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In this paper, polymer grafted nickel-doped iron oxide nanoparticles are 
fabricated via an easy, one-step and fast electrochemical procedure. In the 
deposition experiments, iron(II) chloride hexahydrate, iron(III) nitrate 
nonahydrate, nickel chloride hexahydrate, and dextran were used as the 
bath composition. Dextran grafted nickel-doped iron oxides (DEX/Ni-
SPIOs) were synthesized with applying direct current (dc) of 10 mA cm–2. 
The magnetite crystal phase, nano-size, Ni doped content, and dextran 
grafting onto SPIOs were verified through X-ray powder diffraction (XRD), 
Fourier transform infrared (FTIR) spectroscopy, field-emission scanning 
electron microscopy (FE-SEM), transmission electron microscopy (TEM) 
and thermogravimetric (TG) and differential scanning calorimetry (DSC) 
analyses. Magnetic evaluation through vibrating-sample magnetometer 
(VSM) proved that the DEX/Ni-SPIOs product have superparamagnetic 
behavior with exhibiting the high saturation magnetization and negligible 
Ms and Hci values. Based on the obtained results, it was confirmed that 
the prepared dextran grafted Ni-SPIOs have suitable physico-chemical and 
magnetic properties for both therapeutic and diagnostic aims.

INTRODUCTION
Among the various promising candidates for 

biomedical use, magnetic nanoparticles (MNPs) 
have received significant attention as a result of 
their intrinsic magnetic properties. This class of 
nanomaterials include metallic, bimetallic, and 
superparamagnetic iron oxides (SPIOs) [1]. For 
biomedical aims, SPIOs are more interested due 
to their low toxicity nature and facility of surface 
engineering with biocompatible agents as well 
as targeting, imaging, and therapeutic molecules 
[2]. This flexibility has provided SPIOs to be 
simply used in magnetic separation, biosensor, 
in vivo medical imaging, drug delivery, tissue 

repair, and hyperthermia applications [3-9]. The 
magnetic action of SPIOs depends significantly on 
their shape, size and surface load [10], and these 
factors are determined by the designed synthesis 
procedure and applied surface coat onto SPIOs 
[11]. Hence, various synthesis methods including 
the coprecipitation, hydrothermal processes, 
sol-gel, and thermal decomposition have been 
developed for the synthesize high-quality 
MNPs [12-17]. In addition to these methods, 
electrochemical process has been also applied 
as an easy, non-expensive and fast procedure for 
preparation of naked and surface coated SPIOs 
[18-22]. As an electrochemical route, cathodic 
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electrodeposition has been introduced as a 
facile preparation method for the fabrication of 
nanomaterial due to its ability in controlling 
crystal phase, size and composition of products 
[22-27]. 

As an important factor, surface coating plays 
essential role in magnetic ability and medical 
uses of SPIOs. In this regard, it was stressed that 
although pristine/or uncoated SPIOs are stable 
in high and low pH mediums, but in vivo uses 
require surface coated SPIOs [28]. For instance, 
surface capping layer should be able to (a) prevent 
agglomeration of iron oxide particles, (b) provide 
chemical bonds for further functionalization of 
SPIOs with therapeutic and diagnostic agents 
[29], and enhance their pharmacokinetics, 
endosomal release, and tailored drug loading and 
release behaviors [28]. Up now, various polymers 
including PEG [30], PVA [31], chitosan [32], PEI 
[33], and PVP [34,35] have been applied as SPIOs 
surface coat. For applying surface capping onto 
SPIOs surfaces, several strategies like as covalent 
linkage, direct nanoparticle conjugation, click 
chemistry, covalent linker chemistry, and also 
physical interactions have been employed [36]. It 
has been found that covalent linkages are strong 
and stable bonds, which can be specifically 
formed between functional groups, typically –
NH2, -COOH, and -SH groups attached onto SPIOs 
surface and conjugated ligands [36]. Dextran is an 
abundant, inexpensive polymer that composed 
of alpha-D-glucopyranosyl monomers, which has 
a large number of -OH groups to provide covalent 
linkage and local sites for surface capping of 
SPIOs, as well as biological compatibility and 
stability [37]. Hence it is proper candidate for 
biomedical uses like as hyperthermia and MRI 
contrast agent [37-39]. Metal cations doping 
could be also an effective strategy for improving 
the magnetic properties of SPIOs [40-43]. 
Recently, we have reported an in situ doping of 
Fe3O4 nanoparticles with various metal cations 
through electrochemical deposition method [44-
46], the magnetic evaluations have indicated 
that the superparamagnetic behavior of iron 
oxide is improved via this strategy [44-46]. Here, 
we report an electrochemical platform for 
fabrication of dextran grafted and Ni2+-doped 
iron oxide nanoparticles (DEX/Ni-SPIOs). The 
prepared SPIOs are characterized through XRD, 
FE-SEM, FT-IR, DSC-TGA and VSM analyses. 

