

RESEARCH PAPER

Low Weight Bio-Molecular Detection Using Nanostructure Based Localized Surface Plasmon Resonance Sensor

Ali Sahib*, Ali Al-Jawdah, Nassar A. Al-Isawi

Department of Physics, College of Science, University of Babylon, Iraq

ARTICLE INFO

Article History:

Received 08 December 2025

Accepted 05 February 2026

Published 01 April 2026

Keywords:

Aflatoxin B1

Bimolecular

Nanostructure

SPR

ABSTRACT

Local surface plasmon set-up based on a Nano shape of metal to establish high efficiency plasmon resonance. The idea of the proposed system lies in monitoring the wavelength of the resonance. The system has been designed to work in visible light range. The optical sensitivity (RI) of the system has reached 55nm per refractive index unity (RIU). This research present direct detection method of one of the most toxic fungi called aflatoxin). Number of biosensing tests has been conducted to detect aflatoxin B1 in direct immunoassay in the company of specific antibodies which used as bio receptor. The localized surface plasmon resonance sensitivity to a change in the refractive index (RI) has been investigated using different types of nanostructure shapes as a resonance medium. The work was tried to determine plasmon experimental parameters which give rise to achieve best sensing performance. The plasmon resonance spectrum produced by the system and the accuracy in determining and tracking plasmon peak wavelength resonance have allowed to reach detection low concentration of both aflatoxin B1 and Ochratoxin A molecules.

How to cite this article

Sahib A., Al-Jawdah A., Al-Isawi N. Low Weight Bio-Molecular Detection Using Nanostructure Based Localized Surface Plasmon Resonance Sensor. *J Nanostruct*, 2026; 16(2):1519-1525. DOI: [10.22052/JNS.2026.02.003](https://doi.org/10.22052/JNS.2026.02.003)

INTRODUCTION

Traditional technique to quality or quantitative analysis of substances, such as mass spectrometry and chromatography require expensive equipment and professional expertise, making it difficult to meet the growing demand for biological detection and monitoring. Biosensor has emerged as a very suitable alternative to traditional methods due to their advantages that overcome the shortcomings of the previous methods [1-4].

Basically, biosensor is a means to detect the presence of a bio molecules using bio-component to provide physical signal as a product of biological interaction and a transducer element, able to convert this by-product into a proper electronic

signal [5-8]. Optical biosensors are the most common biosensor category [9-12]. Optical biosensors possess an important advantage over others analytical techniques as a result of its direct, rapid and label free detection of a lot of chemical and biological substances. Their advantages also involve high sensitivity, cost-effectiveness, small size, and easy to be portable device. Development of the other fields including microelectromechanical systems, microelectronics, biotechnology and molecular biology are contributed to develop and emerge advanced new optical biosensors. Therefore, this technique is constantly evolving. Optical biosensors are mainly employed in the biotechnology industry,

* Corresponding Author Email: sci866.ali.sahab@student.uobabylon.edu.iq

healthcare, and environmental applications each of them has its specific needs in terms of range of analyte concentration, type of targeted molecules, precision of output and response time [13-17].

Localized surface plasmon resonance has developed as an approach among bio-sensing techniques in that it provides robust, sensitive and facile detection [18-20]. Typical LSPR based bio sensing exploits the correlation of the plasmon resonance with the medium refraction index surrounding a nanoparticle surface [21, 22]. In spite of SPR technologies are widely used, several difficulties remain.

Despite the metal cannot absorb the light by excite the electrons in similar way of the semiconductors, they can show specific light absorption via a resonance between the light waves and metal free electrons. The electric field of light act on surface electrons to move them away from their particles, whereas the coulombic force acts to put it back in its place, so the electrons oscillating under the influence of these two forces in form of stationary waves, called localized surface plasmon resonance [23-25].

LSPR can be described using Mie's solution to Maxwell's equation, occurring as result of movement restriction of electrons in the internal lattice of a metal when the domination of metal structure is scaled-down to a nano level (<100 nm) [26,27].

