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A high flux thin-film nanocomposite membrane epoxy/ zeolite NaA 
nanocomposite films prepared by using ultrasonic mixing and spin 
coating. The synthesized nanocomposites film was characterized by 
X-ray diffraction (XRD), scanning electron microscopy (SEM), thermal 
gravity analysis (TGA), and FTIR spectroscopy. Water softener and 
water flux characteristics of the epoxy/ zeolite NaA nanocomposite 
film investigated. The results show the water softener, and hydraulic 
permeability of the membranes, remarkably improve by the wt.% of 
the zeolite NaA loading. Antibacterial activity was investigated by use 
modification of zeolite NaA with silver ions (Ag+) and copper ions (Cu2+) 
for nanocomposite.

INTRODUCTION
Polymers due to properties and low cost are 

widely used in various industries application, but, 
polymers have the low total strength and poor 
fraction toughness which limit their applications in 
structural components [1-3]. Numerous fillers use 
to improve properties polymer such as nano-clay, 
zeolite, carbon black, carbon nanotubes compound 
with the polymers epoxy resin is a thermoplastic 
polymer which has unique properties such as 
excellent adhesion, chemical resistance, and high 
tensile strength [4-7]. Adding nanoparticles such 
as zeotype materials in the matrix of polymer 
improve the thermal stability of the produced 
composite [8-12]. Industrial applications of epoxy-
based polymer materials are extensive and include 
adhesives, coatings and composite materials such 
as fiber and fiberglass [13].

Hard water has high concentrations of Ca2+ 
and Mg2+ ions and has serious problems for the 

industry also limit its use. Due to cation exchange 
ability zeolites can reduce water hardness [14]. 
The use of zeolites in polymers makes it easy to 
separate them from solutions and reduce their 
cost considerably [15].

Zeolite NaA incorporated into the polyamide 
polymer matrix improves membrane permeability 
and silver exchange zeolite-polyamide 
nanocomposites exhibit antibacterial properties 
[4].

Zeolites are crystalline microporous and 
mesoporous structures of alumina silicates, which 
have high porosity. These structures have three-
dimensional pore and cavities. Zeolite cavities 
have the negative charge that neutralized by 
cation elements. These cations are often loosely 
bound and easily replaceable, supplying increase 
to the ion replacement properties of zeolites 
without damaging the zeolite framework [16-18]. 
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Zeolite NaA displays the LTA (Linde Type A) 
structure. The pore diameter is small at 4.2Å and 
has the larger cavity of minimum free diameter 
11.4Å. The general formula for zeolite materials 
is Mx / n [(Al2O3) x (SiO2) y] mH2O. For zeolite 
LTA, the Si to Al ratio is one and the pores size of 
its related to the type of counter cation (K+, Na+ 

and Ca2+). One application of Na-LTA zeolites is in 
detergent as water softener. It can also be with 
the ion exchange process and the replacement of 
silver ions in the structure zeolite the antibacterial 
property given to the specimen [17, 19, 20].

The target of this work was to expand the thin 
high-performance nanocomposite membranes 
with the combination of the zeolite NaA and 
epoxy polymer for effective calcium removal from 
water also to improve the water permeability at 
the same time. NaA zeolite ion exchange with 
silver and copper were used to improve the anti-
bacterial nanocomposite membrane.

MATERIALS AND METHODS
Epoxy resin (based bisphenol A type, 

KFR-120, Kukdo Chemical), modified amine 
hardeners, tetraethylorthosilicate (TEOS, 98 wt. 
%), aluminum nitrate (Al (NO3)3.9H2O), ethanol 
(EtOH, 99 wt. %), and solid NaOH were obtained 
from Merck. 

Synthesis of Zeolite NaA 
First 4. 5 ml of TEOS and 5 g of aluminum 

nitrate were added to 20 ml of the ethanol/
water solution mix gently until aluminum nitrate 
was completely dissolved. Then 25 ml of 0.25 M 
sodium hydroxide were added to the previous 
solution gently mix until the gel is created. Then 
gel is heated under microwave radiation at 100 ° 
C for 1 minute. After crystallization, the product 
solid was separated by centrifugation, washed by 
deionized water several times, dried overnight 
at 105 °C. To improve antibacterial properties 
of nanocomposites first Na ion in the structure 
of zeolite exchanged with Ag and Cu. 1 g of the 
zeolite were added separately to 0.01 M solutions 
of AgNO3 and Cu(NO3)2 then was put under reflux 
at 90°C for 16 h with magnetic stirring. Silver 
and cooper ions exchange with sodium ions and 
produce Ag-LTA zeolite and Cu-LTA. The product 
solid was separated by centrifugation, washed by 
deionized water several times, dried overnight at 
105 °C.

