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ABSTRACT

This paper includes synthesis of coating polymer derivative of amide
by Electropolymerization technique that include Tyramide derivative.
Tyramide derivative is prepared in the presented work for serving as
poly tyramide in dye sensitized solar cell (DSSC). Through the use of the
Scanning Electron Microscope (SEM), Fourier Transform Infraranded
(FT-IR), Atomic Force Microscope (AFM) and X-Ray Diffraction (XRD)
inspections revealed data on particle size, shape and the structure. The
results indicate to the interaction between the polymer and nanomaterial
(Graphene). Using the electrochemical polymerization process, poly
Tyramide derivative film (counter electrode) is prepared. Poly Tyramide
derivative film is modified with Graphene to increase the efficiency of film
in dye sensitized solar cell. The dye is used in this study is eosin dye. For
poly Tyramide derivative film modified with Graphene, the efficiencies
are 3.1% and 5.9%, respectively. In the fabrication of DSSCs, this provided

economy preference to poly Tyramide derivative film on Graphene.
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INTRODUCTION

A solar cell can be defined as a photovoltaic
(PV) device which converts the energy of light to
electrical energy. In particular, ETM (i.e., electron
transport material) of a DSSC is made of a wide
band gap semi-conductor that is deposited over a
transparent conductive oxide (TCO) glass. The dye
molecule is after that anchored to semiconductor
surface as charge layer that can absorb visible light
in dye region as well as transfer photo charges to
hole- and electron- conducting materials. A redox-
coupled electrolyte, usually consisting of iodide/
* Corresponding Author Email: maiassa.ali@sc.uobaghdad.edu.iq

triiodide ions (I"/1,), isknown as the hole transport
material (HTM). It contacts to a cathode or counter
electrode (CE), in which oxidized donor reduction
occurs. These days, the final PV efficiency of solar
cells greatly depends on development of CEs for
DSSCs. It is vital to identify alternative inexpensive
and noble metal - free materials for replacing Pt
in the DSSCs, and conducting polymers appear
to have intriguing potential [2,3]. The first step is
crucial in producing ionic conductivity (I-), which
speeds up redox process and aids in the oxidized
dye’s quicker rate of regeneration. Second, it is
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caging more cations, which raises the potential
and causes the dye’s positive molecular orbital
(HOMO) to shift downward [4]. This contributes
to electron recombination rate reduction between
holes in the dye’s HOMO and electrons in TiO,
conduction band. Moreover, pyridine is used as
a donating material, which modifies TiO, surface
charge, shifting its conduction band upward and
raising the open circuit voltage (Voc). The PV
efficiency, which is defined as [5], is increased
by this configuration by raising open circuit
voltage (Voc). Fig. 1 illustrated DSSC principle
[6-10]. Typically, excited state electrons inject
semiconductor’s conduction band (CB) and then
move across external circuit to counter electrode.
In order to create reduced electrolyte and achieve
electrolyte regeneration, oxidized electrolyte takes
electrons from counter electrode; At interfaces of
such three parts, electron recombination ions take
place. In this regard, the three DSSC parts play
essential and indispensable roles in determining
how well the device performs. The selection and
production of component materials are essential.
The polymers could be utilized for fabricating
flexible substrates, to create a mesoporous
electrode structure, for preparing a polymer gel
electrode, and catalyzing electrolyte reduction as
counter electrodes.

MATERIALS AND METHODS
Preparation of electrolyte

Gel- electrolyte was prepared by using
Polyethylene glycol (PEG 4000) as high-molecular

additive, Kl as iodide, ACN as solvent, and I2 by
molecular rate of 3.0g: 15.0ml: 2 gm: 0.2 gm [11].

Preparation of photo electrode (TiO,/Dye)
Through using the doctor blend method, TiO,
has been deposited on ITO glass with a resistance
of 10Q/cm2 and sintered for 30 mins at 450°C.
Fig. 2 illustrates how the working electrode (TiO,
electrode) was immersed in eosin dye for 30 mins.

Preparation of poly counter electrode

Fig. 3 illustrates the electrochemical
polymerization of Tyramide derivative (DE) onto
the surface of Indium Tin oxide (ITO) in monomer
solution by utilizing a DC power supply and two
electrodes, the Country electrode (CE) and
Working electrode (WE). Three drops of 95% H_SO,
were added to 100 milliliters of water together
with 0.1 gram of Tyramide derivative as the
solution used for electrochemical polymerization
[12]. To improve the effectiveness of the polymer
film, 0.004g of graphene was also added.

