RESEARCH PAPER

Hydrothermal Synthesis, Characterization and Catalytic Performance of La³⁺ and Sm³⁺ - Doped Bi₂Mn₂O₇ Nanocatalysts for Biginelli Reactions

Shahin Khademinia and Mahdi Behzad*

Department of chemistry, Semnan University, Semnan, Iran

ARTICLE INFO

ABSTRACT

Article History: Received 08 October 2018 Accepted 14 November 2018 Published 01 January 2019

Keywords:

Biginelli Hydrothermal Lanthanum; Nanocatalysts; Pyrochlores Samarium La³⁺ and Sm³⁺ - doped Bi₂Mn₂O₇ nanocatalysts were synthesized in 1 M NaOH aqueous solution, via a stoichiometric 1:1 Bi:Mn molar ratio hydrothermal method at 180 °C for 48 h. Bi(NO₃)₃, MnO₂, La(NO₃)₃ and Sm₂O₃ were used as raw materials. The synthesized nanomaterials were characterized by powder X-ray diffraction (PXRD) technique. Both of the La³⁺ and Sm³⁺ - doped Bi₂Mn₂O₇ nanomaterials were crystallized in a cubic crystal structure with space group . The morphologies of the synthesized materials were studied by field emission scanning electron microscope (FESEM). The optical properties of the as-synthesized nanomaterials were studied by ultraviolet visible (UV-Vis) diffuse reflectance spectra (DRS). It was found that the optical band gaps were increased with dopoing La³⁺ and Sm³⁺ into Bi₂Mn₂O₇. Catalytic performance of the synthesized nanomaterials were investigated in Biginelli reactions which showed excellent efficiency. Correlation between the catalytic performance with the band gap and hard/soft proportion of the metal ions was shown.

How to cite this article

Khademinia S, Behzad M. Hydrothermal Synthesis, Characterization and Catalytic Performance of La³⁺ and Sm³⁺ - Doped Bi₂Mn₂O₂ Nanocatalysts for Biginelli Reactions. J Nanostruct, 2019; 9(1):172-182. DOI: 10.22052/JNS.2019.01.019

INTRODUCTION

A₂B₂O₇ pyrochlore type materials (where A is a medium-large cation and B is an octahedrally coordinated, high-charge cation) with space group of can be described as a fluorite superstructure with O anions ordered around the A and B cations. These materials have been widely studied as ferroelectric and/or magnetic materials, ionic conductors, catalysts and radiation resistant materials [1-6]. Pyrochlore materials have attracted great interest due to their ability to form substituted and defective structures, permitting interesting physical properties [7-9]. Rare earth (RE) compounds have been extensively studied as potential laser host materials, oxygen ion conductors, and fluorescent lamp phosphors due to their attractive optical, electric, and magnetic properties, which are attributed to the electronic

transitions of rare earth ions between the 4f energy levels [10–13]. In the RE family, Sm^{3+} is one of the most important active ions and can show intense line-like absorption bands for special infrared light because of its closely lying energy level structure [14]. In recent years, considerable efforts have been focused on the fabrication of ceramic materials and RE oxides [12–20]. Doping is expected to introduce defect and change in the lattice energy of the crystals. La₂O₃ has also the greatest effect among the various additives in changing the lattice energy of crystals [21].

The Biginelli reaction was originally reported by Biginelli in 1891 [23]. It is a methodology for the synthesis of 3,4-dihydropyrimidin-2-(1H)-one derivatives (DHPMs) in a one-step procedure. DHPMs have shown several applications [24]. Several metal oxides have been reported as

* Corresponding Author Email: mbehzad@semnan.ac.ir

This work is licensed under the Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. nanocatalysts for the Biginelli reactions including $Bi_2V_2O_7$ [6], alumina supported Mo catalysts [25], nano ZnO as a structure base catalyst [26], MoO_3 -ZrO₂ nanocomposite [27], MnO_2 -MWCNT nanocomposites [28], TiO₂ nanoparticles [29], Mg-Al-CO₃ and Ca-Al-CO₃ hydrotalcite [30], Bi_2O_3/ZrO_2 nanocomposite [31], ZrO_2 -Al₂O₃-Fe₃O₄ [32], imidazole functionalized Fe₃O₄@SiO₂ [33], Alumina supported MoO₃ [34], ZrO₂-pillared clay [35], ZnO nanoparticle [36], Fe₃O₄-CNT [37], TiO₂-MWCNT [38], Fe₃O₄@mesoporous SBA-15 [39], Bi₃Mn₂O₇ [40] and RuO₂ [41].