MATERIALS AND METHODS
Electrochemical synthesis of DEX/Ni-SPIOs

All chemicals were purchased from Sigma-
Aldrich company, and used as received. For 
preparation of electrodeposition bath; First, 
0.15g iron(II) chloride hexahydrate, 0.4g iron(III) 
nitrate nonahydrate, and 0.05g nickel chloride 
hexahydrate were dissolved in 100cc distilled 
water, and then 0.1g dextran (as capping agent) 
was added into this solution and stirred for 
20min. The direct current (dc) electrodeposition 
mode was chosen for synthesis of samples. In 
dc deposition, a two-electrode electrochemical 
set-up was constructed using a stainless-steel 
cathode centered between two graphite anodes. 
After assembling the mentioned electrochemical 
cell, a typical current density of 10 mA cm–2 was 
applied into this system for 20min at RT condition, 
and a black film was formed on the steel cathode 
at the end of deposition time. After this step, 
the deposited film was collected from the steel 
electrode, and dispersed in 50cc ethanol solution. 
Then, this solution was centrifuged at 3000 rpm 
for 10 min to remove the weekly capped dextran 
onto the iron oxide surfaces and other impurities. 
In final stage, the dispersed powder was collected 
from the ethanol solution by magnet. The collected 
powder was dried in a vacuum oven at 70oC for 2h, 
and the obtained black powder was named DEX/
Ni-SPIOs product.

Sample characterization
The prepared DEX/Ni-SPIOs powder was 

tested through field-emission scanning electron 
microscopy (FE-SEM, Mira 3-XMU with accelerating 
voltage of 100 kV) and energy dispersive 
diffraction X-ray analysis (EDX) to identify its 
morphology and elemental composition. Surface 
morphology of the sample was also observed by 
TEM (Model Zeiss EM900). The crystal structure 
of the prepared sample was recorded by X-ray 
diffraction (XRD, Phillips PW-1800) using a Co Kα 
radiation. Thermal behavior of the sample was 
studied using a thermo-analyzer, model STA-
1500. This analysis was done in N2 atmosphere 
at the temperatures of 25-600 oC with applying a 
heating rate of 5oC min−1. The FTIR spectra were 
collected in the wavenumber range of 400 to 4000 
cm−1 using a Bruker Vector 22 Fourier transformed 
infrared spectroscope. The magnetic curves of 
the prepared DEX/Ni-SPIOs were provided in the 
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range of −20000 to 20000 Oe at RT using vibrating 
sample magnetometer (Meghnatis Daghigh Kavir 
Co., Iran). 

RESULTS AND DISCUSSION
Fig. 1 presets the XRD pattern of dextran 

grafted Ni-SPIOs. The recorded pattern showed 
typical iron oxide diffraction peaks, suggesting 
good crystallinity. The size broadening indicates 
the nanometer size of the SPIOs crystallites. The 
observed peaks at 21.23o, 35.18 o, 41.44 o, 50.75, 
63.05 o, 67.36 o, and 74.35 o are well matched 
with the (111), (220), (311), (400), (422), (511) 

and (440) crystal planes of magnetite. Hence, the 
prepared sample has been crystalized into the 
magnetite phase (JCPDS card No. 01-088-0315). 
By the Debye–Sherrer equation (D=Kλ/βcosθ), the 
average crystallite size was obtained to be 8.7nm.

