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Research in this area aims to create PMMA-PEO/Si nanocomposites 
with different concentrations of silicon (0.4, 1.4, 2.8, 4.2, and 5.6 weight 
percent). We suggested the nanocomposites’ electrical, structural, and FTIR 
characteristics. The frequency, dielectric constant, and electrical loss were 
all reduced by applying an electric field. The results demonstrated that the 
electrical Loss and dielectric constant of all specimens rose as silicon levels 
rose. The conductivity of alternating current showed this characteristic. 
The researchers also collected nanocomposites made of (PMMA-PEO/Si). 
As the concentration of Si nanoparticles in these composites grew, they 
demonstrated an increasing capacity to suppress bacterial growth. Due to 
their unique combination of silicon’s electrical characteristics with those of 
PMMA and PEO polymers, the findings demonstrated that the laboratory-
prepared nanocomposites exhibit distinctive features. Staphylococcus, 
Klebsiella pneumoniae, and antibiotic-resistant bacteria were among the 
pathogens whose growth was efficiently inhibited by these nanocomposites 
in laboratory testing. These findings suggest that the nanocomposites used 
in this study have the potential to be useful materials in many medical 
contexts, particularly for the creation of new antibacterial substances that 
may combat the increasing problems caused by bacteria that are resistant 
to antibiotics.

INTRODUCTION
Nanotechnology encompasses the 

development and use of nanocomposites, 
offering innovative methods and commercial 
prospects across multiple industries, such 
as automotive, aerospace, superconductors, 
electronics, and physical and chemical fields with 
dimensions spanning from individual molecules 

or atoms to submicron scales [1-4] with sizes 
spanning from individual atoms and molecules 
to submicron dimensions. Nanotechnology is 
often considered the next industrial revolution 
[6,7]. Nanocomposite polymers, including organic 
polymers and nanoscale inorganic nanoparticles, 
are advanced materials that have attracted 
significant interest in recent years [8,9]. These 
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composite materials differ from pure polymers 
in both chemical and physical properties [10,11]. 
This may be important and advantageous for 
several candidates across multiple applications 
[12,13]. Incorporating nanoparticles into a 
polymer matrix may significantly improve the 
material’s optical characteristics with low amounts 
of the Nanoparticles. When added to polymers, 
nanoparticles are better than regular additives 
because they don’t need to be loaded as much, and 
they have a big effect on the physical properties. 

One benefit of nanoparticles as polymer additives, 
in contrast to traditional additives, is that 
their loading requirements are quite low [10] 
Understanding their optical behaviour is crucial for 
examining electronic transitions and the potential 
use of polymers as optical filters. Data on the 
electrical properties of amorphous and crystalline 
semiconductors is often obtained by studying their 
optical features over broad frequency ranges. [4]. 
Polymethyl a linear thermoplastic polymer known 
as methacrylate (PMMA). It holds melting point 

 

  

Fig. 1. IR spectra (pmma-peo/Si) complex materials: (A) for blend, (B) 1.4 wt.%.



1510

H. Hadi et al. / Role of Silicon Nanocomposites for Advanced Electrical and Structural Properties

J Nanostruct 16(2): 1508-1518, Spring 2026

of of160°C with a glass transition temperature 
of 115°C [14] PMMA has exceptional material 
properties, including notable mechanical strength, 
hardness, high rigidity, transparency, and efficient 
insulating capabilities [15-17].

The only drawback of PEO in applications is 
its insufficient optical and electrical performance 
at temperatures beyond its melting point. To 
augment its attributes [18]. PEO nanocomposite 
structures, including nanoparticles, exhibit robust 
interactions with surface functional groupings, 
enhancing thermal stability beyond the melting 
temperature of the nanocomposite [19]. Various 
nanocomposites may be included in PEO polymer 
to improve its properties and facilitate its use in 
multiple fields [20-25]. PEO has shown efficacy 
in several applications due to its unique chemical 
properties. Silicon is ranked the second prevalent 
component of our planet, exceeded only in the 
presence of oxygen [26-28]. Being both cheap and 
plentiful, it has quickly become one of the most 
accessible inorganic compounds. One of silicon’s 
most common uses in the latest innovations in 
energy storage technology is in the semiconductor 
sector, which has grown exponentially in the last 
few decades, demonstrating the material’s critical 
relevance. Characteristics, particularly purity 
and homogeneity. The top-down methodology 
involves the disintegration of convert mass silicon 
from nanostructures. Which has intensified 
the demand for effective, resistance-free, cost-
effective, and biocompatible antimicrobial agents. 
Nanomaterials offer an innovative alternative 
to antibiotics. For example, nanoparticles have 
been employed to mitigate skin diseases and 
prevent microbial colonization on devices 
such as endotracheal tubes, catheters, and 
prostheses. Silicone derivatives combined with 
polymers have been utilized as anti-corrosion and 
chemical-resistant coatings that impede bacterial 
proliferation [29-32].

