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A simple co-presipitation method has been developed to synthesize SrWO4 
and Ag°-SrWO4 micro/nanostructures with different morphologies, 
including platelet-, star- and flower-like, in the presence of Na(B(C6H5)) 
as surfactant. The formation of platelet-, star- and flower-like shapes 
of particulate system was examined by electron microscopy technique. 
The products were characterized by X-ray diffraction, scanning electron 
microscope, UV-vis absorption, energy dispersive X-ray and fourier 
transform infrared spectra. The scheelite type tetragonal structure of all the 
synthesized compounds was revealed by powder X-ray diffraction analysis. 
The influence of surfactant concentration (sodium tetraphenylborate as 
new surfactant) on the size and morphology of products was investigated. 
Finally, a good photocatalytic activity was first discovered of the Ag°-SrWO4 
microcrystals for the degradation of methyl orange dye after 100 min under 
UV-vis light. Hence, from the present investigation it was observed that the 
doping of Ag in SrWO4 will yield a new kind of multifunctional material 
for fabricating electronic devices.

INTRODUCTION
Alkaline earth metal tungstants with a formula 

of AWO4 (A = Ca, Sr, Ba), as a member of Scheelite-
type metal tungstates, have attracted extensive 
interests because of their potential applications 
in various fields, such as optoelectronic industry, 
solid-state laser system, scintillator, photocatalysis, 
light emitting diodes (LEDs), and energy storage 
materials [1-8]. Strontium tungstate (SrWO4), 
among various AWO4 materials, belonging to 
a body-centered tetragonal system with WO4

2- 
molecular ions loosely bond to Sr2+ cations, has 
attracted a great deal of attention in recent years 
because of their excellent physical properties [9]. 
In the structure of WO4, a WO4

2- anion with short 

W‒O bond lengths consists of a central highly 
charged W ion without d electrons surrounded by 
four oxygen ions in a tetrahedral arrangement. 

Over the years, many different routes were 
developed to obtain the SrWO4 nanostructures, 
for example: co-precipitation [10], electrochemical 
[11, 12], biomimetic system of a supported liquid 
membrane [13], sonochemical [14], hydrothermal 
process [15], solvothermal-mediated micro 
emulsion method [16], microwave-hydrothermal 
[17] and cyclic-microwave [16]. The low electrical 
conductivity, and high recombination rate of 
photogenerated electron-hole pair in SrWO4 
nanostructures impede their practical applications 
[18]. In order to resolve these problems can 
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be used from deposition method of metallic 
nanoparticles (such as silver nanoparticle). In 
particular, Ag doped samples explicitly used for 
photocatalytic applications. The Ag nanoparticles 
have the unique physical and chemical properties, 
which are different from those of the bulk metal 
[19-21]. Their properties are attributed to intra-
band quantum excitations of the conduction 
electrons [22-24], mimicking the interactions 
of light on metal surface via the photoelectric 
absorption and compton scattering. 

Researchers have prepared graphene and 
metal ion-based hybrids, such as graphene-
SrWO4, Yb-SrWO4, Ag°-CdMoO4, Eu3+-SrWO4 and 
Ag°-NiTiO3 [6,15,22,31,24]. However, there is no 
record found for the Ag-doped SrWO4 synthesized 
by co-presipitation method and evaluation of 
its photocatalytic activity for the degradation 
of organic pollutants under UV light, as far as 
our best knowledge. Herein, we will report a 
facile co-precipitation method for the synthesis 
of Ag°-SrWO4 nanocomposite as photocatalyst 
material to achieve improved photocatalytic 

activity. Besides, the effect of Sr2+/surfactant ratio 
on the morphology and particle size of SrWO4 
nanostructures and Ag°-SrWO4 nanocomposite 
was investigated. Furthermore, the as-synthesized 
SrWO4 and Ag°-SrWO4 was used as an efficient 
photocatalyst for the photocatalytic degradation 
of methyl orange (MO) dye within 100 min.