FT-IR test was provided to verify the grafting of 
the electrosynthesized SPIOs with dextran agent. 
In fact, this analysis was used to determine the 
chemical composition of sample and prove the 
presence of dextran onto the surface of Ni-SPIOs 
particles. Fig. 2 shows the FT-IR spectrum of the 
DEX/Ni-SPIOs sample. Generally, the IR peaks 
observed at the wavenumbers lower that 700cm-1 

 

 

 

   

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. XRD pattern of the prepared DEX/Ni-SPIOs sample.

Fig. 2. IR spectrum of the fabricated DEX/Ni-SPIOs sample.
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Fig. 2. IR spectrum of the fabricated DEX/Ni-SPIOs sample. 
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implicate the metal-oxygen vibrations (i.e. ν(Fe-O-Fe) 
and ν(Ni-O-Fe)) [47,48]. In this spectrum, the other IR 
peaks are due to the following vibrations [37,38,47-
50]; the band at 1633 cm−1 is due to the vibration of 
water molecules bonded onto Ni-SPIOs particles, 
the bands at 2927 and 2893 cm–1 are resulted from 
the asymmetric and symmetric vibrations of C-H 
bonds in dextran, the peak at 1149 cm−1 is caused 
by covalent vibrations of the dextran glycosidic 
bridge, the peak at 997 cm−1 is due to the vibration 
of the C–O bond at the C-4 position of the glucose 
residue, and the bands observed at 1454, 1355 
and 1232 cm–1 are related to the deformation 
vibrations of H-C-OH bands in the dextran chains. 
The presence of these vibrational modes is proved 
surface grafting of SPIOs by dextran [29]. Hence, 
these IR data demonstrate that the surfaces of Ni-
doped iron oxide nanoparticles are covered with 
dextran polymer during the electrodeposition 
synthesis.

The differential scanning calorimetry (DSC) and 
the related weight loss data were recorded in the 
temperature range of 25–600 oC and the resulted 
profiles are shown in Fig. 3. In the DSC curve 
(Fig. 3a), an endothermic peak is occurred in the 
temperature range of 25-150°C, which is due to the 
evaporation of water molecules attached onto the 
Ni-SPIOs particles and also OH groups in dextran 
chain [52-54]. TG curve showed about 2.5% weight 
reduction for this physical change. After this step, 
DSC profile exhibited two-successive endothermic 
peaks between temperatures of 150 to 350 °C. 
Correspondingly, TG curve has a sharp weight loss 

(about 9.3%) at these temperatures (as clearly 
seen in Fig. 3b). Notably, it was reported that iron 
oxide NPs coated with dextran show a sharp weight 
loss at the temperature range of 150-300 oC, due 
to the two-step degradation of dextran coat [54-
56]. Hence, the changes observed in TG curve at 
T=150-350 oC are assigned to the breakdown of 
organic skeleton in dextran. At final step, there is 
a small endothermic peak and weight loss (0.3%) 
at temperature of 550oC, which can be related to 
the phase transition of Fe3O4 into FeO [57]. The 
total weight loss of DEX Ni-SPIOs was found to be 
12.1%. These results clearly approved the dextran 
grafting onto the synthesized DEX/Ni-SPIOs.