Eq. 1 shows the correlation of extinction, $E(\lambda)$, on the shape, density, dimension and surrounded environment of the nanostructure [28-30].

$$E_{(\lambda)} = \frac{24\pi N_A a^3 \epsilon_m^{3/2}}{\lambda \ln(10)} \left[\frac{\epsilon_i}{(\epsilon_r + \chi \epsilon_m)^2 + \epsilon_i^2} \right] \quad (1)$$

where N_A is the nanostructure density, a is the nanostructure radius (Nano-structures represented as a sphere), ϵ_m is the dielectric constant of the medium surrounding the nanostructure (the dielectric constant is assumed to be a positive, real integer and wavelength independent), λ absorbing radiation wavelength, ϵ_i is the imaginary part of the Nano-structures dielectric function, ϵ_r is the real part of the Nano-structure's dielectric function and χ is the ratio of the nanostructure.

LSPR spectroscopy can be serving as sensor through transduction the changes in refractive

index of the medium that proximity to the surface of the metal nanostructure.

The occurrence of bio recognition events on the metal nanostructure causes change in the refractive index of the medium, which consequently leads to shift on the plasmonic wavelength (λ_{max}) according to Eq. 2:

$$\Delta\lambda_{max} = m\Delta n \left(1 - e^{-\frac{2d}{l_d}} \right) \quad (2)$$

Where, m : represents the bulk RI of Nano-structure, d : represents the thickness of effective adsorbate film and l_d : the length of electromagnetic field decay [31].

There are two main methods to employ this phenomenon for sensing [32].

One of them; utilises the electromagnetic fields which is extending from surface of nanostructure to react and effect on scattered Raman photons, result change in its energy according to the plasmon state. This Raman-LSPR coupling enables plasmon detection through Raman spectroscopy.

The other approach includes monitoring or observed the value of parameters that lead to develop the plasmon resonance, such as wavelengths of light or incident angle, which are associated with and affected by the target substance, such as employed UV-Vis spectroscopy to observe the light wavelength of which induce the plasmon oscillation to happen.

When the metal thin film consists of nano islands (with dimensions less than the wavelength of light) separate from each other, the free conduction electrons at these nano particles surface can be stimulated to oscillate by energy of light wave. This kind of electron- light wave reaction called local surface plasmon, causing strong absorption at specific wavelengths of incident light. This resonance wavelength of this phenomenon is sensitive to the optical properties of the ambient environment, which allow detecting the analyses through monitoring the shift of resonance wavelength when they presented and bind to nanoparticle surface.

Organic molecules usually pass a relatively high refractive index compared to solvent medium, so their presence around nanoparticles results in a detectable redshift in the plasmon resonance wavelength, which makes this mechanism suitable for building a biological sensor [33, 35].

Detecting of small biomolecules especially at low concentration levels is a challenge.

This work aims to develop biosensor based on local surface plasmon phenomenon in terms of sensitivity and limit of detection (LOD). Mycotoxin molecules, specifically ochratoxin (OTA) are the targeted molecules in this work. OTA is a relatively small molecule with the molecular weight of 403.8 Da.

The type of target molecules can be simply changed by changing the type of biological receptor. While maintaining the same performance values for the sensor, so this sensor is considered as free label biosensor.

MATERIALS AND METHODS

Prepare the nanostructure and establish the bioreceptor

Standard glass slides (75 mm by 25 mm and 1 mm thick) used as platform to establish the gold Nano structure, were cleaned by immersed them in a hot piranha solution (mixt of H₂SO₄ and H₂O₂, 3: 1) for one hour then rinsing by di-ionized water and finally dried up with stream of nitrogen gas.

About 25 nm thickness of gold layer was deposited on the glass slide using thermal evaporator unit (Edwards E306A), this was preceded by the deposition of a 2nm layer of chromium in order to enhance the adhesion of the gold layer at the glass slide. The two stages

of deposition were conducted without vacuum breaking which was around 10⁻⁶ Torr. The flat gold thin film has been converted into Nano pieces (Nano islands) through annealing (de-wetting processes). The annealing temperature around 500 C for two hours was enough to create Nano structure, the result Nanostructure has been checked via SEM image Fig. 1.

