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Abstract 
Two Cu(II) complexes, [Cu(L1)2](NO3)2 (1) and [Cu(L2)2] (NO3)2(2),
which L1 and L2 Schiff base ligands are 2-(thiophene-2-yl) -1H-
imidazo [4,5-f] [1,10] phenanthroline and 2-(furane-2-yl)-1H-
imidazo[4,5-f] [1,10] phenenthroline, respectively, were synthesized
and characterized by physico - chemical and spectroscopic methods.
Corresponded CuO nanoparticles were prepared by calcination of the
obtained complexes at 500˚C. The structure of nano sized copper
oxides were characterized by X- ray diffraction (XRD) and scanning
electron microscopy (SEM). Electrocatalytic oxidation of
acetylcholine (ACh) on copper oxide nanostructures were
investigated. The results showed that acetylcholine (ACh) was
oxidized irreversibly on copper oxide nanostructures with an excellent
catalytic activity. 
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1. Introduction 
   Metal complexes with Schiff base ligands have 
played an important role since the early days of 
coordination chemistry [1]. Indeed, a great deal of 
work has been carried out on the synthesis and 
characterization of transition metal complexes with 
these type ligands, mainly due to their applications 
in organic chemistry, as liquid crystals and in 
catalytic processes [2]. Due to their optoelectronic 
properties, aryl imidazo phenanthrolines play 

important roles in materials science and medicinal 
chemistry. Therefore, they have found application 
as ligand for the synthesis of metal complexes of 
ruthenium(II), copper(II), cobalt(II), nickel(II), 
manganese(II) and several lanthanides especially 
for nonlinear optical (NLO) applications[3-4].  
Nanostructure metal oxides have been attended in 
the field of nanotechnology both from a 
fundamental and industrial point of view. For 
example, their peculiar electrical properties make 
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them suitable as active sensing materials in 
resistive sensors, with enhanced performance in 
comparison to bulk materials. Copper oxide is an 
important transition metal oxide with many 
practical applications, such as it is the basis of 
several high-Tc superconductors and materials 
with giant magnetoresistance [5-10], and is also 
used as catalysts, pigment, p-type semiconductor, 
gas sensors, solar cells, magnetic storage media 
and cathode materials [11,12]. Because of the 
practical reasons mentioned above, the synthesis of 
nanostructured CuO has also attracted considerable 
attention. The thermal decomposition of transition-
metal complexes is one of the simplest and least 
expensive techniques for preparing nanosized 
transition-metal oxides [13-20]. This technique is 
simple and do not need for a template and complex 
apparatus. By selecting an appropriate precursor 
coupled with a rational calcinations procedure, 
products with nano sizes could be obtained. This 
method also has potential advantages, including 
high yield of pure products, absence of solvent, and 
exempting the need for special equipment.  
   In this paper, we describe the synthesis and 
characterization of two new copper(II) complexes 
of Schiff base ligands namely 2- (thiophene-2-yl) -
1H-imidazo[4,5-f] [1,10] phenanthroline(L1) and  
2-(furane-2-yl)-1H-imidazo[4,5-f][1,10] 
phenanthroline (L2). CuO nanoparticles were 
prepared via the decomposition of the 
corresponded copper Schiff base precursor 
complexes at 500 ˚C. Electrocatalytic oxidationof 
acetylcholine (ACh) on copper oxide 
nanostructures was investigated. 
 
2. Experimental  
2.1. Materials and Characterization 
  All reagents were purchased from Merck and 
Fluka and used without further purification. 

Elemental analyses (C, H, N) of the ligand and the 
metal complexes were performed with a Vario 
EL(III), CHN analyzer. The molar conductance 
values of the complexes were measured in DMF at 
room temperature using a Metrohm conductometer. 
The electronic spectra of the complexes in 
methanolic solution were recorded on a Perkin-
Elmer lambda 25 spectrophotometer. FT-IR spectra 
(KBr pellet, 400–4000 cm_1) were recorded on a 
Shimadzu FTIR model Prestige 21 spectrometer. 
1H NMR spectra of the ligands were recorded with 
a Bruker DRX-400 Avance instrument using 
CDCl3 as the applied solvent. X-ray powder 
diffraction (XRD) measurements were performed 
using a Philips diffractometer manufactured by 
X’pert with monochromatized CuKa radiation. The 
samples were characterized using a scanning 
electron microscope (SEM) (Philips model XL30) 
with gold coating. 
   Electrochemical measurements were carried out 
in a conventional three-electrode cell powered by 
an electrochemical system comprising an 
AUTOLAB system with PGSTAT302N boards 
(Eco Chemie, Utrecht, the Netherlands). The 
system was run on a PC using ANOVA software. 
A saturated calomel electrode (SCE) was a 
reference electrode. All potentials were measured 
with respect to the SCE which was positioned as 
close to the working electrode as possible by 
means of a luggin capillary. 
 
