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In this work, a new method for ethanol oxidation based on core–shell 
titanium dioxide / carbon nanofibers (TiO2@C NFs), TiO2 as a core 
and carbon as a shell, decorated Ni nanoparticles (NiNPs) is presented. 
TiO2@C NFs were prepared by mixing the electrospinning technique 
and hydrothermal method. Nickel nanoparticles were electrodeposed 
on the surface of TiO2@C NFs denoted as TiO2@C- Ni. The catalyst 
was characterized by SEM and electrochemical methods. Performance 
of ethanol oxidation was investigated in aqueous NaOH solutions by 
chronoamperometry and cyclic voltammetry. The electrochemical 
measurements showed that this electrode is effective and has good 
electrocatalytic activity for ethanol oxidation and the structures of 
nanofibers have important effect on the electrooxidation of ethanol. 
The synergy between Ni, carbon shell and TiO2 support, boost ethanol 
oxidation on TiO2@C- Ni.

INTRODUCTION
Recently alcohol fuel cells has been increased 

consideration because of their environmental 
friendliness, high energy conversion efficiency and 
low emissions [1,2]. Many effort have been made 
to improve the electro-oxidation performance of 
alcohols such as methanol, ethanol and propanol 
[3]. Ethanol is known as an ideal material for fuel 
cells due to its high energy density, low toxicity, 
large production from renewable sources and 
transportation [4], but several main restrictions 
exist in the practical usage of ethanol in the field of 
fuel cells, such as low electro-oxidation activities, 
high cost of noble metal based catalysts, and so 
on [5,6]. Hence for reduce the cost of catalysts, Pt-
free materials such as Pd have been studied [7,8].

As successor for valuable metals, non-noble 
metals, nickel and nickel compounds are noteworthy 
because of their low cost, electrochemical stability, 
resistance to poisoning, and high catalytic activity 
for electro-oxidation of ethanol. The catalysts for 
ethanol oxidation is more energetic in alkaline 
medium than acid medium [9–12]. In alkaline 
solutions nickel converted to Ni (OH) 2 and the Ni2+/
Ni3+ redox show high catalytic activity for oxidation 
of some small organic compounds [13,14]. Nickel is 
an impressive and inexpensive catalyst for oxidation 
of small organic compounds including carbohydrates 
[15,16], methanol [17,18] and ethanol [19–24]. For 
example, nickel redox, Ni (OH) 2/NiOOH, formed on 
the nickel surface display high catalytic activity for 
oxidation of ethanol in alkaline media. Because of 
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the low electrical conduction of these changed and 
accumulation of small Ni nanoparticles limited their 
electrocatalytic performance [25,26]. To solve the 
problems, Ni nanocrystals were dispersed and fixed 
on a solid support, usually using carbon materials as 
the matrix [27–29]. The electrocatalytic performance 
of the nanocomposites will be improved due to the 
highly conductive matrix, structural properties and 
fixation of Ni nanocrystals.

Graphite nanofiber (GNF) [30], carbon nanotubes 
(CNT) [31–34], carbon nanohorns [35] and carbon 
nanocoils [36] applied as carbon support for 
fuel cell usage. TiO2–carbon materials have been 
considered as catalyst support materials in fuel cell 
electrode [37].The nanostructured titania (TiO2) 
has usage in drug transfer, filters, solar cells, and 
biosensors because of its high specific surface area, 
chemical stability and biocompatibility [38–40]. 
Electrospinning is a simple technique, and used 
for many years to process polymer, metal oxides 
materials into one-dimensional (1D) structural fibers 
such as TiO2 nanofiber [41].

TiO2 doping with transition metals ions such as V, 
Co, or Fe has been a popular method for modifing 
the photocatalytic performance of the catalyst [42–
44]. However, some problems remain unresolved, 
for example, doped materials have thermal 
instability, an increase in the carrier-recombination 
probability, and photocorrosion [45]. Non-metal 
(B, F, N, C etc.) doping has been proved to be more 
prosperous [27,46–49] particularly, in the manner of 
carbon doping, the C element is infiltrating to the 
lattice of TiO2 replacing a lattice O atom and form 
O–Ti–C species.

