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The aim of this study is to prepare nanofibers from fullerenes and gold 
nanoparticles at concentration of (0, 0.4, 1.9 and 3.6) ppm with PAni and 
PVA, for medical biosensor fabrication using the electrospinning method 
and to study the effect of both gold nanoparticles and fullerenes on the 
structural, morphological, XRD and Cyclic Voltammetry properties of 
nanofibers. The gold nanoparticles are causing pressure in the crystal 
lattices of the carbon materials (C₈₀, C₇₀, and C₆₀ polymers), Also These 
systematic displacements are not due to mere physical mixing, but rather 
are conclusive evidence of a real interaction at the atomic/crystal scale 
between gold and carbon , nanofibers with sizes ranging from 21.99 nm 
to 80.5 nm appeared, as did small, the sensor based on AuNP/CNF/PAni/
PVA on a gold electrode exhibits a clear dose – dependent electrochemical 
response, this medical biosensor capable of reliably detecting CA II in the 
0-125 ng/ml range.

INTRODUCTION
In recent years, biosensors have become 

a crucial focus in research related to medical 
diagnostics and environmental monitoring, due 
to their ability to deliver precise and sensitive 
results for detecting a wide range of biomolecules. 
However, significant challenges remain in 
improving the sensitivity and stability of these 
sensors. Medical biosensors, in particular, require 
continuous performance enhancement to ensure 
accuracy and reliability [1]. While nanomaterials 
such as gold and carbon can significantly enhance 
the sensitivity of biosensors, their high cost 

and the intricacies of manufacturing remain 
substantial hurdles [2]. Gold nanoparticles 
exhibit unique properties, such as high electrical 
conductivity and a large surface area, which 
make them highly effective in improving the 
sensitivity for detecting biomolecules [3]. Carbon 
nanotubes, on the other hand, offer exceptional 
mechanical and electrical properties that enhance 
the stability and extend the operational lifespan 
of sensors [4]. Additionally, Poly Aniline (PAni), 
a conductive polymer, is known for its ability to 
interact with ions and biomolecules, enhancing 
the sensitivity of sensors while contributing to 
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improved stability [5]. Furthermore, Poly Vinyl 
Alcohol (PVA) is a biodegradable polymer that can 
be used as a support material in medical sensor 
fabrication, reducing costs while promoting 
environmental sustainability [6]. The integration 
of gold nanoparticles and carbon nanotubes with 
PAni and PVA offers several potential benefits 
for improving the performance of biosensors. 
This combination enhances both electrical 
conductivity and sensitivity, allowing for more 
accurate detection of biomolecules [7, 5]. The 
addition of carbon nanofibers to PAni contributes 
to long-term sensor stability, making these devices 
more reliable across various environments [8, 9]. 
Using PVA as a supporting material provides an 
economical solution, reducing manufacturing 
costs, as it is a biodegradable polymer that 
minimizes environmental waste [10, 11].

In terms of potential applications, these 
enhanced sensors could significantly improve 
the early detection of tumors, increasing the 
effectiveness of early-stage disease diagnosis 
[12]. The flexibility of PAni and PVA also makes 
them suitable for developing wearable medical 
devices, providing continuous monitoring of 
health parameters with greater comfort and safety 
[13, 14]. Additionally, PVA can be used to create 
implantable sensors that offer long-term disease 
monitoring while safely degrading within the body 
over time [15].

Nevertheless, several challenges must still be 

addressed, such as improving the biocompatibility 
of the materials to ensure they the body. 
Achieving long-term stability in diverse biological 
and chemical environments also requires further 
refinement of material formulations [16,17]. 
Additionally, the manufacturing processes need 
to be optimized to be more cost-effective and 
scalable, while ensuring high-quality sensor 
performance [18].

MATERIALS AND METHODS
In this study several instruments and materials 

Suppliers: Carbon electrodes from dray batteries, 
gold, Distilled Deionized Water (DDW), Alcohol, 
96% Acetone. To prepare the colloidal solution 
of carbon according to a previous study [19] to 
produce nanoparticles of gold and fullerene, 
the carbon was placed in 4 beakers, each beaker 
containing 50 ml of deionized water, and each 
one was bombarded with 3000 laser shots, then 
the gold was also bombarded with a number of 
laser shots: (0, 1000, 2000, 3000) respectively, 
with a laser beam using an Nd -YAG pulsed laser, 
its Parameter Value: Wavelength 1064 nm, the 
diameter of the spot 2 mm, the laser energy was 
100 mJ, the pulse duration 6 Hz and laser pulse 
width 10 nm. The distance between the surface of 
solution and the laser lens was 12 cm Fig. 1.

