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ABSTRACT

Research in this area aims to create PMMA-PEO/Si nanocomposites
with different concentrations of silicon (0.4, 1.4, 2.8, 4.2, and 5.6 weight
percent). We suggested the nanocomposites’ electrical, structural, and FTIR
characteristics. The frequency, dielectric constant, and electrical loss were
all reduced by applying an electric field. The results demonstrated that the
electrical Loss and dielectric constant of all specimens rose as silicon levels
rose. The conductivity of alternating current showed this characteristic.
The researchers also collected nanocomposites made of (PMMA-PEO/Si).
As the concentration of Si nanoparticles in these composites grew, they
demonstrated an increasing capacity to suppress bacterial growth. Due to
their unique combination of silicon’s electrical characteristics with those of
PMMA and PEO polymers, the findings demonstrated that the laboratory-
prepared nanocomposites exhibit distinctive features. Staphylococcus,
Klebsiella pneumoniae, and antibiotic-resistant bacteria were among the
pathogens whose growth was efficiently inhibited by these nanocomposites
in laboratory testing. These findings suggest that the nanocomposites used
in this study have the potential to be useful materials in many medical
contexts, particularly for the creation of new antibacterial substances that
may combat the increasing problems caused by bacteria that are resistant
to antibiotics.
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INTRODUCTION

Nanotechnology encompasses the
development and use of nanocomposites,
offering innovative methods and commercial
prospects across multiple industries, such
as automotive, aerospace, superconductors,
electronics, and physical and chemical fields with
dimensions spanning from individual molecules

* Corresponding Author Email: lyh026967@gmail.com

or atoms to submicron scales [1-4] with sizes
spanning from individual atoms and molecules
to submicron dimensions. Nanotechnology is
often considered the next industrial revolution
[6,7]. Nanocomposite polymers, including organic
polymers and nanoscale inorganic nanoparticles,
are advanced materials that have attracted
significant interest in recent years [8,9]. These
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composite materials differ from pure polymers
in both chemical and physical properties [10,11].
This may be important and advantageous for
several candidates across multiple applications
[12,13]. Incorporating nanoparticles into a
polymer matrix may significantly improve the
material’s optical characteristics with low amounts
of the Nanoparticles. When added to polymers,
nanoparticles are better than regular additives
because they don’t need to be loaded as much, and
they have a big effect on the physical properties.

One benefit of nanoparticles as polymer additives,
in contrast to traditional additives, is that
their loading requirements are quite low [10]
Understanding their optical behaviour is crucial for
examining electronic transitions and the potential
use of polymers as optical filters. Data on the
electrical properties of amorphous and crystalline
semiconductors is often obtained by studying their
optical features over broad frequency ranges. [4].
Polymethyl a linear thermoplastic polymer known
as methacrylate (PMMA). It holds melting point
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Fig. 1. IR spectra (pmma-peo/Si) complex materials: (A) for blend, (B) 1.4 wt.%.
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of of160°C with a glass transition temperature
of 115°C [14] PMMA has exceptional material
properties, including notable mechanical strength,
hardness, high rigidity, transparency, and efficient
insulating capabilities [15-17].

The only drawback of PEO in applications is
its insufficient optical and electrical performance
at temperatures beyond its melting point. To
augment its attributes [18]. PEO nanocomposite
structures, including nanoparticles, exhibit robust
interactions with surface functional groupings,
enhancing thermal stability beyond the melting
temperature of the nanocomposite [19]. Various
nanocomposites may be included in PEO polymer
to improve its properties and facilitate its use in
multiple fields [20-25]. PEO has shown efficacy
in several applications due to its unique chemical
properties. Silicon is ranked the second prevalent
component of our planet, exceeded only in the
presence of oxygen [26-28]. Being both cheap and
plentiful, it has quickly become one of the most
accessible inorganic compounds. One of silicon’s
most common uses in the latest innovations in
energy storage technology is in the semiconductor
sector, which has grown exponentially in the last
few decades, demonstrating the material’s critical
relevance. Characteristics, particularly purity
and homogeneity. The top-down methodology
involves the disintegration of convert mass silicon
from nanostructures. Which has intensified
the demand for effective, resistance-free, cost-
effective, and biocompatible antimicrobial agents.
Nanomaterials offer an innovative alternative
to antibiotics. For example, nanoparticles have
been employed to mitigate skin diseases and
prevent microbial colonization on devices
such as endotracheal tubes, catheters, and
prostheses. Silicone derivatives combined with
polymers have been utilized as anti-corrosion and
chemical-resistant coatings that impede bacterial
proliferation [29-32].

