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Here, the effect of lightly Niobium doped TiO2 layer on the performance 
of perovskite solar cells has been studied by using solar cell capacitance 
simulator (SCAPS). N addition, the effects of Niobium concentration, 
buffer film thickness and operating temperature on the performance of the 
perovskite solar cell are investigated. For doping level of 3.0 mol% into 
the TiO2 layer, cell efficiency of 18.26% with Voc of 0.96 V, Jsc of 22.45 
mA/ cm2 and FF of 84.25% has been achieved. Calculations show that 
thickness widening of Nb-doped TiO2 layer would decrease the efficiency 
and Voc of the cells. Increase in operating temperature from 300 k to 400 
k would weaken the performance of the perovskite solar cell with both 
pure and Nb-doped TiO2 layers. However, the cell with Nb-doped TiO2 
layer shows higher stability than the cell with pure TiO2 buffer at higher 
temperatures. 

INTRODUCTION
Due to the exhaustion of traditional energy 

sources and serious need for the energy, 
replacement of new and clean energy is a vital task 
for scientists. In recent years, solar energy due to 
its availability and abundance is being considered 
as a replacement for energy. During last five years, 
perovskite solar cell has absorbed scientist’s 
attention from all parts of the world[1-7] and 
recently power conversion efficiency of close 
to 20% is reported [8, 9]. As a very important 
component for perovskite solar cells, wide 
band gap materials such as TiO2 for their unique 
characteristics such as wide range of applications, 
controllable framework compositions and tunable 
pore sizes have attracted scientists [10-13]. Up 

until now for application in dye sensitized solar 
cells, TiO2 with different morphologies such 
as nanoparticles [14, 15], nanowires [16, 17], 
nanosheets [18], nanotubes [19, 20], spheres 
[21, 22] and some other mesoscopic structures 
[23-27] has been used. Another way to improve 
characteristics of TiO2 as an electrode is doping. 
For this purpose, TiO2 can be n-type doped to 
improve charge collection and electron transport 
properties. One of the elements that were used 
as a dopant with different concentrations (up 
to a doping level of 20 mol%) to enhance TiO2 
performance is Niobium (Nb) [28-32]. To date, few 
researches on application of Nb-doped TiO2 have 
been done to improve the conversion efficiency 

                           This work is licensed under the Creative Commons Attribution 4.0 International License.
To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.



120

A. Baktash et al. / Perovskite Solar Cells Base on Niobium Doped TiO2

J Nanostruct 10(1): 119-127, Winter 2020

of dye-sensitized solar cells (DSSCs) [30, 33]. To 
the best of our knowledge, however, there is no 
experimental or theoretical study for application 
of Nb- doped TiO2 in perovskite solar cell. To 
control the junction characteristics and enhance 
the charge transport properties of TiO2 electrode, 
Nikolay and co-workers work on lightly doped 
(from 0.5 to 3 mol% Nb) TiO2 [33] and an increasing 
in the photocurrent of DSSCs with lightly doped 
(from 2.5 to 10 mol% Nb) TiO2 were concluded by 
Lu and co-workers [30]. 

Buffer layer plays an important role in cell’s 
efficiency, so choosing a suitable buffer layer is very 
important for creation of an efficient perovskite 
solar cell [34]. The band gap [33], stability [35], 
and charge transport property [36] can be tuned 
by doping different concentrations of Nb into the 
TiO2 structure. 

In this study, our aim is to show that 
application of Nb-doped TiO2 could improve the 
efficiency of Provskite solar cell. As experiment 
has shown before, Lightly Nb-doped TiO2 will 
result in widening band gap [33]. In this work the 
effect of band gap widening, effects of operating 
temperature and thickness variation of Nb-doped 
TiO2 as a buffer layer on performance of Provskite 
solar cells are investigated. For this purpose, 
we considered a doping level of 1.5, 2.5 and 3 
mol%. For base electronic properties of simulated 
pure and doped TiO2, experimental results and 
parameters are used [33, 39]. 