To the best of our knowledge, no study has been 
published so far reporting the electroanalytical 
applications of TiO2@C-Ni. We generate TiO2@C 
NFs mixing the electrospinning technique (for TiO2 
NFs) and hydrothermal approach (for carbon layer). 
In this method glucose used as a carbon source 
and fibrous TiO2@C core–shell nanocomposites 
as electro-catalyst supports for NiNPs. It’s a new 
catalyst that use in ethanol oxidation application 
based on these reasons. First, Ni nanoparticles, 
when well dispersed and with good particle size, 
show good catalytic activity for ethanol electro-
oxidation due to ability of Ni to adsorb OH− ions 
to formation of Ni (OH)2. Second, the high electric 
conductivity of carbon boosts current collection. 
Third, a 1D TiO2 NFs provides accessibility for active 
species and catalysts and enhances the effective 
mass transfer of reactants. Also, the use of Ni causes 

reduces in catalyst cost.

MATERIALS AND METHODS
The electrochemical measurements were done 

with a Zive lab potentiostat/galvanostat. A three-
electrode system was used, where a glassy carbon 
(GC) electrode was used as the working electrode, 
a platinum wire as the counter electrode and 
saturated calomel electrode (SCE) as the reference 
electrode. An electrospinning device, FANAVARAN 
NANO-MEGHYAS Model: ES1000 with controllable 
feeding rate and DC voltage range of 5 kV to 30 kV 
was used to formation nanofiber.

TiO2@C nanofibers were synthesized in our 
laboratory which their synthesis explained here. 
Acetic acid, titanium tetraisopropoxide (TTIP), 
polyvinylpyrrolidone (PVP), ethanol, glucose, NaOH 
were analytical grade from Merck (Darmstadt, 
Germany).

Preparation of TiO2 NFs
Firstly, 0.38 g poly (vinyl pyrrolidone) powder 

(PVP, Mw = 1300000) was added to a mixture of 
9 mL absolute ethanol and 2.4 mL acetic acid in a 
bottle. The solution was stirred for 2 h to provide a 
homogeneous solution. Then 360 µL Ti (OC4H9)4 was 
added to the solution, the mixture was stirred for 3 
h to make precursor solution. The above solutions 
were drawn into a syringe that was connected to the 
15 kV voltage and distance between the needle tip 
and collector was 15 cm. The as-collected nanofibers 
were calcined and remained for 2 h at 550 ºC to 
form TiO2 NFs.

Preparation of TiO2@C NFs
TiO2@C NFs were prepared by hydrothermal 

method. It was explained as follows: glucose (0.6 
g) and TiO2 NFs (15 mg) were put into a teflon-
lined stainless steel autoclave of 25 mL capacity 
which including 20 mL deionized water to make 
glucose solution with the concentration of 30 g L 
-1. After powerful stirring for 10 min, the mixture 
was then stirred to form a milk like suspension, 
and hydrothermally treated at 180 ºC for 4 h. After 
reaction, the autoclave was cooled in air, and the 
suspensions were isolated by filtration, washed with 
water several times and dried in oven at 80 ºC for 
4 h. 

Preparation of the electrode
In these work, Ni nanoparticles were synthesized 

by electrochemical method [50].To reach the 
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best position in the preparation of TiO2@C- Ni /
GC electrode, at first, the surface of GC electrode 
was polished on a polishing cloth with 0.05 mm 
alumina powder and then was washed with 
deionized water. GC electrode was created with Ni 
nanoparticle and TiO2 @C nanofiber in two steps:

First, about 2.0 mg of TiO2 @C nanofibers were 
dispersed in 0.45 mL ethanol, 0.45 mL water and 
100 µL nafion an ultrasound bath for 30 min then 
a volume of 3.0 µL of the suspension was applied 
directly on a GC electrode surface and dried in 
air, then the potentiostatic deposition of nickel 
nanoparticle on the TiO2@C- Ni / GC electrode from 
an aqueous solution of 60 mM Ni+2 by controlled 
potential coulometry (CPC) applying a constant 
potential electrolysis at -0.6 V for 60 seconds was 
used, preparation of TiO2-Ni/GC electrode is same 
as the mentioned electrode. 