Recently we have reported the synthesis of the nanostructured Bi₂Mn₂O₇ and Bi₂V₂O₇. The cooperative catalytic performance between the metal ions in the above mentioned materials have also been reported in Biginelli reactions [6, 40]. In continuation of our research on the effect of different factors on the cooperative catalysis of the Biginelli reaction, herein we report the synthesis of La³⁺ and Sm³⁺ - doped Bi₂Mn₂O₂ with general formula $Bi_{2-x}La_xMn_2O_7$ and $Bi_{2-x}Sm_xMn_2O_7$ nanomaterials. To the best of our knowledge, there is no report on the synthesis of the La³⁺ and Sm³⁺-doped Bi₂Mn₂O₂ nanomaterials. Besides, there is no report on the catalytic application of the obtained materials in the Biginelli reaction and the investigation of the correlation of the dopant metal ions with the catalytic application. So, the doped nanomaterials were used as nanocatalyst in Biginelli reaction for the synthesis of various DHPMs and the expected cooperation was seen again. Besides, it was rationalized that the hard/soft natures of the metal ions would play important role in the catalytic activity of such catalysts.

MATERIALS AND METHODS

General remarks

All chemicals were of analytical grade, obtained from commercial sources, and used without further purification. Phase identifications were performed on a powder X-ray diffractometer D5000 (Siemens AG, Munich, Germany) using CuK α radiation. The elemental analyses of the obtained materials were examined with a Philips XL30 scanning electron microscope (Philips, Amsterdam, Netherlands) equipped with an energy-dispersive X-ray (EDX) spectrometer. The morphologies of the obtained materials were examined with a field emission scanning electron microscope (Hitachi FE-SEM model S-4160). The UV-Vis diffuse reflectance spectra of the samples were recorded using an Avantes Spectrometer model Avaspec-2048-TEC. Cell parameter refinement was reported by celref software version 3 (Laboratoire des Materiaux et du Génie Physique de l'Ecole Supérieure de Physique de Grenoble). The purity of the DHPMs was checked by thin layer chromatography (TLC) on glass plates coated with silica gel 60 F254 using n-hexane/ethyl acetate mixture as mobile phase.

Hydrothermal synthesis of Bi_{2-x}La_xMn₂O₇

In typical synthetic experiment, 0.01, 0.02 or 0.03 mmol La(NO₃)₃ (Mw=324.92 g mol⁻¹) was mixed respectively with 2.05, 2.04 or 2.03 mmol Bi(NO₃)₃.5H₂O (Mw=485.07 g mol⁻¹) in 70 mL of hot aqueous solution of 1M NaOH. 2.06 mmol MnO₂ (Mw=86.94 g mol⁻¹) was then added and the resulting mixture were transformed into 100 mL Teflon – lined stainless steel autoclaves. The autoclaves were sealed and heated at 180 °C for 48h. When the reactions were completed, the autoclaves were collected, washed with distilled water and dried at 110 °C for 20 min and the black powders of the target materials were obtained.

Hydrothermal synthesis of Bi_{2-x}Sm_xMn₂O₇

The nanomaterials were synthesized following a similar procedure as described for $Bi_{2,x}La_xMn_2O_7$ except 0.01, 0.02, 0.03 or 0.04 mmol Sm_2O_3 (Mw= 348.8 g mol⁻¹) were mixed respectively with 2.05, 2.04, 2.03 or 2.02 mmol Bi(NO₂)₂.5H₂O.

General procedure for the synthesis of DHPMs

In a typical procedure, a mixture of aldehyde (1 mmol), ethyl acetoacetate (1 mmol), urea (1.2 mmol) and 0.014 g of La^{3+} or Sm^{3+} - doped $Bi_2Mn_2O_7$ were placed in a round-bottom flask under solvent free conditions. The suspension was stirred at 104 °C. The progress of the reaction was monitored by thin layer chromatography (TLC) [6:4 hexane:ethylacetate]. After completion of the reaction, the solid crude product was washed with deionized water to separate the unreacted raw materials. The precipitated solid was then collected and dissolved in ethanol to separate the solid catalyst. The filtrate was left undisturbed at room temperature to afford the crystals of the pure product.