COMPUTATIONAL METHOD 
In this work, SCAPS version 3.2.01(a Solar 

Cell Capacitance Simulator) software which is a 
one dimensional solar cell simulation program is 
used. This software is developed at Department of 
Electronics and Information Systems (ELIS) of the 
University of Gent, Belgium [37]. The simulated 
perovskite solar cell has layer configuration with 
transparent conductive oxide (TCO)/ blocking 

layer (TiO2)/ absorber/ and hole transport material 
(HTM) layers. The considered materials for the 
mentioned layers are fluorine doped SnO2 (SnO2:F), 
pure and doped TiO2 , CH3NH3PbI3-XCl3 and spiro-
OMeTAD, respectively. For TiO2, the effect of the 
Niobium dopant with the concentrations of 1.5, 
2.5 and 3 mol% into TiO2 is considered [33] and 
accordingly the electron affinity of the layer are 
varied too. The descriptions of base parameters 
are available in Table 1, and Table 2 which shows 
the base parameter set for different layers of 
the simulation that have been used in this study. 
The thicknesses of layers are chosen based on 
experimental works on perovskite solar cell. To 
consider interface recombination, the interface 
layers INT1 and INT2 were defined from reference 
[38]. In this study, to obtain carrier diffusion 
lengths (Ln and Lp) of 1 μm that is similar to that 
of for experimental work, the  value of defect 
parameters for all layers are considered identical 
and defect density for absorber is assumed equal 
to Nt= 2.5 × 1013 cm3[40]. 

RESULTS AND DISCUSSION 
Effect of doping concentration

To simulate the effect of doping concentration 
into the buffer layer of perovskite solar cell, we 
considered the effect of Niobium dopant on the 
energy band gap of the TiO2 layer. The data for 
band gap energy that are used in simulations 

Parameter Definition 
Ӽ Electron Affinity 
Ԑr Relative permittivity 
µN(cm2/Vs) Electron band mobility 
µP (cm2/Vs) Hole band mobility 
NA(cm-3) Acceptor concentration 
ND(cm-3) Donor concentration 
Nt (cm-2) Defect Density 

 
 

 
 
 
 
 

  

 
 
 
 
 
 
 
 
 
 
 

Parameters  TCO TiO2 INT1 Absorber INT2 HTM 
Thickness(nm) 500 100 10 330 10 350 
Eg(ev) 3.5  3.05[33] 1.55 1.55 [44] 1.55 3 [42] 
Ӽ (ev) 4  4.21[xx] 3.9 3.9[45] 3.90 2.45 [42] 
Ԑr 10  10  6.5 6.5 [38] 6.5 3 [43] 
µN (cm2/Vs) 15  15 [39] 2.0 2.0 [2] 2.0 2×10-4 [42] 
µP (cm2/Vs) 10  10 [39] 2.0 2.0 [2] 2.0 2×10-4 [42] 
ND(cm-3) 2×1019  1018 [39] 1013 1013 1013 - 
NA(cm-3) - - - - - 2×1018 [41] 
Nt (cm-2) 1015 1016 1017 2.5×1013 1017 1015 

 
 
 
 
 
 
 
  

Table 1. Definition of electronic properties

Table 2. Base Parameters for simulated solar cell
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are chosen from experimental results [33]. The 
amount of Niobium into the TiO2 layer and the 
energy band gap of the pure and doped layers are 
available in Table. 3.

Fig. 1 shows the fill factor (FF) and efficiency 
(η) for different doping concentrations. As it can 
be seen from the Fig. 1, cell efficiency and FF for 
doped samples are improved. The calculated cell’s 
efficiency for pure cell is 15.52% and for 1.5, 2.5, 
and 3 mol% Nb-doped cells are 15.71%, 17.39% 
and 18.26%, respectively. The value of FF increased 
from 71.43% for pure TiO2 to 84.25% for 3.0 mol% 
Nb- doped layer. Also, FF for 1.5 and 2.5 mol% 
Nb-doped are 79.09% and 83.77%, respectively. 
As it can be seen from table 3, adding Niobium as 
a defect into TiO2, caused the band gap widening 
for doped TiO2 layer. This can be explained by the 
difference in band gap energy of anatase (with 
Eg= 3.2 ev) and rutile (with Eg= 3.0 ev) phases. The 
use of Niobium into the TiO 2 structure facilitates 
the formation of anatase phase and prevents the 
formation of rutile phase [33-36]. The shift in the 
conduction band minimum position toward the 
LUMO of the absorber may enhance the electron 
injection from the absorber to the conduction band 