RESULTS AND DISCUSSION
Characterization of TiO2@C- Ni

The morphologies of the TiO2 nanofibers, 
TiO2@C nanofibers, TiO2 NFs-Ni  and TiO2@C NFs-

Ni have been investigated by scanning electron 
microscopy (SEM) (Fig. 1) and X-Ray diffraction 
(XRD) patterns (Fig. 2). 

SEM image shows that the lengths of these 
nanofibers were about several micrometers 
and the surface of TiO2 nanofibers was clear Fig 
1A. After done hydrothermal, the nanofibrous 
morphology shown in Fig. 1B remained unchanged 
and the surface morphology of TiO2@C NFs 
catalysts was found to be uniform and porous 
surface, TiO2 nanocrystals encapsulated in carbon 
matrices. The TiO2 nanofibers can be seen as an 
intermediate yield in the preparation of TiO2@
carbon nanofibers. Fig 1C shows SEM image of 
TiO2@C- Ni that decorated with carbon matrices 
and Ni nanoparticles, NiNPs existing on the surface 
of TiO2@C. Fig 1D shows SEM image of TiO2 (NF) 
that decorated with Ni nanoparticles, it can be 
seen NiNPs existing on the surface TiO2 nanofiber.

The X-ray diffraction (XRD) patterns of the TiO2 
NFs,TiO2@C NFs, TiO2 NFs-Ni and TiO2@C NF-Ni 
are shown in Fig. 2. As observed in Fig. 2, TiO2 NFs 
show six reflection peaks appeared at 2Ө = 25.4 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. SEM images of TiO2 nanofibers (A), TiO2@carbon nanofibers (B), TiO2@carbon (NFs)-Ni 
(C) and TiO2(NF)-Ni (NPs) (D)
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(101), 37.9 (004), 48.0 (200), 54.8 (105), 55.4 (211) 
and 63.8 (112), respectively, which were attributed 
to the anatase TiO2. The diffraction peaks of the 
TiO2 nanofibers were sharp and intense, indicating 
the highly crystalline character of the nanofibers. 
The curves of TiO2@carbon nanofibers, TiO2 (NF)-
Ni (NPs) and TiO2@carbon (NFs)-Ni also exhibited 
the diffraction peaks of anatase TiO2. And, the 
graphitic carbon peak at 2Ө = 25.6 for TiO2@carbon 
nanofibers was too weak to see [51]. To verify 
whether Ni (NPs) was deposited to TiO2 and TiO2@
carbon NF during the electrochemical process, 
XRD patterns of the TiO2 (NF)-Ni (NPs) and TiO2@
carbon (NFs)-Ni were recorded and compared. The 
diffraction peaks at 51.5° corresponded to the (2 0 
0) facets of the Ni crystal, respectively [52].

Electrocatalytic effect of TiO2@C- Ni for oxidation 
of ethanol 

The impression of scanning rates on the CV 
response of the TiO2@C- Ni/GC electrode was 
investigated in 0.1 M NaOH solution, and the 
results are shown in Fig. 3A. For TiO2@C- Ni/GC 
electrode redox with increased scanning rates 
peak current increased, inset Fig. 3A shows both 
anodic and cathodic peak currents have linear 
response to the scan rates ranging from 0.01 - 0.3 
V s -1. This can be ascribed to the electrochemical 
activity of an immobilized redox on the surface 
with a surface-controlled process [53]. The surface 
coverage г* can be estimated according this 
equation [54]:

             𝐼𝐼𝑝𝑝 =  𝑛𝑛2𝐹𝐹2𝐴𝐴г∗/4𝑅𝑅𝑅𝑅   
                                                  

(1)

where г* is the surface coverage of redox 
sample, n is the number of transferred electrons 
(1 for Ni2+/Ni3+), ν is the scan rate, A is the surface 
area of the electrode, all other symbols have their 
conventional concept. The surface coverage of 
TiO2@C- Ni /GC electrode was estimated to be г*

a 
= 6.22× 10-7 mol cm-2 for anodic peak currents.

Fig. 4 shows the comparative CV responses 
from the electrochemical oxidation of 2 M ethanol 
at the TiO2@C- Ni /GC in 0.1 M NaOH (curve d), 
TiO2- Ni /GC in 0.1 M NaOH and 2 M ethanol 
curves (c), and (b) and (a) are the voltammograms 
of TiO2@C- Ni /GC and bare GCE, respectively, 
curve (b) in 0.1 M NaOH, curve (a) bare GCE in 0.1 
M NaOH with 2 M ethanol. It clear that the current 
of catalyst in 2 M ethanol at scan rate of 100 mV 
s-1 is higher than other electrodes. Denoting that 
the TiO2@C- Ni /GC catalyst can oxidation ethanol, 
the enhanced electrocatalytic activity of TiO2@C- 
Ni /GC is due to the nanofibrous morphology 
increase the activity. To investigate the roles of C 
on TiO2 surface in the electrochemical oxidation 
of ethanol, the cyclic response of ethanol at 
the TiO2- Ni /GC (curve c) and TiO2@C- Ni /GC 
(curve d) electrodes were recorded. The results 
indicated that the presence of C on TiO2 surface 
exhibited 58.66%, improvement the peak current 
for ethanol. Although, the specific surface area of 
the nanoparticles is more than the nanofibers but 
the large axial ratio of the nanofibers increases the 
electrons transfer with the catalyst which results 
in modified the electrocatalytic process [55], 
and carbon materials as the matrix improve the 
conductivity.

 

 

 

 

 

 

Fig. 2. XRD patterns of the TiO2 NFs, TiO2@C NFs, TiO2 NFs-Ni and TiO2@C NFs-Ni 
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Fig. 3. (A) CVs of the TiO2@C- Ni/GC electrode in 0.1 M NaOH at dif-
ferent scan rates: 0.01, 0.02, 0.03, 0.06, 0.08, 0.09, 0.1, 0.2 and 0.3 Vs-1 
from 1 to 9 respectively. Inset Plots of peak current versus scan rate.

 

 

 

Fig. 4. CVs of the GC  electrode in 0.1 M NaOH (a), TiO2@C- 
Ni /GC electrode  in 0.1 M NaOH (b), TiO2-Ni /GC in 0.1 M 
NaOH and 2 M ethanol (c) and TiO2@C- Ni /GC in 0.1 M 

NaOH and 2 M ethanol (d), scan rate 100 mVs-1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5. Chronoamperograms of GC electrode in 0.1 M NaOH (a), 
GC electrode in 0.1 M NaOH and 2 M ethanol (b), TiO2@C- Ni 
/GC electrode in 0.1 M NaOH (c), TiO2@C- Ni /GC electrode 