MATERIALS AND METHODS
Synthesis of SrWO4 nanostructures

The SrWO4 nanostructures were synthesized 
by a new simplistic co-precipitation method. In a 
typical synthesis procedure, 1 mmol of Na2WO4 
was dissolved in the Na(B(C6H5)) (as surfactants)/
H2O (hot water, typically 70 °C) mixture with the 
different ratios 1:0.5, 1:0.75, 1:1, 1:1.25 and 1:1.5. 
Afterwards, 1 mmol of Sr(NO3)2.3H2O was dissolved 
slowly into 50 ml hot solution (50 °C) under 
magnetic stirring. Then, the resultant solution was 
heated at 70 °C for 15 min under magnetic stirring, 
and the obtained precipitation was dried at 70 °C 
for 1 h. Table 1 shows the samples preparation 
conditions.

Sample No. Sr/Surfactant ratio Doping agent Product 
1 1:0.5 - SrWO4 
2 1:0.75 - SrWO4 
3 1:1 - SrWO4 
4 1:1.25 - SrWO4 
5 1:1.5 - SrWO4 
6 1:1.5 Ag Ag°-SrWO4 

 

Table 1. Reaction conditions for preparation of products.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. XRD patterns of: (a) SrWO4 nanostructure (sample No. 5), and (b) Ag°-SrWO4 nanocomposite.
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Synthesis of Ag°-SrWO4 nanocomposite
The Ag°-SrWO4 nanocomposite was prepared 

as follows: at first, the as-prepared SrWO4 
nanopareticles from last past step were dissolved 
in the mixture of 50 ml of water and 1.8 g sodium 
tetraphenylborate (Sr2+/ Na(B(C6H5)) ratio = 1:1.5) 
and then, the reaction mixture was stirred for 
10 min to become homogenous. Subsequently, 
AgNO3 solution was added to the above mixture 
under magnetic stirrer for 20 min at 70 °C. Then, 
the obtained gray powder was annealed at 500 °C 
for 1 h. At the end, the Ag°-SrWO4 nanocomposite 
was obtained.

Photocatalytic experimental
The Photocatalytic activities of the SrWO4 

nanostructure and Ag°-SrWO4 nanocomposite 
dissolved in water were measured by the 

decomposition of organic dye methyl orange (MO) 
under UV light illumination. In this case, 25 mg (5 
ppm) of catalyst powder was added to 25 ml of 
dye aqueous solution at room temperature and 
then magnetically stirred in dark for 20 min before 
the irradiation to get absorption–desorption 
equilibrium between the photocatalyst and dye. 
The dye degradation percentage was calculated 
as:

Degradation rate (%) = ( )( )0 0/ 100tA A A− ×

where A and A0 are the obtained absorbance 
value of the dye solution at t and 0 min by a UV–vis 
spectrometer, respectively.

Materials and characterization
Sodium tetraphenylborate (Na(B(C6H5)), strontium 

 

 

 

 

Fig. 2. (a-c) SEM images of flower-like SrWO4 microcrystals (samples No. 1-3, respectively).
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nitrate trihydrate and silver nitrate were applied 
without additional purification. The XRD patterns 
of the products were recorded by a Rigaku 
D-max C III, X-ray diffractometer using Ni-filtered 
Cu Kα radiation. Scanning electron microscopy 
(SEM) images were obtained on Philips XL-
30ESEM equipped with an energy dispersive 
X-ray (EDX). Fourier transform infrared (FT-IR) 
spectra were recorded on Shimadzu Varian 4300 
spectrophotometer in KBr pellets. 

RESULTS AND DISCUSSIONS
The XRD patterns of samples No. 5 and 6 

synthesized by co-precipitation method were 
shown in Fig. 1. In this figure, the diffraction 
peaks with the (101), (112), (004), (200), (204), 
(220), (116) and (312) crystal plane of scheelite 
type tetragonal structure SrWO4 [JCPDS code 
85-0587] show the as-synthesized pure SrWO4 
nanostructures. The XRD pattern of Ag°-SrWO4 
nanocomposite is similar with pure SrWO4 except 
for absorption intensity and precise position. In Fig. 
1b, the diffraction peaks at 2θ = 38.017°, 45.342° 
and 65.649° are related to the Ag doped in the 
SrWO4 structure. In the XRD patterns of samples 
No. 5 and 6, only the tetragonal SrWO4 phase were 
observed, that confirms the incorporation of the 

dopant Ag+ ion into the SrWO4 matrix. 
A large volume of research has been performed 

