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In recent years, nanocarriers composed of polymers, liposomes, and 
other materials have gained attention for the delivery of nucleotides 
and therapeutic drugs. This study investigates the use of graphene oxide 
(GO) as a key component in nanocarriers, owing to its unique chemical 
structure, high surface area, biocompatibility, and versatile functional 
properties. GO exhibits strong potential for applications in drug and gene 
delivery, tissue engineering, and other biomedical fields due to its ability 
to interact effectively with various compounds. In this work, a novel GO–
MgO–chitosan nanocarrier was synthesized and evaluated for drug loading 
and release capabilities. Comprehensive characterization techniques—
including Fourier-transform infrared spectroscopy (FT-IR), scanning 
electron microscopy (SEM), X-ray diffraction (XRD), Raman spectroscopy, 
thermogravimetric analysis (TGA), and zeta potential analysis—were 
conducted before and after drug incorporation. These analyses confirmed 
the successful fabrication of the nanocarrier and provided insight into 
structural, morphological, and thermal changes associated with drug 
loading, supporting its potential in targeted drug delivery systems.

INTRODUCTION
Due to facilitating good targeting, controlled 

drug release, and efficient loading, nanoscale 
drug delivery systems such as nanospheres, 
nanocapsules, micelles, carbon nanotubes, 
nanosheets, nanotubes, and nanoliposomes have 
gained considerable attention at the interface 
of biomedical applications and nanotechnology 
in recent times [1-3]. Graphene (GO) is a two 
dimensional crystal and thin layer of carbon 
atoms that are Graphene is a thin layer of carbon 

atoms. It is a two-dimensional crystal that is 
connected in a hexagonal network that resembles 
a honeycomb. Because of its unique properties, 
such as its large surface area, high electromagnetic 
and conductive properties, and its chemical and 
physical properties, it has gained great interest 
and is used in wide applications [4]. Due to 
the thin atomic layer of graphene, its chemical 
stability and high mobility of carriers at room 
temperature, it has an important role in preparing 
nanocomposites [5]. Graphene is also considered 
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to have high thermal conductivity, is wide-ranging, 
low-cost and is considered a semiconductor with a 
zero gap [6]. Magnesium oxide [MgO] It is a basic 
alkaline earth metal oxide with key advantages 
such as thermal stability, high pH, ​​low toxicity, 
low cost, a high surface hydroxyl group, and a 
large surface area [7,8]. Due to its properties of 
low electrical conductivity, high thermal stability, 
and catalytic behavior, magnesium oxide is used 
as a therapeutic agent in the pharmaceutical 
and paint industries, toxic waste treatment, and 
superconductors. Magnesium oxide particles are 
also prepared by hydrothermal, sol-Gol, laser 
evaporation, wet chemical methods, and other 
methods. All of these methods produce high-cost, 

highly toxic magnesium oxide nanoparticles. This 
nanoparticle also has wide interest in medical and 
biological applications. Therefore, it is used as a 
biocide, bone regeneration, cancer treatment, and 
heartburn treatment. Therefore, green synthesis 
is an alternative method for producing non-toxic 
magnesium oxide for medical and biological 
applications.[9]. Capecitabine (cap) It has the 
chemical name pentyl [1-(3,4-dihydroxy5-methyl-
tetrahydrofuran-2-yl)-5-fluoro-2-oxo-1Hpyrimidin-
4-yl] amino methanoate, as shown in Fig. 1 It is 
an antitumor chemotherapy drug used in the 
treatment of metastatic rectal, colon and breast 
cancer. It is taken orally. Its molecular formula of 
C15H22FN3O6 and molecular weight of 359.3 have 

 

 

 

 

  

  

   
  

Fig. 1. Structure of capecitabine.

Fig. 2. SEM of GO-MgO-chitosan.



367J Nanostruct 16(1): 365-374, Winter 2026

A. Hasan, and N. Fairooz / Investigation of Capecitabine Loading on GO/MgO/Chitosan

a short half-life and are in the form of a white 
powder.[10-12]. Chitosan, It is considered a family 
of linear polysaccharides and copolymer composed 
of glucosamine and N-acetyl glucosamine derived 
from chitin.It is soluble in acidic aqueous media via 
the proton of the primary amine.Due to its amino 
and hydroxyl functional groups, chitosan has wide-
ranging applications in medicine, food, industry, 

agriculture, and more.which is a major component 
of crustacean shells and one of the most abundant 
biopolymers in nature [13-15].

MATERIALS AND METHODS
Materials

capecitabine was obtained from med chem 
express (MCE) amrica chitosan was purchased 

      
  

 

 

 

 

 

  

Fig. 4. FT-IR of GO-MgO-chitosan.

Fig. 3. SEM of GO-MgO-chitosan- cap.
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from india phosphate-buffered saline (PBS) were 
purchased from Hi Media (India). Glycine was 
purchased from Media (India). dialysis membranes 
were purchased from USA. The pH meter from 
OAICTON 2100. water.

