalytic 
tests, CQDs/BiOCl indicated superior activity 
than pure BiOCl resulting in a fast decrease of 
Congo red UV-vis absorption, a pseudo-first-order 
degradation reaction with the rate constant of 
0.011 min-1. Exploring the optimum conditions 
towards the highest removal efficiency led to 

 

 

 

 Fig. 10. Schematic demonstration of the photocatalytic performance of CQDs/BiOCl.
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0.04 g, 10 ppm, and 6.5 for the catalyst dosage, 
dye concentration, and solution pH, respectively. 
Based on the recycling experiments, the removal 
efficiency was decreased from 96.8% to 65.0% 
after five times of repeated use, implying 
further reconsidering synthesis steps of such 
photocatalysts to effective insertion of CQDs into 
the bulk structure. 
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