RESULTS AND DISCUSSIONS

PXRD analysis

The crystal phases of the synthesized materials were examined by powder X-ray diffraction technique. Fig. 1 and 2 show the PXRD patterns of the La³⁺ and Sm³⁺ - doped Bi₂Mn₂O₂ nanomaterials. The measured powder XRD data are similar to those of the corresponding un-doped Bi₂Mn₂O₂ nanomaterial [22]. Fig. 1 shows the PXRD patterns of La³⁺ - doped Bi₂Mn₂O₇. It was found that with increasing the dopant amount to 0.03 mmol (S_2) , there were some impurity peaks corresponding to the La_2O_3 . So, the doping limitation was 0 to 0.02 mmol of La³⁺ and S, was used for EDX analysis. Excess mole percent concentration of the dopant agent in the reaction mixture, resulted in impurity peaks in the XRD pattern in Fig. 1c [42, 43]. The diffraction lines at $2\theta \approx 39$, 46, 55, 60 and 64° are assigned by their peak positions to the excess La₂O₂ [42, 43]. The X-ray diffraction data for La₂O₃ were identified using the Joint Committee on Powder Diffraction Standards (JCPDS) file: 73-2141.

Fig. 2 shows the PXRD patterns of Sm³⁺ - doped Bi₂Mn₂O₇. It was clear that with increasing the dopant amount to 0.04 mmol, some impurity peaks correspond to Sm₂O₃ were detected. So, the doping limitation was 0 to 0.03 mmol of Sm³⁺ and S₅ was used for EDX analysis. The excess amount of the dopant was appeared as impurity peaks in the XRD pattern of Fig. 1d [44, 45]. The diffraction lines at 20 \approx 35, 36, 47, and 63° are assigned by their peak positions to Sm₂O₃ [44, 45].

Table 1 shows the interplanar spacing (d) data calculated from Bragg's equation for pure and La³⁺ and Sm³⁺ - doped Bi₂Mn₂O₇ nanomaterials. It was found that the d values were increased with increasing the dopant amount of La³⁺ and Sm³⁺ into Bi₂Mn₂O₇. Besides, table 1 shows the cell parameter refinement data of the as-synthesized nanomaterials with standard deviation (SD) data for each sample. It was found that the cell parameters values were increased with increasing the dopant amounts. However, when doping the ions into the crystal system, the d and a values for S₂ and S₃ were decreased.

Table 2 shows the crystal sizes of the assynthesized nanomaterials in different dopant concentrations calculated by Scherrer equation:

$$t = \frac{k\lambda}{B_{\perp}\cos\theta}$$
(1)

In this equation, t is the entire thickness of the crystalline sample, λ is the X-ray diffraction wavelength (0.154 nm), and k is the Scherrer constant (0.9), B_{1/2} of FWHM is the full width at half its maximum intensity and H is the half diffraction angle at which the peak is located. The data mentioned in table 2 shows that with doping La³⁺ into Bi₂Mn₂O₇, the crystal sizes were increased compared to pure Bi₂Mn₂O₇ nanomaterial. It was found that with doping Sm³⁺ into Bi₂Mn₂O₇, the calculated crystal sizes were decreased to nearly the value for pure Bi₂Mn₂O₇.

Fig. 1. PXRD patterns of $Bi_{2,x}La_xMn_2O_7$. (a) $x = 0.01(S_1)$, (b) $x = 0.02(S_2)$, and (c) x = 0.03.

Fig. 2. PXRD patterns of $Bi_{2,x}Sm_xMn_2O_7$. (a) x = 0.01 (S₃), (b) x = 0.02 (S₄), (c) x = 0.03 (S₅), and (d) x = 0.04.

Table 1. Interplanar spacing (d) and cell parameter refinement data for pure and doped – Bi₂Mn₂O₇ nanomaterials.

	Bi ₂ Mn ₂ O ₇	S_1	S ₂	S ₃	S_4	S ₅
2θ (°)	28.580	28.76	28.50	28.73	28.49	28.59
d (Å)	3.114	3.101	3.13	3.105	3.13	3.12
a (SD)(Å)	10.32501	10.3041(0.083)	10.3311(0.0386)	10.3176(0.077)	10.3401(0.0667)	10.3244(0.0492)
Vol. (SD)(Å ³)	1100.71	1094.03(8.854)	1102.64 (4.12)	1098.33(8.32)	1105.53 (7.12)	1100.52 (5.24)

Table 2. Scherrer data information for pure and doped - Bi₂Mn₂O₇ nanomaterials.