Synthesis of GO and GO-MgO
Graphene oxide (GO) powder were prapeard 

following the modified Hummer method. Two 
grams of graphite were mixed with 100 ml of 
concentrated sulfuric acid at room temperature 
and stirred for half an hour. 12 g of potassium 
permanganate was slowly added to the mixture. 
The solution was stirred for one hour in an ice 

bath, then left to stand for another hour in an 
ice bath. The solution was then stirred for four 
hours in a water bath at 50°C. 200 ml of deionized 
water was then added to the mixture, which 
turned a yellow-brown color. 400 ml of water was 
then slowly added to the mixture and allowed to 
stand for 10 minutes. 20 ml of hydrogen peroxide 
was then added to the mixture and left to stand 
for one hour at 100°C. The resulting mixture 
was then centrifuged, washed, and dried at 70-
80°C. Synthesis of GO-MgO Powder. 40 mg of 
synthesized GO powder was dispersed in 100 ml 
DI water and playced sonication for 1h. It led to 
formation of a stable GO suspension. Next, 40 mg 
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Fig. 6. Zeta potential of GO-MgO-chitosan.

Fig. 5. FT-IR of GO-MgO-chitosan- cap.
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of Mg(NO3)2.6H2O was dissolved in 100 ml DI water. 
In this solution was added to the GO suspension. 
The mixture was left for half an hour, then 
ultrasonicated for 4 hours. The resulting mixture 
was then centrifuged, filtered, and washed several 
times with deionized water, followed by ethanol 
three times. It was then air dried [16].

Synthesis of GO- MgO-chitosan- capecitabine 
To synthesis GO- MgO-chitosan (0.25 g) 

chitosan mixed acetic acid (2%). Added 0.5% (w/v) 
mgCl2 and 0.5% (w/v) graphene oxide were kept 

in the constant bath stirring. Bath temperature 
was gradually elevated to 70ºC and fixed for 2 h. 
NaOH 45% (w/v) aqueous was blended gradually 
until a dark black precipitate formation. After 
24h. the precipitate was clean and filter. The final 
GO- MgO- chitosan residue was dried at 100ºC 
for 2 h in a hot oven. the Loading of cap to GO- 
MgO- chitosan was carried out by stirring different 
amounts of cap (0.003 g to 0.005 g) overnight 
with GO- MgO- chitosan at a GO concentration of 
0.02 g in ethanol. Unloaded cap was removed by 

 

 

 

 

 

 

 

 

 

 

  
 

 

 

 

 

 

 

 

 

  
Fig. 8. XRD of GO-MgO-chitosan.

Fig. 7. Zeta potential of GO-MgO-chitosan-cap.
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centrifugation for 5 min and its concentration was 
measured by UV-VIS-NIR spectrometer at (301 
nm) The sample was washed five times with water 
[17,18].

Characterization
Fourier transform infrared measurements 

of GO- MgO- chitosan, and GO-MgO- chitosan 
-cap were carried out using a Bruker Vertex 80 
IR spectrometer (Germany) at a resolution of 4 
cm-1 from 4000-400 cm-1. Raman spectroscopic 
characterization was done with Bruker Senterra 

(Germany) excited at 532 nm laser line. Ultraviolet-
visible near infrared (UV-VIS-NIR) spectra were 
recorded using a UV-3600 (Shimadzu, UV-VIS-NIR, 
Japan). Thermal decomposition of were analyzed 
using a SDT Q600 thermo gravimetric analyzer (TA 
Instruments) from 25_C to 1000_C using a ramp 
rate of 10_C/min in air.

Determination of Encapsulation Efficiency, Loading 
Capacity 

The amount of incorporated cap in GO- 
MgO- chitosan composite was determined 

 

 

 

 

 

 

 

 

 

 

  

  

 

 

  
Fig. 10. TGA of GO-MgO-chitosan.

Fig. 9. XRD of GO-MgO-chitosan- cap.
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through in the supernatant remain after 
centrifugation of the reaction mixture, using 
the UV-visible spectrophotometer at 301 nm. 
Then the concentration was calculated from a 
calibration plot obtained for pure cap. Percentage 
encapsulation efficiency was calculated as follows.

cap Encapsulation (%)=([m cap−m U] / m cap )×100
m cap= total amount of cap added
m U=Remaining amount of drug in the 

supernatant
%Loading capacity = (m cap- m U) / m
m=final weight of the composite

 

 

  
 

 

 

 

 

 

 

 

 

 

  

  

Fig. 12. Raman of GO-MgO-PEG.

Fig. 11. TGA of GO-MgO-chitosan- cap.
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Release of capecitabine
The release of cap from the GO- MgO- chitosan 

- cape composite were studied in three mediums 
phosphate-buffered saline (PBS) solution at neutral 
pH 7.4 and pH=8 and PH= 2.8 (Glycine Hcl buffer). 
The cap -loaded nanocomposite was dispersed 

in 5.00 mL of water and trapped inside a dialysis 
membrane and then immersed in 100mL of buffer 
solution at 25 Cₒ with mild agitation. Aliquots 
(5 mL) were withdrawn at predetermined time 
intervals and their UV absorbance was measured 
at 301 nm using a UV-visible spectrophotometer 
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Fig. 13. Raman of GO-MgO-PEG-cap.
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[19].