of TiO2. Also, another reason for improvement in 
cell’s performance is existence of oxygen vacancies 
into the structure and on the surface of TiO2 that 
is independent from the band gap energy. Oxygen 
vacancies on the surface of and inside TiO2, give 
p-type characteristics to the structure. Utilization 
of Niobium into the TiO2, because of its tendency 
for attracting extra oxygen, Niobium reduces the 
oxygen vacancies and strengthens the n-type 
characteristics of the layer. 

Fig. 2 shows open circuit voltage (Voc) and 
short circuit current density (Jsc) of the cells with 
different Niobium doping levels. By doping Nb 
into the TiO2 structure, minimum conduction 
band level of TiO2, because of band gap widening, 
moves toward the LUMO level of the absorber. 
Closeness of minimum conduction band of TiO2 
to LUMO level of the absorber facilitates electron 
injection from the absorber into the TiO2 layer and 
consequently improves the Jsc of the cell. Higher 
carrier concentrations at TCO layer and HTM layer 
Improve Voc too. However, calculations of our 
simulation (Fig. 2) show a rapid strange decline 
in Voc from pure TiO2 layer to 1.5 mol% Nb-doped 
sample. On the other hand, comparing pure and 
doped cells, a rapid and irrational rise for FF (From 
71.43% for pure layer to 79.09% for doped layer) 
is seen too. 

Effect of Buffer Thickness
In this section, the effect of the thickness of the 

Nb-doped TiO2 layer on the performance of the 
perovskite solar cell is investigated. The Thickness 

 
 
 
 
 
 
 
 

Percentage of Niobium (% mol) Bang Gap Energy (ev) 
Pure 3.05 
1.5% 3.06 
2.5% 3.12 
3.0% 3.18 

 

Table 3. The energy band gap for different concentrations of 
Nb into TiO2 film.
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Fig. 1. Cell’s efficiency and fill factor for different doping levels.
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of this layer as a buffer layer was considered 100 
nm in order to study the effect of dopant on cell’s 
performance. To study the effect of doped buffer’s 
thickness on the cell, the thickness of 1.5 mol% 
Nb-doped layer is changed from 50nm to 300 
nm in this simulation. The results for efficiency 
and FF have been shown in Fig. 3. Based on the 
information from Fig. 3, increase in thickness of 
the Nb-doped TiO2 layer has a negative impact 
on the cells efficiency. However, the FF of the 
simulated cell is improved.

Fig. 4 demonstrates the results for Voc and Jsc. It 
has been shown in Fig. 4 that by increasing thickness 
of the doped buffer layer, the Jsc of the cell goes 
toward the lower current density values. Possible 
reason is that photon loss is happening when the 
thickness is increasing. In fact, each photon is 

carrying energy and when the thickness of the layer 
is increased, the numbers of absorbed photons by 
the layer are increased too. Accordingly the number 
of photons that have been transferred from the 
buffer layer to the absorber would decrease too. 
Therefore, reduction in the number of photons 
inside the absorber layer would cause the Jsc to fall 
down and consequently reduce the efficiency. 

Spectral of solar cell with variable thickness 
of Nb-doped TiO2 buffer layer are shown in Fig. 
5. From Fig. 5, it can be found that by enlarging 
the thickness, the incident photon to electron 
efficiency (IPCE) of the cell is being reduced 
(especially for short wavelengths). So, thicker 
buffer layer would cause for the absorption in 
short wavelengths and consequently the loss in 
absorption edge would happen.   
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Fig. 2. Open circuit voltage (Voc) and short circuit current density (Jsc) for different doping levels.
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Fig. 3. Impact of thickness on the η and the FF of the peroskite solar cell.
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Effect  of Temperature
Temperature plays a vital role in the 

performance of solar cells. The variation of 
temperature could have intense influence on 
the efficiency of solar cell. In this study, up to 
now, all the calculations were done at 300 K. In 
this section, our aim is to study the effect of the 
temperature on the performance of the perovskite 
solar cell with Nb- doped TiO2 buffer layer. For this 
purpose, the operating temperature has been 
changed from 300 K to 325, 350, 375 and 400 K. 
Fig. 6 illustrate that how the temperature variation 
could affect the efficiency and fill factor of the cell. 