to evaluate the effects of surfactants and capping 
agents on the morphology and particles size 
of nanomaterials [25–30]. Figs. 2(a-c) and 3(a 
and b) show the SEM images of SrWO4 samples 
synthesized in aqueous solution using different 
Sr/surfactant ratios (1:0.5, 1:0.75, 1:1, 1:1.25 and 
1:1.5, respectively). As shown in these figures, with 
the increasing of the surfactant concentration and 
decreasing of reaction speed between ions, the Sr2+ 
ions react with the WO4- ions regularly, and product 
the SrWO4 nanostructures with small particle size. 
At first, when the surfactant concentration is low, 
the products connected together as flower-like 
microcrystal structures (Fig. 2a-c), then with the 
increasing of Sr/surfactant ratio to 1:1.5 (Fig. 3b), 
the amount of flower-like structures decreased and 
the platelet-like SrWO4 structures are produced. 
These structures have high surface/volume ratio, 
thus show better photocatalytic activity. Also, Fig. 
3b displays a star-like SrWO4 microcrystal formed 
by two rice-like SrWO4 microcrystals. Fig. 4 shows 
a schematic representation of the synthesis and 
growth process of SrWO4 microcrystals synthesized 
by co-precipitation method in the presence of 
Na(B(C6H5)) as surfactant. The mineralization 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. SEM images of as-synthesized SrWO4: (a) flower-like microcrystal (samples No. 4) and, 
(b) platelet- and star- like crystals (sample No.5).
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process of SrWO4 crystallites in aqueous solution 
can be divided into two steps: the initial nucleating 
step and the subsequent crystal growth process. 
In the subsequent stage, the crystal growth step 
is mainly a kinetically controlled process that 
finally can create small-size plate crystals with an 
evolution process.

Fig. 5 shows SEM image of Ag°-SrWO4 
nanocomposite synthesized using Sr/surfactant 
ratio of 1:1.5. As shown in this figure, with doping 
of silver nanoparticles into SrWO4 structures, 
the Ag nanoparticles on the surface of rice- and 
star-like SrWO4 crystals were formed. These 
nanoparticles increase the surface area of as-
synthesized structures and, as a result, the 
photocatalytic activity is increased.

The FTIR spectra, in order to determine the 
chemical structure of the SrWO4 nanostructure 
and Ag doped SrWO4 in 400-4000 cm-1 range are 

given in Fig. 6(a and b). The characteristic band at 
825 cm-1 is due to the stretching mode of O‒W‒O 
in the WO4 tetrahedra, whereas the weak band 
around 489 cm-1 is characterized by the W‒O 
stretching vibration [31, 32]. The bands centered 
at 3461 cm-1 and 1642 cm-1 can be ascribed to 
O‒H band stretching vibration and O‒H bending 
vibration resulting from crystal water, respectively. 
Compared with pure SrWO4, the adsorption peak 
of WO4 

2- in Ag°-SrWO4 recedes, and the positions 
of some spectral peaks of Ag°-SrWO4 show slight 
shift, indicating the chemical interaction between 
Ag and SrWO4. The stretching and flexion mode of 
the Sr‒O and Ag is below the 150 cm-1 and 400 cm-

1, respectively, which is beyond the recorded range 
[33].

EDS analysis, is an analytical technique used for 
the elemental analysis or chemical characterization 
of a sample, also, can be used to estimate their  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. Schematic representation of the growth mechanism for the SrWO4 crystals obtained by the co-precipitation method.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5. SEM image of rice- and star-like SrWO4 microcrystals. Fig. 6. FTIR spectra of: (a) sample No. 5 and (b) sample No. 6.
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relative abundance. Fig. 7 shows the EDS analysis 
of samples No. 1-6. The EDS analysis confirms the 
presence of Sr, W and O elements (Fig. 7a-f) and 
demonstrates the availability of least amount of Ag 
in doped sample (Fig. 7f). Furthermore, it was also 
observed that the concentration of Na(B(C6H5)) as 
surfactant influences on the atomic percentage 
of elements. With the increasing of Sr/Surfactant 
ratio to 1:1.5 (Fig. 7e), the weight percentage of 
Sr, W and O elements reaches to 26.12, 54.79 and 
19.08%, respectively, that these values are close to 
stoichiometric values.