2.2. Procedure for preparation of ligands (L1, 
L2) 
   L1: A methanolic solution (15 ml) containing 1 
mmol (0.21g) of 1,10-phenanthroline 5,6-dione 
was added to a solution of 2–thiophen 
carbaldehyde  (0.112 g, 1 mmol), amoniume 
acetate (0.929 g, 1.2 mmol ) and triethyl amine ( 
0.03ml) in absolute methanol (15 ml). The 
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at each temperature was cooled to room     
temperature and collected for characterization.         
The most suitable product (pure CuO) was achieved 
in 500 ˚C.                                                            

 
2.5. Preparation of unmodified CPE and copper 
oxide electrodes  
   Unmodified carbon paste electrode (UCPE) was 
prepared by hand-mixing carbon powder and 
mineral oil (80/20 w/w %) ratio. The paste was 
carefully mixed and homogenized in an agate 
mortar for 20min. The resulting paste was kept at 
room temperature in a desiccator. The paste was 
packed firmly into a cavity (3.6mm diameter, 
geometric surface area of 0.1017cm2 and 0.5mm 
depth) at the end of a Teflon tube. Electrical 
contact was established via a copper wire 
connected to the paste in the inner hole of the tube. 
The electrode surface was gently smoothed by 
rubbing on a piece of weighing paper just prior to 
use. This procedure was also used to regenerate the 
surface of the carbon paste electrodes. The copper 
oxide nanostructure-modified carbon paste 
electrodes (CONM-CPE) were prepared by mixing 
carbon powder together with copper oxide or 
nanoparticles at different ratios in an agate mortar 
until a uniform paste was obtained. The percentage 
(w/w) of copper oxide informed throughout the 
text corresponds to the final percentage relative to 
the total paste composition. Then mineral oil was 
added (20 w/w %) and mixed thoroughly. The 
obtained paste was packed into a 3mm diameter 
cavity at the end of a Teflon tube, and the electrical 
contact was provided with a copper wire. The 
effect of the modifier percentage was examined on 
the intensity of acetylcholine oxidation peak 
current on the carbon paste electrode was 
examined. The highest peak current for the 
modified carbon paste electrode was obtained 

when the content of the modifier was 20% in the 
paste of course, in concentrations more than 20%, a 
slight decrease in the current was observed which 
could be attributed to reduction of the electrode 
surface conductivity. With all these results taken in 
to account, carbon paste having 20% CuO 
nanoparticles, 60% graphite and 20% mineral oil 
was used for later studies. 
 
3. Results and discussion 
   Both complexes are soluble in most of the 
common organic solvents. The infrared spectra of 
the free ligands and its complexes were recorded in 
the region 4000–400 cm-1. The ν(C-H) aromatic 
rings, ν(C=C), ν(N-H) imidazol ring stretching 
vibrations of free ligands are observed at 3076, 
1577 and 3420 cm-1, respectively. The ν(C =N) 
stretching vibration of azomethine group in the free 
ligands (1600–1629 cm−1) is shifted to lower 
frequency by 16–39 cm−1 in the complexes, 
indicating that the ligands are coordinated to metal 
ion through the nitrogen atom of the azomethine 
group [10]. The presence of uncoordinated nitrate 
as counter ion in both complexes are associated 
with absorptions at 1380-1384 cm−1 [11-12]. The 
1H NMR spectrum of the free schiff base ligands in 
chloroform displays seven signals for L1 and six 
signals for L2 assigned to the aromatic protons of 
L1 and L2. The 13C NMR spectrum of L1 and L2 in 
chloroform displays 17 distinct signals assigned to 
the aromatic carbon atoms. The molar conductivity 
data at room temperature show that both 
complexes  are 2:1 electrolytes.  
   The electronic spectral data in methanol solution 
suggest basically square planar geometry for both 
copper complexes. In general square-planar 
complexes are known to exhibit one or two bands. 
Complexes 1 and 2 show a broad band for the d–d 
transitions at 698 and 688 nm, respectively. The 
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