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Abstract 
Aluminum sulfate nano structures have been prepared by solution 
combustion synthesis using aluminum nitrate nonahydrate 
(Al(NO3)3.9H2O) and ammonium sulfate ((NH4)2SO4). The resultant 
aluminum sulfate nano structures were calcined at different 
temperatures to study thermal decomposition of aluminum sulfate. 
The crystallinity and phase of the as-synthesized and calcined 
samples were characterized by both X- ray diffraction and FTIR 
measurements. These two analyses determined the temperature at 
which the aluminum sulfate is converted to γ-alumina nano particles. 
The specific surface area and pore size distribution for γ-alumina 
nano particles were determined by BET measurement. TEM 
measurement confirmed the size of the particles obtained by XRD 
and BET analyses. 
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1. Introduction 
Alumina is widely used in industry with a wide 

range of uses, including high temperature 
applications, mechanical parts, abrasives and 
insulators. Especially, because of its large surface 
area, low cost, thermal stability, good mechanical 
strength and volatile acidity and in its γ- phase it 
has been utilized as a carrier for catalyst in 
petroleum and refining petrochemical industries [1, 
2]. 

Alumina is produced commercially by Bayer 
process, which has some limitations to obtain pure 
fine particles [3]. More than 70% of the production 
cost of alumina is due to the cost of the raw 
materials processing, reagents and energy. 
Therefore, many efforts have been made towards 
the improvement or substitution of the exiting 
processing technique by utilization of less 
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expensive raw materials and employment of 
cheaper energy sources [4]. 

The thermal decomposition of aluminum salt is 
one of the technology approaches of Al2O3 
production. Alumina powders prepared by 
calcination of aluminum sulfate have been 
characterized by high reactivity and high sinter-
ability [5]. 

Production of alumina by direct decomposition 
of aluminum sulfate has been carried out by other 
workers. They produced flakes with edge varying 
from 1-2 to 4-5 mm [4, 5]. Using thermal 
decomposition of aluminum sulfate, formation of 
both amorphous alumina (at 900˚С) and η-alumina 
(at 1000˚С) has also been reported [5, 6]. The 
characteristics of the alumina powder, however, are 
greatly affected by the method of preparation of 
starting aluminum sulfate [5].  

  Solution combustion synthesis is an easy, safe 
and rapid production process wherein the main 
advantages are energy and time savings [3].This 
technique involves the exothermic chemical 
reaction amongst an oxidizing agent, typically 
metal nitrates and various reducing agents, called 
fuels [7].The large amount of gases generated 
during combustion synthesis rapidly cools the 
products, leading to nucleation of crystallites 
without any substantial growth. The gas generated 
also can disintegrate large particles and 
agglomerates. At this stage high purity products 
are formed [8, 9]. 

In this work, for the first time, aluminum sulfate 
nano structures have been prepared by solution 
combustion synthesis using ammonium sulfate. 
Decomposition of aluminum sulfate to obtain 
alumina nano particles has not been reported in any 
literature in details. This study deals with the 
results obtained from decomposition of aluminum 
sulfate nano structures to produce γ-alumina nano 

particles in crystallite form which are confirmed by 
XRD and FTIR analyses.   

2. Experimental  

Analytical grade of aluminum nitrate 
nonahydrate Al(NO3)3.9H2O (Merck) and 
ammonium sulfate (NH4)2SO4 (Merck) were used 
as starting materials. The theoretical stoichiometric 
overall reaction for the formation of Al2(SO4)3 can 
be presented as follow: 

2Al(NO3)3.9H2O+3(NH4)2SO4→ 

Al2(SO4)3(S)+4.5N2(g)+ 30H2O(g)+ 3NO2(g)  
(1) 

Ammonium sulfate solution was added to 
aluminum nitrate solution under stirring. The 
prepared solution was filtrated into a dish. The dish 
was introduced into a pre-heated furnace 
maintained at 500˚С. The solution boiled, foamed, 
decomposed and generated large volume of gases. 
Then spontaneous ignition occurred and underwent 
smoldering combustion with enormous swelling, 
producing a white foamy voluminous mass and 
named sample AlS500.Then this sample was 
calcined at 600˚С, 700˚С, 800˚С and 900˚С for 2h, 
and named, AlS600, AlS700, AlS800 and AlS900 
respectively. 

The crystallinity and phase identification of 
prepared samples were determined by using D4 
Bruker X-ray diffractometer with Cu-Kα as the 
radiation source and Ni as the filter. Fourier 
transform infrared spectroscopy (FTIR) performed 

in the range of 400-3900 1−cm  by using Shimadzu 
8400 spectrophotometer. The specific surface area 
(BET) and pore size distribution of sample 
AlS900were determined by nitrogen adsorption at 
77 K, using adsorption analyzer (BEL Japan, Inc). 
TEM analysis was performed using EM208S 
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The average size of the crystallites in sample 
AlS900 was found to be 6.74 nm using the Scherer 
equation. 

Production of alumina nano particle with the 
same average crystallite size has been reported by 
Cava et al [10].But they used polymeric precursor 
((NH4)Al2(SO4)2, and carried out several steps such 
as polymerization, milling and heat treatment. 