As it can be found from Fig. 6, when the operating 
temperature is increased from 300K to 400K, the 
efficiency of the cell is dramatically reduced from 
18.26% to 14.07%. 

Actually, temperature could affect Physical 
parameters such as the electron and hole mobility 
as well as carrier concentration and band gap of 
the layers. Higher temperature can also lead to the 
production of more electrons into the conduction 
band that leads to the higher short circuit current 
density (Jsc). On the other hand, the band gap 
energy at higher temperatures would reduce and 
this would increase the recombination rate of 
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Fig. 4. Impact of the thickness on the Voc and the Jsc of the peroskite solar cell.
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Fig. 5. Quantum Efficiency diagram for the cell with different buffer thicknesses.
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mobile electrons and holes between the valance 
band and the conduction band which finally leads 
to the reduction in Jsc. Also, Voc decreases at higher 
temperatures, whereas it increases with increasing 
in band gap. The results from our simulation (Fig. 
7) have proven the experimental results. For the 
perovskite simulated cell, from 300K to 400K the 
Voc decreased from 0.965V to 0.79V, while the short 
circuit current density is not significantly changed.

The efficiency of the Nb-doped TiO2 perovskite 
solar cell by increasing the operating temperature 
from 300 K to 400K has been reduced by 22.9%. 

The effect of the temperature on perovskite 
solar cell with pure TiO2 layer has been studied 
too. The results in Fig. 8 shows that the efficiency 
of the cell with pure buffer layer is reduce too. By 

an increase in temperature from 300 K to 400 K, 
the efficiency of the cell declined from 15.52% to 
11.47%. The efficiency of the cell for 325, 350 and 
375 K are 14.49%, 13.48%, and 12.48%, respectively. 

For the cell with pure buffer layer, reduction in 
efficiency with increase in operating temperature 
would occur faster than that of for the solar cell with 
Nb-doped TiO2 buffer layer. Therefore, at higher 
temperatures, perovskite solar cell with Nb-doped 
TiO2 buffer is more stable than the cell with pure 
TiO2 buffer layer. The results for the impact of the 
temperature on the efficiency of doped and pure 
buffer layers are shown in Fig. 9. The reduction rate 
in efficiency for pure perovskite solar cell is 26.09%, 
while the rate for the cell with Nb-doped buffer is 
22.9%.  
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Fig. 6. Effect of temperature on FF and η of perovskite cell with Nb-doped TiO2 buffer layer.
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Fig. 7. Effect of temperature on Voc and Jsc of perovskite cell with Nb-doped TiO2 buffer layer.
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CONCLUSION 
Effect of Niobium dopant concentration into the 

TiO2 buffer layer and its effect on the performance of 
the perovskite solar cell are studied. The cell’s efficiency 
increased from 15.52% to 18.26% with doping level 
of 3.0 mol%. Also, the effect of thickness on doped 
TiO2 buffer layer and effect of operating temperature 
on the performance of the perovskite solar cell with 
doped and pure buffer layers are investigated too. 

Optimum thickness for the cell with doped buffer 
layer is around 50nm to 100 nm. In general the 
operating temperature has negative effect on cell’s 
performance. The efficiency of the cell with pure and 
doped buffer layers decreased from 15.52% to 11.47% 
(with 26.09% reduction) and 18.26% to 14.07% (with 
22.9% declination), respectively. Therefore, the cell 
with doped buffer layer shows better stability at 
higher operating temperatures. 
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Fig. 8. Effect of temperature on FF and η of perovskite cell with pure TiO2 buffer layer.

Fig. 9. Comparison of the pure TiO2 and Nb-doped TiO2 buffer layers at different operating temperatures (300K- 400K).
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