To establish the bioreceptor, antibodies were immobilized on the surface gold islands using immobilization routes inclusive covalent and electrostatic binding Fig. 2. Antibodies (type IgG) at pH 7-8 medium, emerges negative charge, so they can be easy to electrostatically bound to a positively charged layer of hydrochloride (PAH). To avoid the randomly oriented of the antibodies proteins A has been employed as intermediate body, which are electrostatically immobilized first on PAH layer. The IgG molecules bind with protein A by binding site at Fc region of antibody, which make the antibodies oriented vertically Fig. 2. The electrostatic immobilization method for both proteins and antibodies has been proved the successful in our former research, so we used it in this work.

RESULTS AND DISCUSSION

Initially, the structure Nano-islands platform

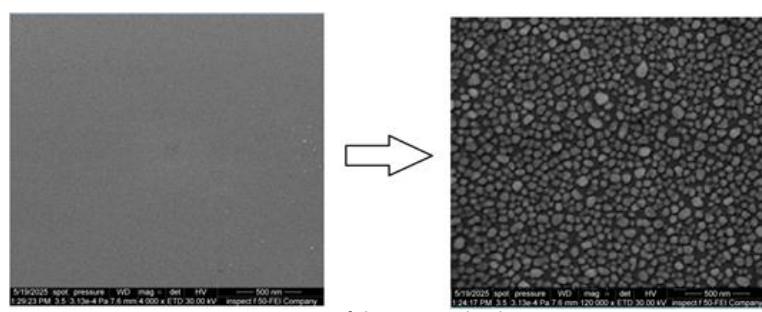
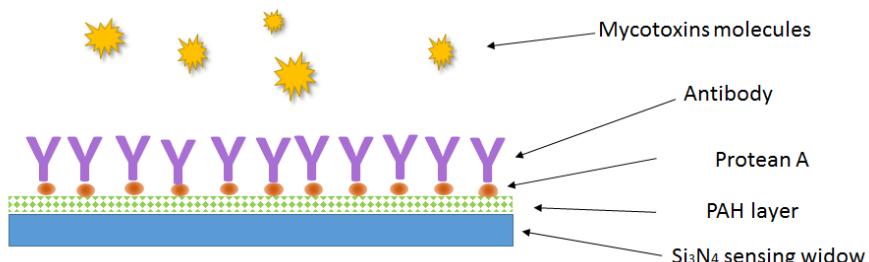



Fig. 2. Formation of the nano-island structure.

was formed by exposing the gold thin film to annealing process. Where, it was exposed to a temperature of 400C for 8 hours using electric convection oven. During this process, the flat gold thin film was converted to nanoscale islands. The samples of nanostructured gold produced were characterized with SEM (FEI-Nova, NanoSEM 200) Fig. 2.

The occurrence of plasmonic resonance was tested by exposing the nanostructure to a wide range of light wavelengths (300-800) nm. The occurrence of plasmonic resonance was tested

by exposing the nanostructure to a wide range of light wavelengths (300-800) nm. It was observed that the plasmon resonance peak occurred at a wavelength of 650 nm, as shown in Fig. 3. The selective absorption of wavelength was good evidence to occurrence of the plasmon phenomenon. The optical set up is working as a local surface plasmon system.

The dependence absorbance and sensitivity were investigated by using standard solutions with specific refractive indices as shown in Fig. 4.