Data	20	θ value	B _{1/2} (°)	B _{1/2} (rad)	$\cos\theta_{\rm B}$	t(nm)
Bi ₂ Mn ₂ O ₇	28.58	14.290	0.217	0.00379	0.96910	37.7
S_1	28.76	14.380	0.106	0.00185	0.96867	77.3
S_2	28.50	14.250	0.111	0.00194	0.96923	73.7
S_3	28.73	14.365	0.117	0.00204	0.96873	70.1
S_4	28.49	14.245	0.185	0.00323	0.96925	44.3
S ₅	28.59	14.295	0.185	0.00323	0.96904	44.3

Elemental analysis

The EDX spectra of the obtained nanomaterials as a function of La_2O_3 and Sm_2O_3 concentrations are presented in Fig. 3 a and b. The spectra indicated the X-rays emitted from various elements. The peaks corresponding to La, Sm, Bi, Mn, and O atoms present in the sample are labeled. The respective energy positions and the specific X-ray lines from various elements are also indicated. The Fig.s illustrated the EDX analyses for the sample doped with 0.02 and 0.03 mmol of La_2O_3 and Sm_2O_3 , respectively, which verify the doping and the compositional analysis of La^{3+} and Sm^{3+} in $Bi_2Mn_2O_7$ nanomaterial. The normalized elemental analyses of the doped materials were 1.79 wt. % for La^{3+} and 2.84 wt. % for Sm^{3+} .

Microstructure analysis

Typical FESEM images recorded from La^{3+} doped $Bi_2Mn_2O_7$ nanomaterials are shown in Fig. 4 and 5. From the FESEM images in Fig. 4a–b, with the magnification of 30,000×, and 60,000×, respectively, it was obvious that the morphologies of the obtained materials were mainly rod-like,

Fig. 4. FESEM images of S₁.

and some particles were present on the surface of the rods. At higher magnification of 60,000× in Fig. 4b, it was clear that the thickness sizes of the rods were about 100 nm and the particles diameter sizes were about 50 nm.

Fig. 5 a and b with the magnifications of $30,000\times$, and $100,000\times$ show that with increasing the dopant amount, the morphologies of the doped nanomaterials did not change considerably but the thickness size of the rods was decreased to about 60 nm and the particles' diameter sizes were about 30 - 60 nm.

FESEM images of Sm^{3+} -doped $\text{Bi}_2\text{Mn}_2\text{O}_7$ nanomaterials are shown in Fig. 6, Fig. 7 and Fig.8. Fig. 6 a – b with the magnifications of 30,000×, 60,000×, and 90,000× showed that the obtained nanomaterials had wire and rod-like morphologies. Fig. 6 b shows that the thickness sizes of the rod structures were about 70 nm and the length size was about 250 nm. It shows that the thickness sizes of the wires were about 70 nm and the length sizes were about 1.5 µm.

Fig. 7 a – d with the magnifications of $4,000\times$,

6,000×, 6,000× and 20,000× show that the morphology of the S_4 was a mixture of prism and flower-like structures. It was clear that with increasing the dopant amount, the morphology was changed from wire and rod to flower structures. It seemed that the flower had been composed of some prisms that joined together and formed a flower structure. It was clear that the flowers thickness sizes were in micrometer ranges and were about 2 μ m. Fig. 7 a and d show that there are two kinds of prisms in view of their sizes. The length sizes of the larger prisms were about 15 μ m and for the smaller ones were about 1.5 μ m.

Fig. 8 a – d with the magnifications of 2,000×, 10,000×, 15,000×, and 60,000× show that the morphologies of the obtained nanomaterials were a mixture of prisms, wires and rod-like structures. It was found that there were some prisms that had been grown on the surface of the larger ones. It was also clear that there were some particles with rod-like morphologies on the surface of the prisms. Fig. 8d shows the wire and rod structures

Fig. 5. FESEM images of S2.

Fig. 6. FESEM images of S₃.

S. Khademinia and M. Behzad / Synthesis and Catalytic Performance of La³⁺ and Sm³⁺ - Doped Bi₂Mn₂O₇

Fig. 7. FESEM images of S₄.

Fig. 8. FESEM images of S₅.

in one view. This figure shows that the wires thickness sizes were about 60 nm and the length sizes were about 1.5 μm . Also, the rod thickness sizes were about 200 nm and the length sizes were about 1 μm .