in 0.1 M NaOH and 2 M ethanol (d) 
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The chronoamperometry method was utilized 
for comparison of the effect of different electrodes 
in ethanol oxidation. Fig. 5 shows the results of 
chronoamperometry measurements of TiO2@C- Ni 
/GC electrode in 0.1 M NaOH and 2 M ethanol (d), 
TiO2@C- Ni /GC electrode in 0.1 M NaOH (c), GC 
electrode in 0.1 M NaOH and 2 M ethanol (b), GC 
electrode  in 0.1 M NaOH (a). The results showed 
that the TiO2@C- Ni /GC electrode in 0.1 M NaOH 
and 2 M ethanol electrode have high current in 
comparison with other electrodes. This because of 
the electrocatalytic properties of nanofibers in the 
TiO2@C- Ni /GC electrode for ethanol oxidation, 
and the improvement in the activity of TiO2@C- 
Ni /GC electro-catalyst for ethanol oxidation 
maybe related  to the uniform dispensation of 
metal nanoparticles on the TiO2@C NFs support. 
It is said that the addition of Ni decreased the 
overpotential and NiOOH formed on the surface 
of the catalyst, increases the catalytic activity for 
ethanol oxidation which is in according to the 
results of cyclic voltammetry of ethanol oxidation.

Fig. 6 shows CV of different ethanol 
concentration in 0.1 M NaOH and scan rate 50 

mVs-1. The results show the good electrocatalytic 
activity of nanofibers. Increasing the ethanol 
concentration in the alkaline solution increase 
the anodic current, with increasing ethanol 
concentration the peak potential shifted positively, 
showing kinetic limitation. Anodic peak in the 
reverse scan in the ethanol oxidation is because 
of the more oxidation of ethanol molecules due to 
regeneracy of the active (Ni+2/Ni+3) on the electrode 
surface which were coating by intermediates, 
ethanol molecules or reaction products in the 
forward scan. Therefore, the efficient utilization of 
high alcohol contents is an important performance 
parameter for corresponding catalysts. Inset (A) 
shows plots of the anodic peak currents (Ip) were 
linearly dependent on concentration of ethanol. 

Fig. 7 shows the influence of the scan rate on 
the electrocatalytic activity of 2 M ethanol by 
TiO2@C-Ni/GC electrode and 0.1 M NaOH in the 
range of 0.1 to 0.9 V s-1. It can be seen, the anodic 
current increases with increasing the scan rate. As 
shown in (Inset A in Fig 6); plots of the anodic peak 
currents (Ip) were linearly dependent on ν1/2 in the 
range of 0.1 to 0.9 V s-1; this linear relationship 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6. Cyclic voltammograms for the prepared TiO2@C- Ni /
GC electrode at different ethanol concentration: 0.004, 0.008, 0. 
4, 0.6, 0.8, 1.0 and 2 M ethanol in 0.1 M NaOH at scan rate 50 
mVs-1 and 25 oC.inset (A) Plots of anodic peak current versus 

different concentration of ethanol

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7. CVs curves of the as-prepared TiO2@C- Ni /GC elec-
trode in 0.1 M NaOH solution in the presence of 2 M ethanol at 
different scan rates : 0.1, 0. 2, 0. 4, 0.6, 0.8 and 0.9 Vs-1 from 1 to 
6 respectively, inset (A) the corresponding plot of peak current 

Ip vs. potential sweep rate ν1/2
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display that the nature of the redox process was 
controlled by diffusion manner.

CONCLUSION 
In this paper, we reported a victorious method 

to generate TiO2@C NFs, glucose used as a carbon 
source and present here fibrous TiO2@C core–shell 
nanocomposites and new method for ethanol 
oxidation based on Ni nanoparticles (NiNPs) 
decorated TiO2@C (NFs) is presented. TiO2@C-
Ni is new catalyst that exhibits performance in 
ethanol oxidation application based on these 
reasons. First, Ni nanoparticles, when well 
dispersed and with good particle size, show good 
catalytic activity for ethanol electro-oxidation due 
to ability of Ni to adsorb OH− ions in the form of 
Ni (OH)2. Second, the high electric conductivity 
of carbon boost current collection. Third, a 1D 
TiO2 NFs provides the maximum accessibility 
for active species and catalysts and enhances 
the effective mass transfer of reactants due to 
the large axial ratio of the nanofibers. This work 
opens new avenue to synthesize more effective 
catalyst involve nanofiber to be applied in ethanol 
oxidation process.
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