The absorbency measurement was performed

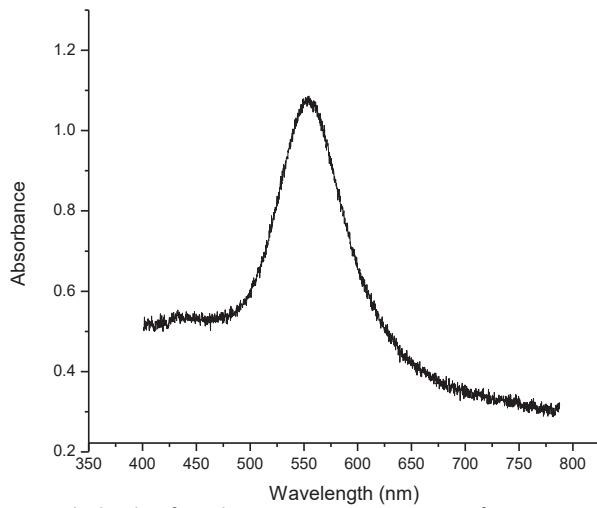


Fig. 3. The local surface plasmon resonance spectrum of Au NPs water using a distilled a second medium.

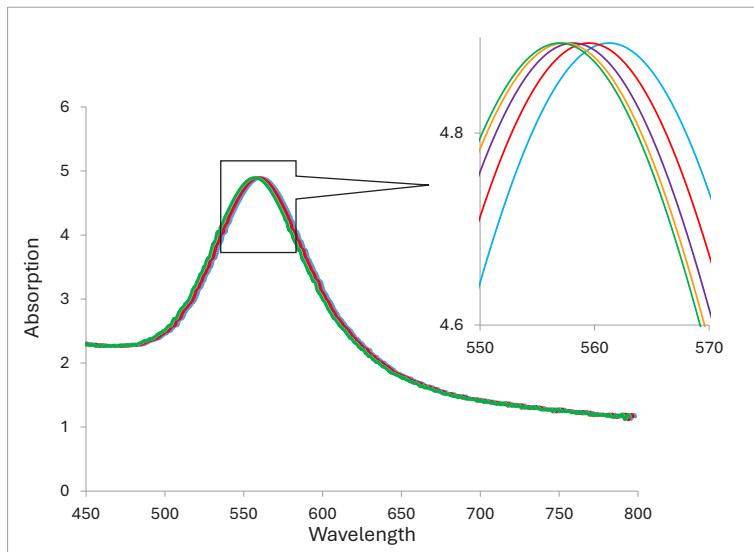


Fig. 4. Optical response of LSPR spectrum (sensitivity).

by measuring the light intensity pass across the Au thin film compared to initial light intensity that reaching the gold nanostructure using Ocean spectrophotometer (FLAME-S-XR1-ES) Fig. 5.

The results of sensitivity test showed a linear response over refractive index range from 1.333

to 1.3480 as shown in Fig. 6. The refractive index sensitivity is commonly reported in wavelength per refractive index unit, for this system was reached, that was a suitable optical performance value for moving forward with the development of bio-sensing.

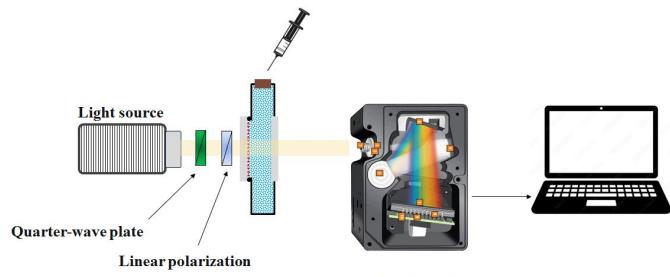


Fig. 5. The experiment set up.

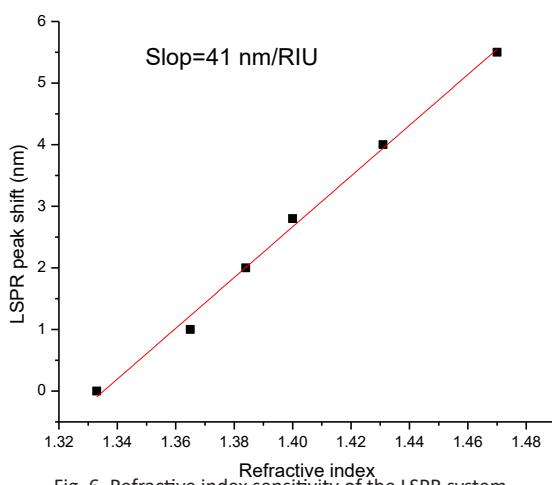


Fig. 6. Refractive index sensitivity of the LSPR system.