RESULTS AND DISCUSSION
Characterization of GO- MgO- chitosan - cap

The morphology of the nanostructure of GO- 
MgO- chitosan the compound was studied before 
and after cap loading it with the drug using a 
scanning electron microscope. The Fig. 2 shows 
the interpenetration of magnesium oxide and 
chitosan between the graphene oxide sheets in 
a coherent manner, and that the nanostructure is 
smooth and envelops the chitosan sheets within 
the graphene oxide sheets. Fig. 3 shows scanning 
electron microscope images after loading cap 
onto GO- MgO- chitosan the nanostructure. The 
appearance of slight differences and changes in 
the shapes after loading the drug onto the surface 
of the nanostructure is evidence of the success of 
loading the drug onto the surface of the compound 
GO- MgO- chitosan.[20]. Fig. 4 FTIR spectra exposes 
the O–H stretching band around ~3446.91 cm-1. 
The C–H symmetric and asymmetric vibrations 
observe at ~2386.20 and ~2069.69 cm-1. A C=C 
vibration exhibits nanocomposites at 1508.38 
cm-1 due to GO presence respectively. the band at 
~553.59-484.15 cm-1 implies the anti symmetric 
and symmetric vibrations of Mg-O recognized 
from MgO on GO-chitosan surface. In Fig. 5 the 
FT-IR spectra for GO-MgO-chitosan - capecitabine 
was explained, in comparison with GO-MgO-
chitosan, GO-MgO-chitosan - capecitabine 
showed the most characteristic bands of each 
though with slight shifts at 3435.46cm-1, 1108.66 
and 1384 .88 cm-1. These shifts may be attributed 
to changes in the molecular environment or 
interactions between the components, indicating 
the successful formation of GO- MgO- chitosan-
cap nanocomposite [21].

Zeta potential for GO- MgO- chitosan and GO- 
MgO-chitosan after loading cap are -17.1 and 
-36.3, respectively as shown in the Fig. 6 and Fig. 
7 which represents our nanocarrier has a highly 
negative surface charge. Therefore, it seems our 
compound has properly potential for using in drug 
delivery [22].

Fig. 8 shows the XRD pattern of GO- MgO- 
chitosan. In this figure, a sharp diffraction peak 
at 2h = 18.5, 29.5, 38.5, 51,58.5, 62 and 64.5 is 
detected, suggesting the formation of GO- MgO- 
chitosan After loading cap into the GO- MgO-
chitosan nanocomposite, the XRD patterns Fig. 

9 showed minimal change compared to the GO- 
MgO- chitosan composite, though boarder peaks 
were observed. [23].

TGA curve of GO- MgO- chitosan is shown in 
Fig. 10. The TGA curve represented weight loss of 
around 94.60 % in the sample at temperature of 
about 70°C and 89.00% at 130 °C and 84.62 at 200 
°C and 70.78 % at 330 °C and 62,67 % at 430 °C 
and 58.38 % at 540 °C which indicates the thermal 
stability of the sample.TGA curve of GO- MgO- 
chitosan after loading cap is shown in Fig. 11 The 
TGA curve represented weight loss of around 9.991 
% in the sample at temperature of about 140°C 
and 16.00 % at 320 °C and 7.772% at 480 °C and 
9.375 at 810 °C . This weight loss can be due to the 
elimination of the water molecules absorbed by 
the nanoparticles from the atmosphere [24]. Fig. 
12 Raman spectrum show the G band is observed 
at 1594cm-1 and the D band is observed at 1347cm-

1 and Fig. 13 raman spectrum after loading drug 
show the G band is observed at 1600 cm-1 and 
the D band is observed at 1290 cm-1 .We did not 
observe any change in the bands before and after 
drug loading, indicating that drug loading did not 
alter the structural integrity of graphene [25]. 

Drug Loading and In Vitro Release
The in vitro release profile of GO- MgO- 

chitosan - cap in PBS solution (pH 7.4) and PH=8 
and PH=2.8 (Glycine HCl) is shown in Fig. 14. The 
total release percentage was around 49.44 % of 
PH=7.4, 15.52 % of PH=8 and 24.64 % of PH=2.8. 
The rapid release of cap was probably due to the 
drug which was adsorbed at or on the surface of 
the GO [26].

CONCLUSION
In this study, we investigate the potential of 

GO as an efficient system for loaded drug. Upon 
successful encapsulation of cap into GO, the 
anticipated sustained release of cap was achieved. 
In this study, nanocarriers of graphene oxide and 
magnesium oxide were fabricated by loading cap 
and characterizing this carrier using techniques 
such as FT-IR, XRD, SEM, Zeta potential and TGA. The 
oral form of cap loaded inside the nanocomposite 
was evaluated and the release behavior at pH was 
shown. The study showed that the release amount 
at pH 7.4 is faster than pH 2.8 and 8. This method 
is considered promising for oral drug delivery due 
to the ability of this nanocomposite loaded with 
cap to control the release.
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