Synthesis of zeolite NaA/epoxy nanocomposite 
films

Various loading ratios ranging from 0 to 3 
wt.% of the zeolite NaA added into epoxy and 
curing agent mixtures. The mixture was sonication 
for 30 minutes subsequently de-gassed at 25 °C 
for 1 h under the vacuum. Nanocomposite films 
were fabricated on the glass layer by spin coating 
process at 1000 rpm for 60 s and aging at 60 °C for 
10 min. 1% wt% Ag-LTA and Cu-LTA zeolite were 
added to the epoxy mixture for investigated the 
antibacterial activity of the nanocomposite.

Membrane performance evaluation 
The calcium ion absorption performance 

for nanocomposite and composite films were 
evaluated by a bench-scale cross-flow filtration 
system with a total internal volume of 50 mL 
and an active surface area of 15 cm2. The water 
flux was computed at the pressure of 2 bar at 
25 oC. The water flux (J) and and ion removal (R) 
membranes were determined using the following 
equations [16, 21]:
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V is the volume of permeate water (L), A is 
the effective surface membrane area (m2), Δt is 
the filtration time (h), Cp (mg/L) and Cf (mg/L) are 
the salt concentration of penetration and feed 
solutions, respectively. The feed water contained 
300 mg/L CaCl2 solution. 

The NaA zeolite that dispersed into the cross-
linked epoxy polymer capable as the ion exchanger, 
adsorption Ca2+ and releases Na+. Calcium solutions 
were prepared using CaCl2. 2H2O. 

Antibacterial assay
For antibacterial activities, E. coli and S. aureus 

were selected according to the standard method 
24 hours cultured to obtain a logarithmic growth 
phase. Mueller-Hinton agar is employed for 
growth medium [22]. 1ml each bacterium was 
added to the culture medium and then cultured on 
a plate surface with the sterile swabs. zeolite AgA/
epoxy and zeolite CuA/ epoxy nanocomposite was 
prepared the centimeter square and placed on the 
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culture medium and incubated at 37 °C for 24 h. 
Antibacterial activity investigated by measuring 
the diameter of inhibition zone (DIZ) [23].

RESULTS AND DISCUSSION
The bonding interactions between the cross-

linked epoxy and zeolite NaA nanoparticles were 
analyzed employ a Perkin Elmer, Fourier Transform 
Infrared (FTIR), from 4000 to 400 cm−1 using a thin 
layer of the sample on a 25×4mm KRS-5 disc. Fig. 
1 shows the FTIR spectra of cross-linked epoxy, 
zeolite and epoxy nanocomposite (containing 3 
wt.% zeolite nanoparticle) in the range of 4000-

400 cm−1. Fig. 1a the peak of the oxirane ring 
observed at 915 cm-1 which attribute to the C-O 
of the oxirane group [24-26]. However, in Fig. 
1c the oxirane ring peaks disappear, perhaps 
reacted with the OH on the surface of the zeolite. 
The peaks at 990 cm−1 and 462 cm−1 correspond 
to the asymmetric stretching vibration of inner 
tetrahedral and the bending vibration modes of 
T–O bonds in TO4 tetrahedral of zeolite structure 
(where T = Si or Al), respectively. The peak at 1655 
cm−1 is attributed to the bend vibration of OH 
group in the adsorbed water on zeolite pore [27].

Fig. 2(a)–(c) show the SEM (Philips XL-30ESM) 

Fig. 1. FTIR curves of (a)epoxy cross-linked,(b) zeolite NaA and nanocomposites incorporated 3wt% zeolite NaA.
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top surface of synthesized epoxy polymer, zeolite, 
and nanocomposite (containing 3 wt.% zeolite 
nanoparticle). Fig. 2b shows synthesized zeolite 
NaA has cubic morphology and flower-like 
with slightly different sizes. Fig. 2c depicts the 
morphology of surface nanocomposite, clearly 
seen zeolite uniformly distributed in the polymer 
matrix.