Optical property

The direct optical band gaps for pure Bi₂Mn₂O₂

and La³⁺ and Sm³⁺ doped Bi₂Mn₂O₇ nanomaterials are shown in Fig. 9 a-c. To calculate the optical band gaps, we changed transmittance data to absorption ones using A = - log (T/100) formula; where A is absorption and T is transmittance. According to the results of Pascual et al. [46], the relation between the absorption coefficient and incident photon energy can be written as (α hv)² =

A(hv - Eg), where A and Eg are constant and direct band gap energy, respectively. Band gap energies were evaluated by extrapolating the linear part of the curve to the energy axis. It was found that by doping La³⁺ and Sm³⁺ into Bi₂Mn₂O₇, the band gap was increased; i.e., 3.8 and 4.30 eV for S₂; and 3.9 and 4.3 eV for S_e.

Catalytic studies

Biginelli reaction for the synthesis of DHPMs

The one-pot condensation between ketoesters, aldehydes and urea, in the presence of either Lewis or mineral acids, results in the synthesis of DHPMs. In this study, DHPMs were prepared from the condensation of aromatic aldehydes, ethyl acetoacetate in presence of 0.014 g of doped $Bi_2Mn_2O_7$ (S_2 and S_5) at 104 °C for 66 min under

solvent free conditions (Fig. 10). The optimum conditions were used as for pure $Bi_2Mn_2O_7$ [40]. The results are collected in table 3.

Table 4 shows the catalytic efficiency of the synthesized doped $Bi_2Mn_2O_7$ nanomaterials compared to that of pure $Bi_2Mn_2O_7$ [40]. The optimized conditions from the previous work were used [40]. In two earlier works, we have reported the catalytic efficiency of $Bi_2Mn_2O_7$ and $Bi_2V_2O_7$ nanomaterials in the Biginelli reactions [6, 40]. In those works, we concluded that the band gap had an important effect on the catalytic performance of the studied nanomaterials. $Bi_2V_2O_7$ with the lower band gap was the more efficient catalyst. Another conclusion which was drawn was that the hard and soft nature of the metal ions was also important. $Bi_2V_2O_7$ with the slightly softer V⁴⁺

Fig. 10. Schematic representation of the reaction pathway for the synthesis of DHPMs.

S. Khademinia and M. Behzad / Synthesis and Catalytic Performance of La³⁺ and Sm³⁺ - Doped Bi₂Mn₂O₇

R	<u> </u>	Y	ield (%) of products f	or:	
	S ₁	S_2	S_3	S_4	S ₅
H	89	92	85	92	85
4-Cl	47	51	34	41	37
2-Cl	75	78	71	78	71
3-OMe	40	44	62	44	55
3-OH	94	91	94	83	76
3-NO ₂	92	85	95	92	88

Table 3. Biginelli reactions using ethyl acetoacetate and urea with different benzaldehyde derivatives.

Table 4. Comparison study of the cata	alvtic ability among the synthe	esized doped Bi, Mn, O, nan	omaterial and pure Bi ₂ Mn ₂ O ₂ .

Catalyst	Band gap (eV)	Н	4-C1	2-Cl
Bi ₂ Mn ₂ O ₇	3.75 and 4.20	96	89	86
S_2	3.80 and 4.30	92	51	78
S ₅	3.90 and 4.30	85	37	71

Table 5. Comparison study of the catalytic ability of the synthesized doped Bi₂Mn₂O₇ nanocatalysts with other catalysts.

Catalyst	R ₁	Catalyst amount	Reaction Condition	Yield %	Time (min)	Ref.
S ₂	H 4-Cl 2-Cl	0.014 g	solvent-free, 104 °C	92 51 78	66	This work
S ₅	H 4-Cl 2-Cl	0.014 g	solvent-free, 104 °C	82 37 71	66	This work
$Bi_2V_2O_7$	H 4-Cl 2-Cl	$3.1 \times 10^{-2} \text{ mmol}$	solvent-free, 90 °C	89 92 98	60	[6]
ZrO2-Al2O3-Fe3O4	H 4-Cl 2-Cl	0.05 g	Ethanol, reflux, 140 °C	82 66 40	300	[32]
M_0/γ - Al_2O_3	Н	0.3 g	solvent-free at 100 °C	80	60	[34]
ZnO	H 4-Cl	25 mol%	solvent-free at 90 °C	92 95	50	[36]
Bi ₂ O ₃ /ZrO ₂	H 4-Cl 2-Cl	20 mol%	solvent-free, 80-85 °C	85 85 82	120 120 165	[37]
Bi ₂ Mn ₂ O ₇	H 4-Cl 2-Cl	2.2×10^{-2} mmol	solvent-free, 104 °C	96 89 86	66	[40]

