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In this research, a convenient, simple and rapid route for the preparation 
of Co3O4 nanoparticles using the calcination of Co(NO3)2∙6H2O at the 
presence of benzoic acid (1:1 weight ratio) is reported. Further, the as-
prepared Co3O4 nanoparticles were characterized by X-ray powder 
diffraction (XRD) and transmission electron microscopy (TEM). XRD 
result confirmed the Co3O4 nanoparticles are pure phase and the average 
crystallite size for Co3O4 nanoparticles was found 77 nm. The TEM 
images reveal nanoparticles with size ranging from 50 to 100 nm, which is 
in conformity with the calculation of average crystallite sizes from XRD 
patterns. Furthermore, the prepared Co3O4 nanoparticles were investigated 
as an anode material for Li-ion batteries. Results showed that the Co3O4 
nanoparticles exhibited excellent electrochemical performance and cycling 
stability, a capacity of 1127 mA h g-1 was obtained at 100 mAg-1 and the 
samples exhibited stable discharge behavior up to 130 cycles with high 
rate capability.

INTRODUCTION
Recently, study of transition metal oxide 

(TMO) nanoparticles and nanocomposites as 
cathode [1-3] or anode [4-13] materials for 
rechargeable Li-ion batteries (LIB) has been one 
of the best hot research topics, because the 
preparation of TMO nanoparticles is often simple, 
low-cost and rapid. The transition metal oxide 
(TMO) nanoparticles as anode materials have 
also excellent electrochemical performance and 
cycling stability [1-13]. Nanoparticles of Co3O4 can 
be prepared by various techniques, i.e. solid-state 
thermal decomposition [14] or carbon assisted 
decomposition [15,16], and show variety of 
properties that are favorable in applications such 

as degradation of organic dye [14], oxidation of 
alcohols [15], selective oxidation of alcohols [16] 
and electrocatalytic oxidation of H2O2 [17]. Among 
various transition metal oxides studied for Li ion 
batteries, LIB’s with cobalt oxide nanoparticles 
as anode have higher energy density compared 
with the other energy storage devices [5-13]. 
Unfortunately, nanoparticles of Co3O4 show large 
volume changes during repeated lithiation and 
delithiation processes [9]. However, they have 
higher capacity (about 890 mA h g-1) [5-13] than 
graphite (370 mA h g-1). In recent years, various 
shapes of Co3O4 nanostructures such as nanoring, 
mesoporous, 3D nanofiber and nanofilms have 
been prepared and studied as anode materials 
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extensively [5-13]. For example mesoporous 
Co3O4 network that has been prepared by Wen et 
al. via thermal decomposition of an amorphous 
metal complex exhibits excellent performance for 
Li storage [8]. Su et al. prepared Co3O4 hexagonal 
nanorings via treating Co-based metal organic 
frameworks [9]. Co3O4 hexagonal nanorings show 
the specific capacity of 1370 mA h g-1 after 30 
cycles. Gurunathan et al. reported convenient 
synthesis route for preparation of Co3O4 hollow 
microsphere [10] that exhibited excellent 
electrochemical performance (915 mA h g-1) and 
cycling stability (350 cucles).

This study is a part of our ongoing effort to 
prepare transition metal oxide nanoparticles 
and investigated them as Li-ion batteries [18,19]. 
Herein, we report a convenient, simple and rapid 
method for preparation of Co3O4 nanoparticles 
using the calcination of Co(NO3)2∙6H2O at the 
presence of benzoic acid. Served as Li-ion 
battery anode, Co3O4 nanomaterials show high 
electrochemical performance. 

MATERIALS AND METHODS
All compounds used in this research were 

purchased from Merck Company and used 
without any purification. The XRD patterns were 
obtained on Empyrean powder diffractometer 
of PANalytical in Bragg-Brentano configuration 
equipped with a flat sample holder and PIXCel3D 
detector (Cu Kɑ radiation, λ = 1.5418 Å). TEM 
images were recorded with the transmission 
electron microscope Philips CM120 with a LaB6 
cathode operating at 120 kV and equipped with 
CCD camera Olympus Veleta

Synthesis of Co3O4 nanoparticles
1 g of Co(NO3)2∙6H2O and 1 g of benzoic acid 

were put into a crucible and ground together for 
5 min. The mixture was then annealed at 600 ºC 
in air for 3 h. The black products were rinsed with 
water and finally dried at 65 ºC for 12 h.

Electrode preparation and electrochemical test 
method

The active Co3O4 material was mixed with 
carbon black and PVDF at a mass ratio of 70:15:15 
to form slurry with NMP as solvent. The slurry was 
then spread onto Cu foil by doctor-blade, and dried 
at 80 °C for 12 h. The disc with diameter 1.53 cm was 
cut from dried Cu foil, and compressed under the 

pressure of 10 MPa to form a working electrode. 
The loading of active material on Cu foil was about 
1 mg cm-2. Lithium metal was used as the counter 
and the reference electrode. The electrodes were 
assembled into a coin cell (CR2032) in an Ar-filled 
glovebox using Celgard 2400 as separator and 1 M 
LiPF6 in ethylene carbonate/dimethyl carbonate/
diethyl carbonate (EC/DMC/DEC, 1:1:1 vol%) as 
electrolyte. A galvanostatic cycling test of these 
assembled half-cells was conducted on a LAND 
CT2001A system in the voltage range of 0.01-3.0 V 
(vs. Li+/Li) at different current densities.