MATERIALS AND METHODS

The casting procedure was used to create
the (PMMA-PEO/Si) nanocomposite. At room
temperature, 1 gramme of (PMMA-PEO) and
Si were dissolved in 50 millilitres of chloroform
alcohol using a magnetic stirrer to thoroughly
mix and dissolve the material. The weight ratios
of Si nanoparticles added to PMMA-PEO were
(1.4,2.8,4.2, and 5.6%) Using a 10-centimeter-
diameter Petri dish as a mound, pouring the liquid
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in, waiting for it to dry, and then carefully removing
it for testing is the casting procedure.

RESULTS AND DISCUSSION
FTIR spectra of (PMMA/PEO/Si) nanocomposites
Fig. 1illustrates the various peaks in the infrared
spectra of the (PMMA-PEO/Si) nanocomposites
at distinct concentrations (pure, 1.4 wt%) of (Si),
within the region of (4000 — 500) cm™. Fig. la
shows the infrared spectra of (PMMA-PEO/Si),
exhibiting a significant peak at about (1723.83)
cm™, indicative of carbonyl (C=0) stretching,
principally reflecting the interaction between
PMMA and PEO. The bending vibration of (CH,) is
seen at 1448.50 cm™, while (C-O) group vibrations
that stretch are noted at 1099.68 cm™. Fig. 1b
displays several peaks at 1449.14 cm™and 1099.33
cm™, corresponding to (C-H) and (C-O) bonds,
respectively. The observed signal at 1723.30 cm™
pertains to the group of carbon atoms (C=0). At
its highest point at 1099.06 cm™ corresponds
to the (C-O) expansion of the carbonyl group in
PMMA. The (C-H) bending transpires at 960.51
cm™, outside the absorption plane of the rings. FT-
IR readings indicate the absence of any chemical
reaction. Where physical linkages are evident and
studies concrete [33-36].

Field-emission scanning electron microscope
(FESEM)

The arrangement of silicon (Si nanoparticles)
within the polymer is examined through
field-emission scanning electron microscopy
(FESEM), and the influence of these particles
on the nanocomposites is assessed. Fig. 2
present FESEM images of films derived from
PMMA-PEOQ/Si nanocomposites, exhibiting
different concentrations of Si nanoparticles. The
Incorporation of silicon (Si nanoparticles) within
the polymer matrix was analyzed using field-
emission scanning electron microscopy (FESEM),
and the effects of these particles on the properties
of the nanocomposites were assessed. Fig. 2
presents FESEM images of films derived from
PMMA-PEQ/Si  nanocomposites,  showcasing
varying concentrations of Si nanoparticles. Fig. 2a
demonstrates the cohesiveness and homogeneity
of the polymer, showing that the addition of
Si nanoparticles to the PMMA-PEO polymer
modifies the surface structure of the system, as
evidenced by images B, C, D, and E in the figure.
The average grain sizes derived from the FESEM

J Nanostruct 16(2): 1508-1518, Spring 2026
(@)er |



H. Hadi et al. / Role of Silicon Nanocomposites for Advanced Electrical and Structural Properties

images were 54.514 nm, 42.39 nm, 39.43 nm, and
38.60 nm for Si nanoparticles at concentrations of
1.4%, 2.8%, 4.2%, and 5.6%, respectively. FESEM
images demonstrate a reduction in average grain
size of 2.8% and 4.2% upon the incorporation of
silicon nanoparticles, this is consistent with the
researchers’ findings [37].