Structural and Morphological Measurements

The Measurements include studying the
structure and the surface morphological for the
prepared films and the used materials by using
FTIR, AFM, and SEM.

Fourier Transform Infrared Region Spectroscopy
(FTIR)

FTIR is an instrument to determine organic
functional group for liquid, powder, gases, and
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Fig. 1. Fundamental dye-sensitized solar cell processes.
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Fig. 3. Electro polymerization for monomer.

films by their structural groups. In this work this
technique employed to characterize the synthesis
polymer [13].

Atomic Force Microscope (AFM)
The cantilever utilized for scanning the
specimen surface for insulating surface structure

] Nanostruct 16(1): 839-848, Winter 2026
(@ |

at atomic resolution has a pointed tip, or probe,
at the end. The attractive force between surface
and the tip is sensed during scanning, which is a
dynamic process because the tip is in mechanical
contact with the specimen. The surface as well
as tip’s Vander-Waals interaction generated such
attractive force [14].
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Scanning Electron Microscope (SEM)

The surface topography can be measured
with electron beams with the use of SEM, an
analytical instrument. The surface topography
cannot be measured because the electron beam is
concentrated from micro to nanometers through
the magnetic field. Images of secondary electron
(SE) or backscattered electron (BSE) modes are
produced by SEM. Typically, SEM mode provided

images based on topographical data [15].

X-Ray Diffraction (XRD)

XRD is the best method to determine the crystal
structure and lattice parameters. The principle of
XRD found in textbooks, such as the one by Buerger
[16], Alexander and Klug [17], Cullity [139]. The
studies of XRD considered the significant source
to provide wide comprehension of the structure

Table 1. Spectral FTIR data for monomer.

Functional group

Absorption bands (cm?)

V(O-H) phenolic
V(O-H) carboxylic
V(N-H) amide
V(C=0) carboxylic
V(C=0) amide
V (C-H) aromatic
V(C-H) aliphatic

3398.34
Overlap with CH aromatic
3301.91
1706.88
1635.52
3128.32, 3056
2954.74, 2858.31

V(C=C) aromatic 1548, 1442
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Fig. 4. (a) Chemical structure of eosin dye, (b)absorption spectrum of eosin dye.
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of a molecule and the crystal structure. The Bragg
spectrometer principle for such study [18]

RESULTS AND DISCUSSION
UV-Vis spectroscopy for Eosin dye

The dye is used in this study is eosin dye,
its chemical structure is shown in Fig. 4. The
absorption spectrum of Eosin dye is exhibited in
Figure. It is clear that it has absorption peaks at
523 nm,398 nm and 309 nm, which indicates that
it has high transmission in these regions.

Mechanism of polymerization
Characterization of poly Tyramide derivative film
Fourier transmittance Infrared Region (FTIR)

Fig. 5 compares the FT-IR spectrum regarding
the Tyramide derivative monomer as well as poly
Tyramide derivative. FT-IR spectrophotometer
(8400 max resolution 0.50cm™) was used in order
to perform the FTIR experiments for the prepared
poly Tyramide derivative. The polymer film
was proven to have formed when the aliphatic
double bond (CH=CH) in the monomer’s spectra
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Fig. 5. FTIR spectrum for a) monomer, b) polymer.
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at 1616.24 cm™ disappeared. Tyramide derivative
monomer absorption band rates are shown in
Table 1 [19].

Scanning Electron Microscope (SEM)

SEM was used to analyze surface morphological
features of polymer film in both the presence and
absence of graphene. SEM image for the polymer
film, which revealed irregular distribution on the
surface of S.S. with minimal porosity and compact

28 .0kV

28 .8kV

structure, is displayed in Figs. 6a and 6b. Graphene
modified polymer film, on the other hand, clearly
showed particle size aggregation with a cluster
poly structure on one side and a fiber-like poly
structure on the other [20].