RESULTS AND DISCUSSION
XRD patterns

X-ray diffraction (XRD) pattern of Co3O4 
nanoparticles is shown on Fig. 1. In this pattern, 
there are several peaks at 2θ ≈ 18.99º, 31.26º, 
36.83º, 38.54º, 44.80º, 55.64º, 59.34º and 
65.21º which indicates the spinel with cubic 
face centered structure of Co3O4 with standard 
diffraction data of card no. JCPDS = 01-080-
1532. The structure was refined by Rietveld fit 
in crystallographic program Jana2006 [20] that 
confirmed the lattice parameter a = 8.085 Å. The 
size of crystallites was determined in the same 
program using fundamental parameter approach 
[21], which removed the instrumental part of the 
diffraction pattern by means of known geometry 
of the difractometer. The average crystallite size 
for Co3O4 nanoparticles was found 77 nm.

TEM images
The morphology of Co3O4 nanoparticles was 

characterized by TEM. The Fig. 2 shows the TEM 
images of the sample prepared at 600 ºC. The 
images reveal nanoparticles with size ranging 
from 50 to 100 nm, which is in conformity with the 
calculation of average crystallite sizes from XRD 
patterns. 

Electrochemical properties
As shown in Fig. 3a, the reduction peak around 

1.17, 0.92, 0.82 V in the first cycle can be associated 
with reduction of Co3+ → Co2+, Co2+ → Co and 
formation of Li2O and solid electrolyte interface 
(SEI) [5, 6]. The oxidation peak around ∼2.0 V can 
be attributed to the oxidation of Co → Co3O4 and 
decomposition of the SEI. In the following cycles, 
the redox peaks are well overlapped which means 
that Co3O4 anode has high cycling performance 
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(Fig. 3b). Fig. 4 shows capacities at different current 
densities of 100–1000 mA g-1. Co3O4 sample shows 
1st discharge capacity of 1996 mA h g-1 and charge 
capacity of 1127 mA h g-1 [22]. The irreversible 
capacity loss is caused by the formation of SEI and 
electrolyte decomposition. At current density of 
1000 mA g-1, the discharge capacity is 380 mA h 
g-1. The high capacity of the Co3O4 electrodes can 
be attributed to high specific surface area which 
provides more active area that can react with Li+ 
ions [23,24]. The cycling performance was used to 
prove the stability of the as-formed samples. As 
shown in Fig. 4, the discharge capacity is 868 mA h 

g-1 after 130 charge-discharge cycles with capacity 
retention of 76%, compared with reversible 
capacity of 1145 mA h g-1. The decline of electrode 
performance may own to destroy of electrode 
materials or the change of electrode structure [25, 
26].

The electrochemical impedance spectroscopy 
(EIS) was performed to show the resistance during 
electrochemical process [27]. Fig. 5 is the Nyquist 
plots of EIS with semicircle at high frequency and 
straight line at low frequency. The corresponding 
equivalent circuit is shown in inset of Fig. 5. The 
electrolyte resistance is 2.3 W. The charge transfer 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. XRD pattern of Co3O4 nanoparticles.

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. TEM images of Co3O4 nanoparticles at different magnifications
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Fig. 3. Electrochemical Li-ion battery anode performance of Co3O4 sample. (a) discharge-charge curves at current density of 100 
mA/g. (b) dQ/dV curves with different cycling numbers.
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Fig. 4. Capacity of Co3O4 at different current densities for Li-ion battery anode.
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Table 1. Li-ion batteries characteristics of Co3O4 in literature and this work

resistances are 130 and 907 W in first and second 
circuits. Two RC circuits show that two interfaces 
may exist in this electrochemical system, for 
example SEI. The straight line represents Warburg 
diffusion process. 

These electrochemical properties of 
the as-prepared Co3O4 show that the good 
electrochemical performance with high storage 
capacity is comparable with the other previous 
works [9,11112,28-29]. In Table 1, previous reports 
about Co3O4 based Li-ion batteries with different 
morphology are compared.

 
CONCLUSION

In summary, Li-ion battery anodes based on 
Co3O4 nanoparticles show better electrochemical 
performance. The 1st discharge capacity was 1996 
mAhg-1 and charge capacity was 1127 mA h g-1. 
Also, Co3O4 sample shows decent cycle stability 
with specific capacities of about 868 mA h g-1 at 100 
mA g-1 after 130 charge-discharge cycles. The high 
capacity of the Co3O4 electrodes can be attributed 

to high specific surface area which provides more 
active area that can react with Li+ ions. 
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