Fig. 8 displays the UV-vis diffuse reflectance 
spectrum (DRS) of the SrWO4 samples. The DRS 
spectrum depicts that the product exhibited a 

 

 

 

 

 

 

 

Fig. 7. (a-f) EDS spectra of samples No. 1-6, respectively.

typical optical absorption behavior of a wide-
band-gap semiconducting oxide, having an intense 
absorption band with a steep edge [34]. The band 
gap of SrWO4 (sample no. 5) calculated from the 
main absorption edge of the profile is about 4.25 
eV, which is suitable for photocatalytic water 
splitting under UV light irradiation. 

In the photocatalytic activity studies under UV 
excitation, MO solution was used as organic dye 
and its results are given in Fig. 9. The Figs. 9a and 
b show the photocatalyst activity of the SrWO4 
nanostructures and Ag°-SrWO4 nanocomposite, 
respectively. The photocatalytic degradation of 
methyl orange (MO) in the presence of Ag°-SrWO4 
nanocomposite was very much higher compared 
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Fig. 8. UV-vis diffuse reflectance spectra of sample No. 5.

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 9. (a and b) Photocatalytic activities of samples No. 5 and 6, respectively and (c) reaction mechanism of methyl orange 
photodegradation under UV light irradiation.

to SrWO4 nanostructures [35]. It is well known 
that the photocatalytic activity of photocatalyst 
mainly results from the photo-induced electrons 
and holes. During UV-irradiation for 100 min, 
SrWO4 nanostructures show 52.2% decomposition 
(Fig. 9a), while the Ag°-SrWO4 nanocomposite 
shows 92.03% decomposition (Fig. 9b). Based on 

above experiments, a proposed mechanism for 
photocatalytic degradation of methyl orange by 
Ag°-SrWO4 under UV light irradiation is shown 
in Fig. 8c. The valence band of SrWO4 consists 
of the hybrid orbitals of O2p as well as Sr5s and 
the conduction band consists of Mo4d orbital 
and the band gap energies between them is 
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about 4.25 eV. Ag nanoparticles on the SrWO4 
surface, act as electron traps and enhance the 
electron–hole pair separation. Then the electrons 
on Ag◦ nanoparticles could be transferred to the 
adsorbed molecular oxygen to produce super 
oxide free radicals (O2

−•) and then converted to 
active •OH. Similarly, holes formed on the valance 
band of SrWO4 are responsible for the oxidation of 
dye molecules leading to the formation of various 
degraded products. The degradation mechanism 
for the Ag°-SrWO4 can be given as:

SrWO4 + hν → SrWO4 (e
-) + SrWO4 (h

+)          (1)

Ag° + SrWO4 (e
-) → Ag (e-) + SrWO4                (2)

Ag (e-) + O2 → Ag+ + O•
2

- (electron transfer)          (3)

O•
2

- + H+ → •OOH               (4)

•OOH + H+ + SrWO4 (e
-) → H2O2             (5)

H2O2 + SrWO4 (e
-) → •OH + OH-           (6)

SrWO4 (h
+) + H2O → H+ + •OH           (7)

SrWO4 (h
+) + OH- → •OH               (8)

O•
2

- + MO → degraded product + O2           (9)

•OH + MO → degraded product + H2O               (10)

Thus, the separation of the charge carriers 
was attributed to such trapping by Ag dopant in 
SrWO4. Subsequently, enhanced the yield of •OH 
quantities in the degradation of methyl orange, 
which further improved the photocatalytic activity 
of Ag°-SrWO4. 

CONCLUSIONS
In summary, SrWO4 and Ag°-SrWO4 microcrystals 

were successfully synthesized by co-precipitation 
method at 70° C for the first time. We considered 
the effect of surfactant concentration on the size 
and morphology of products. The SEM images 
indicated that the microcrysatls, resulting in 
the growth of superstructures with rice, star- 
and flower-like shapes, were formed via self-
assembly of small nanocrystals. The products 
were characterized by XRD, DRS, EDS, SEM and 
FT-IR. The Ag doped SrWO4 presents enhanced 
photocatalytic activity compared to pure SrWO4 

from 52.2 to 92.03% in 100 min under UV light 
irradiation. 
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