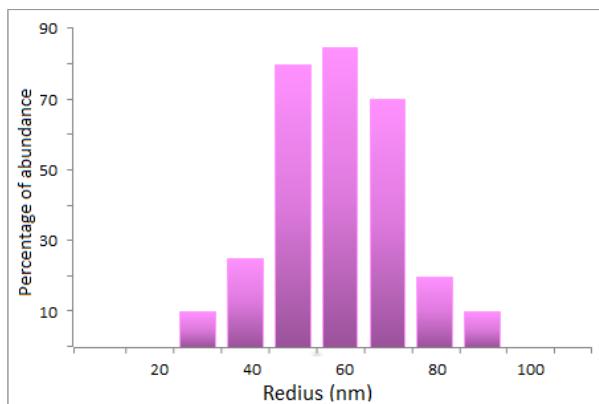


Fig. 7. Statistical distribution of Nano islands radius.

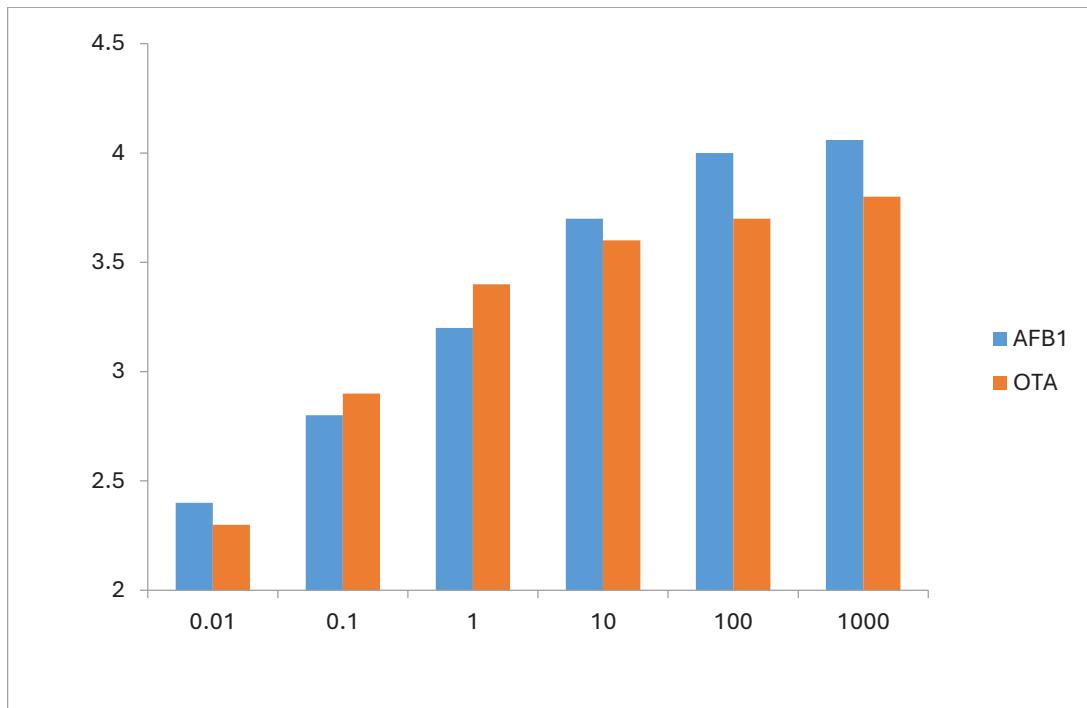


Fig. 8. Bio sensing of Ochratoxin A and Aflatoxin B1 molecules.

The nano-islands structure was tested using SEM, the images show more than eighty percent of them radiiuses are around (55 to 85) nm depends on the film thickness. The statistic distribution of sizes for each thickness is approximately eighty percent of the dominant value as shown in Fig. 7.