MATERIALS AND METHODS
The casting procedure was used to create 

the (PMMA-PEO/Si) nanocomposite. At room 
temperature, 1 gramme of (PMMA-PEO) and 
Si were dissolved in 50 millilitres of chloroform 
alcohol using a magnetic stirrer to thoroughly 
mix and dissolve the material. The weight ratios 
of Si nanoparticles added to PMMA-PEO were 
(1.4,2.8,4.2, and 5.6%) Using a 10-centimeter-
diameter Petri dish as a mound, pouring the liquid 

in, waiting for it to dry, and then carefully removing 
it for testing is the casting procedure.

RESULTS AND DISCUSSION
FTIR spectra of (PMMA/PEO/Si) nanocomposites

Fig. 1 illustrates the various peaks in the infrared 
spectra of the (PMMA-PEO/Si) nanocomposites 
at distinct concentrations (pure, 1.4 wt%) of (Si), 
within the region of (4000 – 500) cm⁻¹. Fig. 1a 
shows the infrared spectra of (PMMA-PEO/Si), 
exhibiting a significant peak at about (1723.83) 
cm⁻¹, indicative of carbonyl (C=O) stretching, 
principally reflecting the interaction between 
PMMA and PEO. The bending vibration of (CH2) is 
seen at 1448.50 cm⁻¹, while (C-O) group vibrations 
that stretch are noted at 1099.68 cm⁻¹. Fig. 1b 
displays several peaks at 1449.14 cm⁻¹ and 1099.33 
cm⁻¹, corresponding to (C-H) and (C-O) bonds, 
respectively. The observed signal at 1723.30 cm⁻¹ 
pertains to the group of carbon atoms (C=O). At 
its highest point at 1099.06 cm⁻¹ corresponds 
to the (C-O) expansion of the carbonyl group in 
PMMA. The (C-H) bending transpires at 960.51 
cm⁻¹, outside the absorption plane of the rings. FT-
IR readings indicate the absence of any chemical 
reaction. Where physical linkages are evident and 
studies concrete [33-36].

Field-emission scanning electron microscope 
(FESEM)

The arrangement of silicon (Si nanoparticles) 
within the polymer is examined through 
field-emission scanning electron microscopy 
(FESEM), and the influence of these particles 
on the nanocomposites is assessed. Fig. 2 
present FESEM images of films derived from 
PMMA-PEO/Si nanocomposites, exhibiting 
different concentrations of Si nanoparticles. The 
Incorporation of silicon (Si nanoparticles) within 
the polymer matrix was analyzed using field-
emission scanning electron microscopy (FESEM), 
and the effects of these particles on the properties 
of the nanocomposites were assessed. Fig. 2 
presents FESEM images of films derived from 
PMMA-PEO/Si nanocomposites, showcasing 
varying concentrations of Si nanoparticles. Fig. 2a 
demonstrates the cohesiveness and homogeneity 
of the polymer, showing that the addition of 
Si nanoparticles to the PMMA-PEO polymer 
modifies the surface structure of the system, as 
evidenced by images B, C, D, and E in the figure. 
The average grain sizes derived from the FESEM 
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  Fig. 2. The FESEM of PMMA - PEO/Si complex materials: (a) of (PMMA-PEO ), (b) of 1.4 wt.% Si , (c) of 2.8wt.% Si , (d) of 4.2 wt.%  
Si and e) of 5.6 wt.% Si.

images were 54.514 nm, 42.39 nm, 39.43 nm, and 
38.60 nm for Si nanoparticles at concentrations of 
1.4%, 2.8%, 4.2%, and 5.6%, respectively. FESEM 
images demonstrate a reduction in average grain 
size of 2.8% and 4.2% upon the incorporation of 
silicon nanoparticles, this is consistent with the 
researchers’ findings [37].