The A.C. Electrical Properties of (PMMA-PEO /Si)
Nanocomposites
Dielectric constant (€’) and dielectric loss (€”’) of
(PMMA-PEO /Si) Nanocomposites

Figs. 3 and 4 illustrate that the dielectric
constant and dielectric loss vary with frequency
for nanocomposites composed of (PMMA-PEO/

Fig. 2. The FESEM of PMMA - PEO/Si complex materials: (a) of (PMMA-PEQ ), (b) of 1.4 wt.% Si, (c) of 2.8wt.% Si, (d) of 4.2 wt.%
Siand e) of 5.6 wt.% Si.
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Si). The photos demonstrate that Maxwell-Wagner
polarization leads to increased dielectric constants
and losses at low frequencies. However, when the
frequency escalates, these values diminish across
all samples. The interaction between insulators
and conductors generates this polarization. The
accumulation of dipoles or space charges at
interfaces leads to polarization on those surfaces.
As the frequency of the applied electric field
decreases, the response time of the space charges
lengthens. However, the polarization effect
decreases when the electric field oscillates rapidly

within the higher frequency range. The dielectric
loss and dielectric constant decrease with
increasing frequency. This behavior corroborates
the researchers’ results [34].

Figs.5and 6 depict the relationship between the
dielectric constant and dielectric loss as a function
of the density of (PMM-PEOQ/Si) nanoparticles at
ambient temperature and (100) Hz. We calculate
the dielectric constant and dielectric loss of PMM-
PEO/Si using the equations (¢’ = Cp/Co) and (g” =
©)D). Darker and smaller areas indicate a reduced
concentration of (PMM-PEO/Si) nanoparticles.

Dielectric Constant
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Fig. 3. Behavior of dielectric constant against frequency for (PMMA-PEO /Si) nanocomposites.
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These patches form at a concentration similar to
that of PMM-PEQ/Si nanoparticles. The network
will have overlapping paths that interlink some
locations with many nanoparticles, enhancing
the mobility of charge carriers. As the density
of (PMM-PEOQ/Si) nanoparticles increases, both
the dielectric constant and dielectric loss grow,
attributed to the enhanced number of free charge
carriers and polarization charges. This discovery
aligns with [34,35].

A.C Electrical conductivity of (PMMA-PEO /Si)
nanocomposites

The A.C. conductivity of nanocomposites is
calculated by using the equation (cA.C=w £o £”).

Fig. 7 for a visual representation of the (PMMA-
PEO/Si) nanocomposites’ varying AC electrical
conductivity. The relationship between this
fluctuation and the room temperature electric
field frequency is shown. Alternating current has a
higherelectrical conductivity at higher frequencies,
as seenin the picture. Thisis due to the fact that an
increase in conductivity is caused by space charge
polarization [36]. Two factors that play a role in
thisphenomena are the polarization of space
charges at low frequencies and the enhancement
of charge carriers to higher conduction band states
[37,38]. Conductivity improves with increasing
frequency due to electronic polarization and
the mobility of charge carriers. Two variables
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Fig. 5. Effect of (Si) nanoparticle concentrations on the dielectric constant of PMMA/PEO.
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that influence alternating current’s conducting
capacity are the main chain’s velocity and the
passage of ions. Using a frequency of 100 hertz,
Fig. 8 shows how the electrical conductivity of

the PEO-PMMA mix is affected by the quantity
of Si nanoparticles. Elevated alternating current
electrical conductivity is a result of an increase
in the charge carrier density inside the polymer
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Fig. 7. Effect of (Si) nanoparticle concentrations on A.C electrical conductivity of PMMA — PEO.
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medium, which is caused by the concentration of
Si nanoparticles[39,40].