compared to Mn^{4+} in $Bi_2Mn_2O_7$ had shown better catalytic performance. To further confirm this idea we prepared La^{3+} and Sm^{3+} doped $Bi_2Mn_2O_7$. Our results collected in table 4 shows that by doping the M^{3+} metal ions into $Bi_2Mn_2O_7$, the band gap was increased. The increased band gap has resulted in the decreased catalytic performance of the synthesized nanomaterials in Biginelli reactions. It could also be concluded that since the harder M^{3+} ions have replaced the softer Bi^{3+} metal ion, the catalytic performance was also decreased.

To show the merit of the present work, we

have compared the doped ${\rm Bi_2Mn_2O_7}$ nanocatalysts results with some of the previously reported catalysts in the synthesis of DHPMs (table 5). It is clear that the doped ${\rm Bi_2Mn_2O_7}$ nanocatalysts showed greater activity than some other heterogeneous catalysts.

CONCLUSION

In this work, La^{3+} and Sm^{3+} - doped $Bi_2Mn_2O_7$ nanomaterials were synthesized via a mild condition hydrothermal method. The catalytic application of the synthesized nanomaterials was investigated in Biginelli reaction in solvent free conditions. It was found that the doped- $Bi_2Mn_2O_7$ nanocatalysts had considerable efficiency in the synthesis of DHPMs. A correlation between the band gap results and the hard/soft nature of the metal ions was concluded.

CONFLICT OF INTEREST

The authors declare that there are no conflicts of interest regarding the publication of this manuscript.

REFERENCE

- Radhakrishnan AN, Rao PP, Linsa KSM, Deepa M, Koshy P. Influence of disorder-to-order transition on lattice thermal expansion and oxide ion conductivity in (CaxGd1-x)2(Zr1xMx)2O7 pyrochlore solid solutions. Dalton Transactions. 2011;40(15): 3763-3839.
- Blanchard PER, Liu S, Kennedy BJ, Ling CD, Zhang Z, Avdeev M, et al. Investigating the order–disorder phase transition in Nd2–xYxZr2O7via diffraction and spectroscopy. Dalton Transactions. 2013;42(41):14875.
- Martínez-Coronado R, Retuerto M, Fernández MT, Alonso JA. Evolution of the crystal and magnetic structure of the R2MnRuO7 (R = Tb, Dy, Ho, Er, Tm, Yb, Lu, and Y) family of pyrochlore oxides. Dalton Transactions. 2012;41(28):8575.
- Sickafus KE, Minervini L, Grimes RW, Valdez JA, Ishimaru M, Li F, McClellan KJ, Hartmann T. Radiation Tolerance of Complex Oxides. Science, 2000; 289 (5480): 748-751.
- 5. Sickafus KE. Radiation Tolerance of Complex Oxides. Science. 2000;289(5480):748-51.
- Khademinia S, Behzad M, Jahromi HS. Solid state synthesis, characterization, optical properties and cooperative catalytic performance of bismuth vanadate nanocatalyst for Biginelli reactions. RSC Advances. 2015;5(31):24313-8.
- Khademinia S, Behzad M. hydrothermal synthesis, characterization and optical properties of strontium pyroniobate. Adv. Powder Tech., 2015; 26 (2): 644-649.
- Khademinia S, Behzad M. Low temperature hydrothermal synthesis, characterization and optical properties of strontium pyroniobate. Advanced Powder Technology. 2015;26(2):644-9.
- Khademinia S, Behzad M. Lanthanum cerate (La2Ce2O7): hydrothermal synthesis, characterization and optical properties. International Nano Letters. 2015;5(2):101-7.
- Jones A, Slater PR, Islam MS. Local Defect Structures and Ion Transport Mechanisms in the Oxygen-Excess Apatite La9.67(SiO4)6O2.5. Chemistry of Materials. 2008;20(15):5055-60.
- Qin C, Huang Y, Chen G, Shi L, Qiao X, Gan J, et al. Luminescence properties of a red phosphor europium tungsten oxide Eu2WO6. Materials Letters. 2009;63(13-14):1162-4.
- Cavalli E, Calestani G, Belletti A, Bettinelli M, Speghini A. Optical spectroscopy of Nd3+ in LiLa9(SiO4)6O2 crystals. Optical Materials. 2009;31(9):1340-2.
- Yang Z, Tian J, Wang S, Yang G, Li X, Li P. Combustion synthesis of SrIn2O4:Eu3+ red-emitting phosphor for white light-emitting diodes. Materials Letters. 2008;62(8-9):1369-71.