Atomic Force microscope (AFM)

Since AFM is regarded as one of the notable
surface examination tools for nanoscale structures,
it was used to gather more information due to

X68.0K

X60.08K

Fig. 6. SEM for a) polymer film, b) polymer film modified with Graphene
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the significance of the nanomaterial’s surface
qualities as well as their direct impact on efficiency
through application. The 3D and 2D images in Figs.
7a, and 7b illustrate the extent of nanomaterial
agglomeration caused by G’s adhesiveness to the
polymer. The most often used metrics in AFM
analysis for characterizing surface roughness for
polymer films are average roughness (Ra) and root
mean square roughness (RMS) [21, 22]. Table 2
provides a summary of the acquired Ra and RMS
values.

X-ray diffraction (XRD)
XRD for Graphene, poly Tyramide derivative

and poly Tyramide derivative modified with
Graphene are showed in Fig. 8. XRD for Graphene
is showed in Fig. 8a involve broad peaks at (26 =
25.07, 44.47 degree) [23]. Fig. 8b is showed XRD
for poly Tyramide derivative film which involve
sharp reflection peaks at (26=9.58,26.6 and 28.56
degree) and that reflect its crystallite nature. Fig.
8c is showed the effect of addition of Graphene in
the polymer matrix. it is showed a broad peak at
(26=26 degree). This peak reflected to interaction
of Graphene sheets with polymer matrix.

Characterization of assembled DSSCs
DSSCs from mixed combination of different

Table 2. Mean grain size, Ra and RMS for polymer film in presence and absence of Graphene.

Coating Mean grain size (nm) Ra(nm) RMS (nm)
Polymer 75.20 6.64 8.00
polymer modified with Graphene 93.98 2.79 3.48
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Fig. 7. AFM images in two dimension and three dimension of surfaces (a) polymer, (b) polymer modified with Graphene.
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Fig. 8. XRD for (a) Graphene, (b) polymer film, (c) polymer modified with Graphene.
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Table 3. Parameters of assembled DSSCs.

Cell Voc Isc

Vmax Imax FF E%

Polymer 497 2.9
Polymer modified with

Graphene 528 35

239 1.3 0.2 3.1

346 1.7 0.3 5.9

polymer with
Graphene

1 (mA)

1.5 A

/

polymer

0.5 4

0 100 200

T

300
V (mV)

400 500 600

Fig. 9. |-V characteristic for DSSC.

counter electrodes and different active anodes
have been subjected to the |-V characterization
by fast scan with two electrodes, potentiostate,
to calculate all parameters of every one of
them; current short circuit (Isc), voltage of open
circuit (V_), max cell power (P_ =l *V ), have
been estimated with the use of two electrodes
potentiostatic measurements, then the full factor
(FF),and conversion efficiency(E%) are calculated
by the following equations[24]:

Voc Isc FF

E% =
% Pinc.

(1)

_ ImVm

()

" IscVoc

I-V characteristic is measured by two types
of electrodes, poly Tyramide derivative and poly
Tyramide derivative modified with Graphene

] Nanostruct 16(1): 839-848, Winter 2026
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as shown in Fig. 9. Adding of Graphene to
poly Tyramide derivative matrix improves the
catalytic properties of poly Tyramide derivative.
Table shows that DSSCs based on poly Tyramide
derivative modified with graphene show higher
efficiency than non-modified polymer. Since the
high resistance of the poly Tyramide modified with
Graphene would obstruct the electrons transport
from external circuit to electrolyte, less reduction
of I, to I- is obtained [24]. All values of assemble
DSSCs are listed in Table 3.

CONCLUSION

In summary, the synthesized poly(tyramide
derivative) film was successfully polymerized, as
confirmed by the disappearance of the aliphatic
C=CH stretch at 1616 cm™ in FTIR spectra,
alongside SEM revealing a compact morphology
that evolves into clustered and fibrous structures
upon graphene incorporation. AFM analysis
demonstrated increased surface roughness due
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to graphene agglomeration, while XRD patterns
exhibited crystalline peaks at 26 = 9.58°, 26.6°,
and 28.56° for the polymer, shifting to a broad
interaction peak at ~26° with graphene, indicative
of strong matrix-sheet interfacial bonding that
boosts conductivity. The graphene-modified
poly(tyramide derivative) counter electrode in
DSSCs vyielded higher short-circuit current (lsc),
open-circuit voltage (Voc), fill factor (FF), and
power conversion efficiency (n) compared to
the unmodified polymer, attributed to improved
catalytic reduction of I3 to I despite minor charge
transport resistance, positioning this composite as
a promising, cost-effective alternative for efficient
dye-sensitized solar cells.
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