Application of (PMMA-PEG/Si) Nanocomposites
for Antibacterial Activity

A graphic depiction of the inhibitory zones
for Staphylococcus and Klebsiella pneumoniae
is presented in Fig. 9. The antibacterial efficacy
of nanocomposites made from polymethyl
methacrylate (PMMA). The efficacy of polyethylene

Kiebsiella pneumoniae

oxide (PEOQ) and silicon (Si) was evaluated against
both gram-positive bacteria (Staphylococcus
aureus) and gram-negative microorganisms
(Klebsiella pneumoniae). The data indicate that
the width of the inhibitory zones rises with the
density of Si nanoparticles [34]. The rise is from
0 mm to 23 mm for Klebsiella pneumoniae
and from 0 mm to 24 mm for Staphylococcus
aureus in the PMMA-PEQ/Si. The efficacy of the
nanocomposites as antibacterial agents may be

Staphylococcus

Fig. 9. )A) Images of the inhibition zone for Staphylococcus. (B) Images of the inhibition zone for Klebsiella pneumoniae.

Table 1. inhibition zone diameter of (PMMA-PEQ/Si) nanocomposites.

Inhibitions zone
diameter(mm) of Staphylococcus

Concentrations (Si) wt%

Inhibitions zone diameter(mm) of
Klebsiella pneumoniae

Pure
14
2.8
4.2
5.6

15
18
21
23

12

17

22
24
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ascribed to the generation of reactive oxygen
species (ROS) by various nanoparticle compounds.
The oxidative stress induced by reactive oxygen
species (ROS) may be the primary mechanism

H. Hadi et al. / Role of Silicon Nanocomposites for Advanced Electrical and Structural Properties

behind the antibacterial activity of nanoparticle-
based nanocomposites. A variety of radicals are
included by reactive oxygen species (ROS). These
radicals comprise there exist four categories of
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Fig. 10. Inhibition zone diameter of (PMMA-PEG/Si) nanocomposites against Staphylococcus bacterial.
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radicals: superoxide (O3), hydroxyl (-OH), hydrogen
peroxide (H,0,), and singlet oxygen (-0,).

In bacteria, it has the capacity to inflict harm
on both DNA and proteins. The production of
reactive oxygen species by silicon dioxide may
have contributed to the inhibition of the most
dangerous microorganisms. Conversely, the
nanoparticles included inside the nanocomposites
possess negative charges, resulting in an
electromagnetic attraction between them and
the associated microorganisms. Following the
formation of the attraction, the microorganisms
will undergo oxidation and ultimately perish [35].
Concerning the nanocomposites consisting of
PMMA-PEQ/Si, the width of the inhibitory zone is
shown in Table 1 [41,42].

CONCLUSION

FTIR measurement indicated the absence
of chemical interaction between the silicon
nanoparticles and the polymers utilized in the
PMMA-PEQO/Si nanocomposites. FESEM analysis
demonstrated the uniformity of the silicon and
PMMA-PEO nanocomposites, indicating that the
average grain size diminished with increasing
Si concentration. The analysis demonstrated
a reduction in the dielectric constant &> of the
samples as the applied electric field intensity
increased, atendency thataligns with the observed
patterns of dielectric loss €». The augmented
frequency improved the alternating current
electrical conductivity of the PMMA-PEQO/Si
nanocomposites. Both dielectric loss and dielectric
constant values escalated across all concentration
combinations with the augmentation of silicon
dioxide content. The antibacterial efficacy of the
PMMA-PEQ/Si nanocomposites demonstrated
that the inhibition zone against Staphylococcus
aureus and Klebsiella pneumoniae expanded with
higher concentrations of silicon nanoparticles.
This illustrates the capabilities of nanoparticles
in medical applications, including the eradication
and suppression of microorganisms, as well as in
electrical and industrial domains.
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