- Zhang W, Lu C, Ni Y, Song J, Xu Z. Preparation and characterization of Sm2O3/Cu mosaic structure with infrared absorptive properties and low infrared emissivity. Materials Letters. 2012;87:13-6.
- 15. Khor KA, Yang J. Lattice parameters, tetragonality () and transformability of tetragonal zirconia phase in plasma-sprayed ZrO2-Er2O3 coatings. Materials Letters. 1997;31(1-2):23-7.
- Belous AG, Kravchyk KV, Pashkova EV, Bohnke O, Galven C. Influence of the Chemical Composition on Structural Properties and Electrical Conductivity of Y-Ce-ZrO2. Chemistry of Materials. 2007;19(21):5179-84.
- 17. Bukaemskiy AA, Barrier D, Modolo G. Physical properties of 8mol% Ceria doped yttria stabilised zirconia powder and ceramic and their behaviour during annealing and sintering. Journal of the European Ceramic Society. 2006;26(8):1507-15.
- Kaplyanskii AA, Kulinkin AB, Kutsenko AB, Feofilov SP, Zakharchenya RI, Vasilevskaya TN. Optical spectra of triply-charged rare-earth ions in polycrystalline corundum. Physics of the Solid State. 1998;40(8):1310-6.
- Alemi A, Khademinia S. Part I: lithium metasilicate (Li2SiO3)—mild condition hydrothermal synthesis, characterization, and optical properties. International Nano Letters. 2014;5(1):15-20.
- Nogami M, Abe Y. Properties of sol—gel-derived Al2O3-SiO2 glasses using Eu3+ ion fluorescence spectra. Journal of Non-Crystalline Solids. 1996;197(1):73-8.
- Khademinia S, Behzad M. Bismuth Pyromangenate: Hydrothermal and Solid State Synthesis, Characterization and Optical Properties. J. Adv. Mater. Proc., 2015; 3 (1): 77-84.
- 22. Khademinia S, Behzad M, Jahromi HS. Solid state synthesis, characterization, optical properties and cooperative catalytic performance of bismuth vanadate nanocatalyst for Biginelli reactions. RSC Advances. 2015;5(31):24313-8.
- 23. Biginelli P. Ueber Aldehyduramide des Acetessigäthers. Berichte der deutschen chemischen Gesellschaft. 1891;24(1):1317-9.
- 24. Genesis of Dihydropyrimidinone Calcium Channel Blockers: Recent Progress in Structure-Activity Relationships and Other Effects. Mini-Reviews in Medicinal Chemistry. 2009;9(1):95-106.
- Kouachi K, Lafaye G, Pronier S, Bennini L, Menad S. Mo/γ-Al2O3 catalysts for the Biginelli reaction. Effect of Mo loading. Journal of Molecular Catalysis A: Chemical. 2014;395:210-6.
- 26. Tamaddon F, Moradi S. Controllable selectivity in Biginelli and Hantzsch reactions using nanoZnO as a structure base catalyst. Journal of Molecular Catalysis A: Chemical. 2013;370:117-22.
- Samantaray S, Mishra BG. Combustion synthesis, characterization and catalytic application of MoO3– ZrO2 nanocomposite oxide towards one pot synthesis of octahydroquinazolinones. Journal of Molecular Catalysis A: Chemical. 2011;339(1-2):92-8.
- Safari J, Gandomi-Ravandi S. MnO2–MWCNT nanocomposites as efficient catalyst in the synthesis of Biginelli-type compounds under microwave radiation. Journal of Molecular Catalysis A: Chemical. 2013;373:72-7.
- Memarain HR, Ranjbar M. Substituent effect in photocatalytic oxidation of 2-oxo-1,2,3,4-tetrahydropyrimidines using TiO2 nanoparticles. Journal of Molecular Catalysis A:

S. Khademinia and M. Behzad / Synthesis and Catalytic Performance of La³⁺ and Sm³⁺ - Doped Bi₂Mn₂O₇

Chemical. 2012;356:46-52.