The A.C. Electrical Properties of (PMMA-PEO /Si) 
Nanocomposites
Dielectric constant (ɛ’) and dielectric loss (ɛ’’) of 
(PMMA-PEO /Si) Nanocomposites

Figs. 3 and 4 illustrate that the dielectric 
constant and dielectric loss vary with frequency 
for nanocomposites composed of (PMMA-PEO/
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Si). The photos demonstrate that Maxwell-Wagner 
polarization leads to increased dielectric constants 
and losses at low frequencies. However, when the 
frequency escalates, these values diminish across 
all samples. The interaction between insulators 
and conductors generates this polarization. The 
accumulation of dipoles or space charges at 
interfaces leads to polarization on those surfaces. 
As the frequency of the applied electric field 
decreases, the response time of the space charges 
lengthens. However, the polarization effect 
decreases when the electric field oscillates rapidly 

within the higher frequency range. The dielectric 
loss and dielectric constant decrease with 
increasing frequency. This behavior corroborates 
the researchers’ results [34].

Figs. 5 and 6 depict the relationship between the 
dielectric constant and dielectric loss as a function 
of the density of (PMM-PEO/Si) nanoparticles at 
ambient temperature and (100) Hz. We calculate 
the dielectric constant and dielectric loss of PMM-
PEO/Si using the equations (ɛ’ = Cp/Co) and (ɛ’’ = 
ɛ›D). Darker and smaller areas indicate a reduced 
concentration of (PMM-PEO/Si) nanoparticles. 

 

  

 

  

Fig. 3. Behavior of dielectric constant against frequency for (PMMA-PEO /Si) nanocomposites.

Fig. 4. Behavior of dielectric loss of (PMMA - PEO /Si) nanocomposites against frequency.
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These patches form at a concentration similar to 
that of PMM-PEO/Si nanoparticles. The network 
will have overlapping paths that interlink some 
locations with many nanoparticles, enhancing 
the mobility of charge carriers. As the density 
of (PMM-PEO/Si) nanoparticles increases, both 
the dielectric constant and dielectric loss grow, 
attributed to the enhanced number of free charge 
carriers and polarization charges. This discovery 
aligns with [34,35].

A.C Electrical conductivity of (PMMA-PEO /Si) 
nanocomposites

The A.C. conductivity of nanocomposites is 
calculated by using the equation (σA.C = 𝜔 ℰo ℰ’’). 

Fig. 7 for a visual representation of the (PMMA-
PEO/Si) nanocomposites’ varying AC electrical 
conductivity. The relationship between this 
fluctuation and the room temperature electric 
field frequency is shown. Alternating current has a 
higher electrical conductivity at higher frequencies, 
as seen in the picture. This is due to the fact that an 
increase in conductivity is caused by space charge 
polarization [36]. Two factors that play a role in 
thisphenomena are the polarization of space 
charges at low frequencies and the enhancement 
of charge carriers to higher conduction band states 
[37,38]. Conductivity improves with increasing 
frequency due to electronic polarization and 
the mobility of charge carriers. Two variables 

 

  

 

  

Fig. 5. Effect of (Si) nanoparticle concentrations on the dielectric constant of PMMA/PEO.

Fig. 6. Effect of (Si) nanoparticle concentrations on the dielectric of PMMA/PEO.
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Fig. 8. Relation between A.C electrical conductivity with frequency for (PMMA-PEO /Si) nanocomposites.

Fig. 7. Effect of (Si) nanoparticle concentrations on A.C electrical conductivity of PMMA – PEO.

that influence alternating current’s conducting 
capacity are the main chain’s velocity and the 
passage of ions. Using a frequency of 100 hertz, 
Fig. 8 shows how the electrical conductivity of 

the PEO-PMMA mix is affected by the quantity 
of Si nanoparticles. Elevated alternating current 
electrical conductivity is a result of an increase 
in the charge carrier density inside the polymer 
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medium, which is caused by the concentration of 
Si nanoparticles[39,40].