An Al2(SO4)3 solution has been mainly used as 
the flocculant for utilization in precipitation and 
hydrothermal processes for production of AlO(OH) 
and Al2O3  [12, 13].When Al2(SO4)3 is dissolved in 
a large amount of neutral or slightly-alkaline water, 
aluminum sulfate produces a gelatinous precipitate 
of aluminum hydroxide. But the precipitation 
method generally suffers from its complexity and 
time consuming (long washing and aging times) 
and hydrothermal method needs high temperature 
and high pressure [14].  

Fig. 3 represents FTIR spectra of all samples 
including as- synthesized (AlS500), Standard 
powder from Merck calcined at 500˚С (MS500) and 
calcined powders. Absorption band spectra FTIR 
of samples AlS500, AlS600, AlS700 and AlS800 are in 
accordance with spectrum of FTIR MS500 sample. 
So, the formation of Al2(SO4)3 was also confirmed 
by FTIR spectra of samples AlS500, AlS600, AlS700 
and AlS800. The FTIR spectra of samples indicate 
that compounds are hydrate, because of the abroad 
absorption band due to hydroxide stretching 
vibration around 3400 cm-1 and absorption band 
around 1620 cm-1 corresponding to OH bending 
vibration mode confirming the presence of 
molecular and free water, respectively [14]. 

  
Fig. 3. FTIR spectra of M500, AlS500, AlS600, AlS700, 
AlS800 and AlS900 samples 

 
A bands expanding in the 400-800 cm-1 range is 

due to the stretching and bending of the AlO6 
atomic group [15]. The absorption bands 
corresponding to sulfate could be attributed to 
strong band centered at 1135 cm-1 , small shoulder 
at 998 cm-1 and 613 cm-1 [16] that with increasing 
temperature, the peak at 998 cm-1 shifts to lower 
frequencies [17]. 

With increasing calcination temperature to 600 
˚С, the intensity of absorption bands of sulfate 
increases which shows the perfection of structure 
at this temperature. With increasing the calcination 
temperature up to 800˚С the intensity of absorption 
bands decrease which signifies the collapse of the 
aluminum sulfate structure at 800˚С. When the as-
prepared sample calcined at 900˚С, it can be seen a 
wide pattern extending from 400-900 cm-1, the 
shoulder peaks in this region are assigned to AlO4, 
corresponding to formation of γ-alumina [Table. 2, 
Fig. 3]. This is in agreement with the results 
obtained from XRD measurement of samples.  
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Table 2. Intensity of various ions in samples AlS500, 
AlS600, AlS700 and AlS800 samples 
  Intensity 
sample 

613 cm-1 
SO4

2- 
1135 cm-1 
SO4

2- 
1620 cm-1

    OH¯ 
3400 cm-1

OH¯ 
AlS500 20% 92% 9% 24% 

AlS600 21% 96% 5% 14% 

AlS700 15% 87% 3% 10% 

AlS800 6% 80% 7% 28% 

 

With increasing temperature from 500˚С to 700 ˚С 
intensity of hydroxyl absorption bands decreases, but 
intensity of these bands increase at 800˚С 
corresponding to γ- alumina structure at 900 ˚С 
[Table, Fig .3]. The results of these analyses provide 
exact information about the decomposition of  
Al2(SO4)3 to γ- alumina.  

 
The specific surface area and average pore volume 

for sample AlS900 were measured and found to be 
176.32m2.g-1 and 0.684cm3.g-1 respectively. This 
value of specific surface area is higher than the value 
(150m2.g-1) reported by Apte et al. using 
decomposition of hydrated aluminum sulfate [18]. 

The specific surface area is one of the most 
important characteristics of the alumina powder. 
Most of the industries need powders with high 
specific surface area. Therefore, this sample is 
suitable for using as catalyst, catalytic support, 
support and adsorbent 

The measured specific surface area for the 
sample AlS900 in crystallite form can be converted 
to equivalent particle size according to the 
following equation: 

6000
BET

BET

D
Sρ

=
×

                                          (4) 

Where DBET (nm) is the average particle size, 
SBET is the specific surface area expressed in m2.g-1 
and ρ  is the theoretical density of gamma alumina 

expressed in g.cm-3 [16].The average particle size 
of sample AlS900 calculated from BET was found 

to be 9.2 nm which is close to the value obtained 
from XRD analysis (6.74nm). 

In order to determine the accurate crystallite size 
of the sample AlS900, TEM analysis was performed. 
The TEM image of sample AlS900 is shown in Fig. 
4. It is clearly seen that the particles are nearly 
spherical in shape with average size of 10 nm and 
sharp distribution. This result agrees well with 
BET measurement as the average particle size was 
calculated to be 9.2 nm. 

 

  
Fig.4.TEM photograph of AlS900 sample  

4. Conclusions 

Pure aluminum sulfate nano structures were 
prepared by solution combustion synthesis 
adopting new method using ammonium sulfate. A 
study of the evolution of crystalline phases of 
obtained powders shows that decomposition of 
Al2(SO4)3 begins at 800˚С, then these particles 
change to γ-alumina at 900˚С. The results provide 
exact information about the transformation of 
Al2(SO4)3 to γ- alumina.  

Pure aluminum sulfate was prepared by a 
simple, rapid and economical method and then it 
was used to produce alumina nano particles with 
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crystallite size of 6.74 nm, particle size about 10 
nm, specific surface areas of 176.32m2.g-1 using a 
cheep and available fuel.  
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