The performance of the system as a biosensor was tested after preparing the antibody based bio-receptor and attached it to the nano islands layer. Two types of mycotoxins were used for bio sensing testing, Aflatoxin B1 and Ochratoxin A. The system has shown a reasonable signal that exceeded the noise by about three times for the lowest (0.01ng/ml) concentration. The response continued almost linearly until saturation was achieved when the concentration reached (1000 ng/ml) as shown in Fig. 8.

CONCLUSION

In this work, a biosensor system for small bio molecules detection has presented. This research is oriented toward improve the bio sensing based on develop the nanostructure of the bio receptor. The influence of the gold nano islands structured on the sensitivity enhancement has been studied. The theoretical explanation of the system was

assisted to identify which direction should be given to reach the aim.

The performance of the system has been evaluated as low concentration biomolecules detection. The plasmon resonance spectrum produced by the system and the accuracy in determining and tracking plasmon peak wavelength resonance have allowed to reach detection low concentration of both aflatoxin B1 and Ochratoxin A molecules.

Finally, the effect of nanostructure on the biosensing has been demonstrated, allowing to more investigation and development based on nanostructure control.

CONFLICT OF INTEREST

The authors declare that there is no conflict of interests regarding the publication of this manuscript.

REFERENCES

1. Lazcka O, Campo FJD, Muñoz FX. Pathogen detection: A perspective of traditional methods and biosensors. *Biosensors and Bioelectronics*. 2007;22(7):1205-1217.
2. Sánchez-Tirado E, Agüí L, González-Cortés A, Campuzano S, Yáñez-Sedeño P, Pingarrón JM. Electrochemical (Bio)Sensing Devices for Human Microbiome Related Biomarkers. *MDPI*

AG; 2022.