Application of (PMMA-PEG/Si) Nanocomposites 
for Antibacterial Activity

A graphic depiction of the inhibitory zones 
for Staphylococcus and Klebsiella pneumoniae 
is presented in Fig. 9. The antibacterial efficacy 
of nanocomposites made from polymethyl 
methacrylate (PMMA). The efficacy of polyethylene 

oxide (PEO) and silicon (Si) was evaluated against 
both gram-positive bacteria (Staphylococcus 
aureus) and gram-negative microorganisms 
(Klebsiella pneumoniae). The data indicate that 
the width of the inhibitory zones rises with the 
density of Si nanoparticles [34]. The rise is from 
0 mm to 23 mm for Klebsiella pneumoniae 
and from 0 mm to 24 mm for Staphylococcus 
aureus in the PMMA-PEO/Si. The efficacy of the 
nanocomposites as antibacterial agents may be 

 

  
Fig. 9. )A)  Images of the inhibition zone for Staphylococcus. (B)  Images of the inhibition zone for Klebsiella pneumoniae.

 

Concentrations (Si) wt% Inhibitions zone 
diameter(mm) of Staphylococcus 

Inhibitions zone diameter(mm) of 
Klebsiella pneumoniae 

Pure 0 0 

1.4 15 12 

2.8 18 17 

4.2 21 22 

5.6 23 24 
 

Table 1. inhibition zone diameter of (PMMA-PEO/Si) nanocomposites.
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Fig. 10. Inhibition zone diameter of (PMMA-PEG/Si) nanocomposites against Staphylococcus bacterial.

Fig. 11. Inhibition zone diameter of (PMMA-PEO/Si) nanocomposites against Klebsiella pneumoniae.

ascribed to the generation of reactive oxygen 
species (ROS) by various nanoparticle compounds. 
The oxidative stress induced by reactive oxygen 
species (ROS) may be the primary mechanism 

behind the antibacterial activity of nanoparticle-
based nanocomposites. A variety of radicals are 
included by reactive oxygen species (ROS). These 
radicals comprise there exist four categories of 
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radicals: superoxide (O₂), hydroxyl (-OH), hydrogen 
peroxide (H₂O₂), and singlet oxygen (-O₂).

In bacteria, it has the capacity to inflict harm 
on both DNA and proteins. The production of 
reactive oxygen species by silicon dioxide may 
have contributed to the inhibition of the most 
dangerous microorganisms. Conversely, the 
nanoparticles included inside the nanocomposites 
possess negative charges, resulting in an 
electromagnetic attraction between them and 
the associated microorganisms. Following the 
formation of the attraction, the microorganisms 
will undergo oxidation and ultimately perish [35]. 
Concerning the nanocomposites consisting of 
PMMA-PEO/Si, the width of the inhibitory zone is 
shown in Table 1 [41,42].

CONCLUSION
FTIR measurement indicated the absence 

of chemical interaction between the silicon 
nanoparticles and the polymers utilized in the 
PMMA-PEO/Si nanocomposites. FESEM analysis 
demonstrated the uniformity of the silicon and 
PMMA-PEO nanocomposites, indicating that the 
average grain size diminished with increasing 
Si concentration. The analysis demonstrated 
a reduction in the dielectric constant ɛ› of the 
samples as the applied electric field intensity 
increased, a tendency that aligns with the observed 
patterns of dielectric loss ɛ››. The augmented 
frequency improved the alternating current 
electrical conductivity of the PMMA-PEO/Si 
nanocomposites. Both dielectric loss and dielectric 
constant values escalated across all concentration 
combinations with the augmentation of silicon 
dioxide content. The antibacterial efficacy of the 
PMMA-PEO/Si nanocomposites demonstrated 
that the inhibition zone against Staphylococcus 
aureus and Klebsiella pneumoniae expanded with 
higher concentrations of silicon nanoparticles. 
This illustrates the capabilities of nanoparticles 
in medical applications, including the eradication 
and suppression of microorganisms, as well as in 
electrical and industrial domains.
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