Crystallinity and structure of nanocomposite 
and zeolite, were analyzed employing an were 
recorded by a Philips, X-ray diffractograms using 
Ni-filtered Cu Kα radiation. XRD was used to 

investigate the structure of zeolite NaA/epoxy 
nanocomposite as shown in Fig. 3. The XRD 
patterns show the zeolite NaA has a crystalline 
phase and the nanocomposite has an amorphous 
phase. XRD patterns of zeolite NaA match well 
with that of standard Na96 Al96 Si96 O384 216 H2 O 
(JCPDS-No. 39-0222). 

The TGA of epoxy polymer and zeolite NaA/ 
epoxy nanocomposite depict in Fig. 4. The results 
of the thermal gravimetric analysis (TGA) shows 
that adding zeolite improves the composite 
thermal stability. In the Fig. 4a, shows the thermal 

    
Fig. 2. SEM images of (a)epoxy cross-link, (b)nano-zeolites synthesized by microwave method at 100˚C and (c)the 3wt% zeolite 

NaA-epoxy nanocomposites.
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 Fig. 3. XRD patterns of (a)zeolite NaA nanoparticles and (b)the 3wt% zeolite NaA-epoxy nanocomposites.

 
Fig. 4. TGA curves of pristine epoxy cross-linked and nanocomposites incorporated 3wt% zeolite NaA.
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decomposition of the epoxy polymer starts at 350 
° C, while the nanocomposite decomposes at 400 
° C. Zeolite materials have thermal and chemical 
stability [15]. Zeolite Na can absorb carbon dioxide 
and reduces emissions of carbon dioxide from 
burning polymer.

 The water contact angle values of the epoxy 
cross-linked membrane and epoxy cross-linked 
membrane containing various amounts of nano 
zeolite NaA in organic phase exhibit in Fig. 5. NaA 
zeolite is very hydrophilic and cation exchangeable 
could improvement interaction between the 
nanocomposite surface and the polar water, 
thereby increasing the water flux and reduced 
the contact angle in the epoxy films [14, 28]. The 
pure epoxy cross-linked membrane showed a 
high contact angle of 91°.  after the incorporation 
of zeolite NaA nanofiller the contact angle of 
epoxy cross-link membranes decreases, with 
increase zeolite NaA loading from 1 wt% to 3 wt%, 
which means the improve of membrane surface 
hydrophilicity.

The Fig. 6 show the effect of zeolite weight 
loaded into the matrix of the cross-linked epoxy 
polymer on water permeability, cation adsorption 
of the nanocomposite.  Increase the amount of 
zeolite loaded into the polymer matrix from 0 to 3 

wt.% increases the water flux from 10 to 54 L/m2 
h.The NaA zeolite dispersed into the matrix cross-
linked epoxy films creates a new flow path for 
water crossing through this film. Therefore, adding 
NaA zeolite into epoxy polymer increases water 
absorption and permeability [29, 30]. Increasing 
the amount of zeolite loaded in the range of 0 to 
3 wt.% into the cross-linked epoxy polymer matrix 
increases the absorption of calcium ion from 4 to 
99 percentage.

The image in Fig. 7 illustrates the antibacterial 
activity of AgA zeolite /epoxy and CuA zeolite /
epoxy nanocomposites. The results of the study 
showed the growth inhibition zone for AgA 
zeolite/epoxy nanocomposites is 1 mm larger than 
the CuA zeolite/epoxy nanocomposite. Increased 
antibacterial properties of nanocomposites due to 
the release of Ag+ and Cu2+ ions to the medium 
containing bacteria.

CONCLUSION
Nanocomposite epoxy/zeolite NaA film was 

prepared by loaded of zeolite NaA in the epoxy 
matrix and homogenization by ultrasonic. Water 
flux and thermal stability of the membranes 
significantly enhanced by incorporation of zeolite 
NaA. The evaluation of the antibacterial properties 

 

 

 

Fig. 5. Effects of wt% zeolite NaA loadings on separation performance of epoxy crosslink (300 mg L aqueous CaCl2 solution) at 25 oC 
and 2 bar.
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of the nanocomposite containing AgA and CuA 
zeolite the membrane against E. coli and S. aureus 
indicated antibacterial activity.
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