FE-SEM and TEM images and the elemental 
analysis (i.e. EDAX) profile of DEX/Ni-SPIOs sample 
are presented in Fig. 4. From FE-SEM observation 
in Fig. 4a, it is revealed that the sample has been 
electrodeposited and growth in spherical particles 
morphology with an average size of 10 nm. TEM 
observation in Fig. 4c is also revealed that the 
prepared particles have spherical form with 
mean size of 10 nm. Furthermore, the EDAX data 
showed that the DEX/Ni-SPIOs sample has Fe, 
Ni, O and C elements with weight percentages of 
46.42%, 6.07%, 36.51% and 11% in its chemical 
composition. These data verified that the 
iron oxides have been doped by Ni (6.07wt%) 
during electrochemical synthesis. Furthermore, 
the presence of 11wt% carbon in chemical 
composition of the deposited sample implicated 
the surface grafting of the deposited iron oxide 
particles by dextran. These results clearly proved 
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Fig. 3.  DSC-TGA curves of the electrodeposited DEX/Ni-SPIOs sample.
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the successful electrosynthesis of surface grafted 
Ni-doped magnetite nanoparticles.   

The magnetic behavior of the fabricated nickel-
doped iron oxide particles was measured using 
vibrating-sample magnetometer (VSM) test. The 
resulted M-H curve is shown in Fig. 5 and also 

the related magnetic data are listed in Table 1. 
The shape of M-H profile and also absence of any 
hysteresis loop implicated the superparamagnetic 
behavior of our sample [36-38]. As listed in 
Table 1, the saturation magnetization (Ms), 
remanence (Mr) and coercivity (Hci) values were 

 

 

 

 

   

 

 

 

 

 

 

Fig. 4. (a) FE-SEM image, (b) EDAX data and (c) TEM image of the prepared DEX/Ni-SPIOs sample. 
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found to be 52.45 emu g–1, 0.13 emu g–1 and 
3.09 G, respectively. These values revealed that 
the prepared sample has relative high Ms and 
negligible Ms and Hci values. As listed in Table 1, 
it has been reported that the magnetic data for 
electrochemically synthesized bare iron oxide and 
bare Ni doped iron oxide have been reported to 
be: Ms=72.96 emu/g, Mr=0.95 emu/g (for bare 
SPIOs) [46], and Ms=47.25 emu/g, Mr=0.22 emu/g 
(for bare Ni-SPIOs) [58]. Furthermore, for dextran 
coated SPIOs (Ms=15.2 [36], Ms=45.87 [52]), 
and for metal ion-doped SPIOs (Ms=71.6 emu/g, 
Mr=12 emu/g and Hci=88.8 G for Sm-SPIOs [40], 
Ms=47.25 emu/g, Mr=0.22 emu/g and Hci=4.34 
G for Sm-SPIOs [58] and Ms=48 emu/g, Mr=5.6 
emu/g and Hci=51.8 G for Cu-SPIOs [59] have been 
reported (Table 1). Comparing these magnetic 
data with those obtained in this work indicated 
that the superparamagnetic behavior of iron 
oxide could be further improved through grafting 
with dextran polymer as a result of lowering the 
residual magnetization. After dextran grafting, the 
DEX/Ni-SPIOs sample exhibited relative high Ms 
and negligible residual Mr, showing the excellent 
magnetic performance of these magnetic 
particles with altering the applied filed. This type 
of magnetic action is very required at various 
targeting, imaging, and therapeutic applications 
of SPIOs such as hyperthermia, magnetic therapy 
and magnetic resonance imaging [3-9]. Hence, it 
was concluded that the prepared dextran grafted 
Ni-SPIOs have suitable physico-chemical and 
magnetic properties for both therapeutic and 
diagnostic aims.

CONCLUSION 
In summary, an easy electrochemical method 

was constructed for the preparation of dextran 
grafted nickel-doped iron oxide nanoparticles. 
The magnetite crystal phase of the deposited 
powder was proved via XRD and FT-IR data. FE-

SEM and TEM observations revealed the size 
of prepared particles are 10nm and EDAX data 
exhibited about 6% Ni doping into SPIOs structure. 
Thermogravimetric data showed 10%wt surface 
grafting of Ni-SPIOs by dextran polymer. The 
obtained VSM results indicated that the fabricated 
sample has low remnant magnetization and 
coercivity (i.e. Mr=0.13 emu/g and Hci=3.09 
G), establishing its suitability for biomedical 
applications. 
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