- Guguloth VC, Raju G, Basude M, Battu S. Efficient, stable and reusable Bi₂O₃/ZrO₂ catalyzed one-pot synthesis of 3, 4-dihydropyrimidi-2 (1H)-ones under solvent-free conditions. Int. J. Chem. Anal. Sci., 2014; 5(2): 86-92.
- Ahmed N, van Lier JE. TaBr5-catalyzed Biginelli reaction: one-pot synthesis of 3,4-dihydropyrimidin-2-(1H)-ones/ thiones under solvent-free conditions. Tetrahedron Letters. 2007;48(31):5407-9.
- Wang A, Liu X, Su Z, Jing H. New magnetic nanocomposites of ZrO2–Al2O3–Fe3O4as green solid acid catalysts in organic reactions. Catal Sci Technol. 2014;4(1):71-80.
- 33. Javidi J, Esmaeilpour M, Dodeji FN. Immobilization of phosphomolybdic acid nanoparticles on imidazole functionalized Fe3O4@SiO2: a novel and reusable nanocatalyst for one-pot synthesis of Biginelli-type 3,4-dihydro-pyrimidine-2-(1H)-ones/thiones under solvent-free conditions. RSC Advances. 2015;5(1):308-15.
- 34. Jain SL, Prasad VVDN, Sain B. Alumina supported MoO3: An efficient and reusable heterogeneous catalyst for synthesis of 3,4-dihydropyridine-2(1H)-ones under solvent free conditions. Catalysis Communications. 2008;9(4):499-503.
- Pourshamsian Kh. ZnO-NPs as an efficient reusable heterogeneous catalyst for synthesis of 1,4-Dihydropyrimidine derivatives in solvent-free conditions. Int. J. Nano Dimens., 2015; 6 (1): 99-104.
- An efficient one-pot synthesis of polyhydroquinoline derivatives via Hantzsch condensation using heterogeneous catalyst under solvent-free conditions. Arkivoc. 2006;2006(2):201.
- 37. Safari J, Gandomi-Ravandi S. Fe3O4–CNTs nanocomposites: a novel and excellent catalyst in the synthesis of diarylpyrimidinones using grindstone chemistry. RSC Adv. 2014;4(22):11486-92.

- Safari J, Gandomi-Ravandi S. Titanium dioxide supported on MWCNTs as an eco-friendly catalyst in the synthesis of 3,4-dihydropyrimidin-2-(1H)-ones accelerated under microwave irradiation. New J Chem. 2014;38(8):3514-21.
- 39. Mondal J, Sen T, Bhaumik A. Fe3O4@mesoporous SBA-15: a robust and magnetically recoverable catalyst for onepot synthesis of 3,4-dihydropyrimidin-2(1H)-ones via the Biginelli reaction. Dalton Transactions. 2012;41(20):6173.
- Soleimani F, Behzad M, Salehi M. experimentally designed optimized conditions for catalytic performance of nanostructured RuO₂ in Biginelli reaction. JNS., 2015: 5 (4): 351-360.
- Bahari A, Khorshidi Z, Gholipur R. Proceedings of the 4th International Conference on Nanostructures (ICNS4) 12-14 March, 2012, Kish Island, I.R. Iran.
- Bahari A, Gholipur R, Khorshidi Z. Electrical Properties of Zr-Doped La₂O₃ Nanocrystallites as a Good Gate Dielectric. Defect and Diffusion Forum. 2012;329:129-38.
- Méndez M, Carvajal JJ, Cesteros Y, Aguiló M, Díaz F, Giguère A, et al. Sol–gel Pechini synthesis and optical spectroscopy of nanocrystalline La2O3 doped with Eu3+. Optical Materials. 2010;32(12):1686-92.
- Park DJ, Sekino T, Tsukuda S, Hayashi A, Kusunose T, Tanaka S-I. Photoluminescence of samarium-doped TiO2 nanotubes. Journal of Solid State Chemistry. 2011;184(10):2695-700.
- 45. Zhang H, Dai H, Liu Y, Deng J, Zhang L, Ji K. Surfactant-mediated PMMA-templating fabrication and characterization of three-dimensionally ordered macroporous Eu2O3 and Sm2O3 with mesoporous walls. Materials Chemistry and Physics. 2011;129(1-2):586-93.
- Pascual J, Camassel J, Mathieu H. Fine structure in the intrinsic absorption edge of TiO2. Physical Review B. 1978;18(10):5606-14.