3. Sánchez-Tirado E, Agüí L, González-Cortés A, Yáñez-Sedeño P, Pingarrón JM. Biodetection Techniques for Quantification of Chemokines. *Chemosensors*. 2022;10(8):294.
4. Mavrin S, Mavrin A, Mikhaylova A. Traditional technique application v/s YOLOv5 model for marine underwater objects detection by computer vision method. *BIO Web of Conferences*. 2024;113:05035.
5. Goode JA, Rushworth JVH, Millner PA. Biosensor Regeneration: A Review of Common Techniques and Outcomes. *Langmuir*. 2014;31(23):6267-6276.
6. Vigneshvar S, Sudhakumari CC, Senthilkumaran B, Prakash H. Recent Advances in Biosensor Technology for Potential Applications – An Overview. *Frontiers in Bioengineering and Biotechnology*. 2016;4.
7. International Journal of Research in Advanced Engineering and Technology.
8. Velasco-Garcia MN, Mottram T. Biosensor Technology addressing Agricultural Problems. *Biosys Eng*. 2003;84(1):1-12.
9. Damborský P, Švitel J, Katrlík J. Optical biosensors. *Essays Biochem*. 2016;60(1):91-100.
10. Chen C, Wang J. Optical biosensors: an exhaustive and comprehensive review. *The Analyst*. 2020;145(5):1605-1628.
11. Chapter 5 Optical biosensors. *Comprehensive Analytical Chemistry*; Elsevier; 2005. p. 209-250.
12. Baird CL, Myszka DG. Current and emerging commercial optical biosensors. *J Mol Recognit*. 2001;14(5):261-268.
13. Rich RL, Myszka DG. Survey of the year 2000 commercial optical biosensor literature. *J Mol Recognit*. 2001;14(5):273-294.
14. Khansili N, Rattu G, Krishna PM. Label-free optical biosensors for food and biological sensor applications. *Sensors Actuators B: Chem*. 2018;265:35-49.
15. Uniyal A, Srivastava G, Pal A, Taya S, Muduli A. Recent Advances in Optical Biosensors for Sensing Applications: a Review. *Plasmonics*. 2023;18(2):735-750.
16. Cooper MA. Optical biosensors in drug discovery. *Nature Reviews Drug Discovery*. 2002;1(7):515-528.
17. Long F, Zhu A, Gu C, Shi H. Recent Progress in Optical Biosensors for Environmental Applications. State of the Art in Biosensors - Environmental and Medical Applications: InTech; 2013.
18. Unser S, Bruzas I, He J, Sagle L. Localized Surface Plasmon Resonance Biosensing: Current Challenges and Approaches. *Sensors*. 2015;15(7):15684-15716.
19. Zhao J, Zhang X, Yonzon CR, Haes AJ, Van Duyne RP. Localized Surface Plasmon Resonance Biosensors. *Nanomedicine*. 2006;1(2):219-228.
20. Haes AJ, Hall WP, Chang L, Klein WL, Van Duyne RP. A Localized Surface Plasmon Resonance Biosensor: First Steps toward an Assay for Alzheimer's Disease. *Nano Lett*. 2004;4(6):1029-1034.
21. Mayer KM, Hafner JH. Localized Surface Plasmon Resonance Sensors. *Chem Rev*. 2011;111(6):3828-3857.
22. Willets KA, Van Duyne RP. Localized Surface Plasmon Resonance Spectroscopy and Sensing. *Annu Rev Phys Chem*. 2007;58(1):267-297.
23. Cao J, Sun T, Grattan KTV. Gold nanorod-based localized surface plasmon resonance biosensors: A review. *Sensors Actuators B: Chem*. 2014;195:332-351.
24. Zhao J, Xue S, Ji R, Li B, Li J. Localized surface plasmon resonance for enhanced electrocatalysis. *Chem Soc Rev*. 2021;50(21):12070-12097.
25. Ji J, Li Z, Sun W, Wang H. Thermal annealing induced tunable localized surface plasmon resonance of Au/Ag bimetallic thin film. *Chem Phys*. 2021;541:111034.
26. Fujii M. Fundamental correction of Mie's scattering theory for the analysis of the plasmonic resonance of a metal nanosphere. *Phys Rev A*. 2014;89(3).
27. Coupling of Two-Level Atom with Electromagnetic Field. The Classical and Quantum Dynamics of the Multispherical Nanostructures: PUBLISHED BY IMPERIAL College Press and Distributed by World Scientific Publishing Co.; 2004. p. 145-156.
28. Poethke Hans J, Hovestadt T, Mitesser O. Local Extinction and the Evolution of Dispersal Rates: Causes and Correlations. *The American Naturalist*. 2003;161(4):631-640.
29. Byun KM, Yoon SJ, Kim D. Performance analysis of extinction-based localized surface plasmon resonance biosensors in the presence of surface roughness. *SPIE Proceedings*; 2009/02/12: SPIE; 2009. p. 71920Z.
30. Zalyubovskiy SJ, Bogdanova M, Deinega A, Lozovik Y, Pris AD, An KH, et al. Theoretical limit of localized surface plasmon resonance sensitivity to local refractive index change and its comparison to conventional surface plasmon resonance sensor. *Journal of the Optical Society of America A*. 2012;29(6):994.
31. Abayeed SA, Smith RJ, Webb KF, Somekh MG, See CW. Responsivity of the differential-intensity surface plasmon resonance instrument. *Sensors Actuators B: Chem*. 2016;235:627-635.
32. Petryayeva E, Krull UJ. Localized surface plasmon resonance: Nanostructures, bioassays and biosensing—A review. *Anal Chim Acta*. 2011;706(1):8-24.
33. Zhang J, Bai T, Liu W, Li M, Zang Q, Ye C, et al. All-organic polymeric materials with high refractive index and excellent transparency. *Nature Communications*. 2023;14(1).
34. Aljarrah RM, Aljawdah AM. Concentration Effects on Characteristics of Gas Sensors Based on SnO₂ Thin Films. *Mater Sci Forum*. 2021;1039:416-425.
35. Al-asadi HM, Obaid SA, Ghazi RA. Enhanced Optical and Structural Properties of ZnO NPs Doped PVA/PEG/PVP and its Use in Bacterial Activity. *Instrumentation Mesure Métrologie*. 2025;24(1):89-95.