After preparing the 50 ml colloidal solution, put 
it in the syringe of the electrospinning device Fig. 2. 
The electrospinning device was used with specific 

Fig. 1. Schematic illustration of the laser ablation 

method in liquid.
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parameters. The distance between the needle and 
the sample in the rotating cylinder was 10 cm, the 
high voltage between them was 23.5 KV, 

the cylinder rotated around its axis at a speed 
of 3000 rpm, and the colloidal fluid flow rate in 
the injection system was equal to 0.1 ml per hour, 
the colloidal solution exits from the nozzle of the 
syringe head, which is the positive pole, to the 
opposite rotating cylinder, that negative pole.

RESULTS AND DISCUSSION
By analysis of X-ray diffraction (XRD)patterns 

(x-ray Anode Material Cu Generator Settings 
radiation and accelerated voltage of 40 kV and 30 
mA). Williamson-Hall relation was [20] applied to 
estimate the crystalline size

 

 

 

 

Dhkl = ( Aλ
cosθ. Bhkl

) + (4ɛsinθ)                             (1)

 FE-SEM images achieved via field emission 
scanning electron microscope (FE-SEM, 
INSPECT-550) have been used to evaluate the 
morphological properties of the prepared film 
surfaces, addition to the energy dispersive x-ray 

(EDX) microanalysis to estimate elemental analysis 
associated with the prepared films, as well Raman 
spectra were achieved to detect their vibrational 
and rotational.

XRD patterns have been analyzed based on COD 
96-900-1992, ICSD 98-041-2242, ICDD 01-089-
8491, ICSD 98-005-6668, and ICSD 98-009-6620 
cards. Pure carbon films showed a polycrystalline 
structure with the dominance of C70 phases at 
2θ of approximately 20.33°, 22.83°, 29.04°, and 
39.66°. The dominant phase was observed at 
about 29.04° (242) with crystallite size found at 
about 89.22 nm. Likewise, the presence of three 
main phases, C80,C70 and C60- Polymer but with 
lower attributions as shown in Fig. 3.

Experimental location of the first reference curve 
(without gold)

In the first curve, the reference C₈₀ peak is 
the peak at 13.5547°. We note that the second 
curve (0.4 ppm) at 15.9907° appears to be shifted 
significantly to the right (+2.436°). Curve 3 (1.9 
ppm) at 16.0038° appears to be shifted significantly 
to the right (+2.449°). Curve 4 (3.6 ppm) at 
15.8213° appears to be shifted significantly to the 

 

  

Fig. 2. Electrospinning device used in this work
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right (+2.266°). We conclude that the addition 
of gold caused a systematic and significant shift 
of the C₈₀ peaks toward higher (right) angles. 
C₇₀ peaks, which is the second indicator in the 
tables - the most important peak, the reference 
is the peak 20.3254°, where we notice curve 
2 (0.4 ppm): 20.3161° shows a very slight shift 
to the left (-0.0093°). As for curve 3 (1.9 ppm): 
20.5815°, there is also a clear shift, but to the right 
(+0.2561°). In curve 4 (3.6 ppm): 20.3503°, also a 
shift to the right (+0.0249°). We conclude that the 
behavior is more complex. At low concentration 
(0.4 ppm), the position is almost unchanged, but 
with increasing concentration, a shift to the right 
occurs, which is more pronounced at medium 
concentration (1.9 ppm). Polymer C₆₀ peaks, 
which is index 9 in the tables, the first reference 
curve is the peak 73.1248° and the second curve 
(0.4 ppm): 73.5587° appears to be shifted to the 
right by (+0.4339°), and in the third curve (1.9 
ppm also the peak): 73.3975° shifted to the right 
by (+0.2727°), and the fourth curve (3.6 ppm): 
73.4005° in the peak shifted to the right (+0.2757°).

The shift in diffraction angle (2θ) is directly 
related to the change in the distance between 
crystal planes (d-spacing) according to Bragg’s law:

nλ = 2d sinθ

Rightward shift (increasing θ): This means 
a decrease in the distance (d) between crystal 
planes. Physical Interpretation: This often indicates 
compressive strain within the crystal lattice. The 
introduction of smaller gold atoms or particles (or 
their formation in interstitial sites) can compress 
and bring the crystal planes closer together, 
leading to a decrease in the value of d and thus an 
increase in the angle θ.

Leftward shift (decreasing θ): This means 
an increase in the distance (d) between crystal 
planes. This indicates a tensile strain within the 
lattice. This very slight displacement was observed 
in one case (C₇₀ at 0.4 ppm), and may be due to 
the presence of impurities or an initial surface 
interaction causing a slight expansion.

1. The dominant effect is pressure: The 
dominant and clear displacement direction in your 
data is to the right, which means that the gold 
nanoparticles are causing pressure in the crystal 
lattices of the carbon materials (C₈₀, C₇₀, and C₆₀ 
polymers). This pressure leads to a decrease in the 
distances between the atomic planes.

2. Evidence of interaction: These systematic 
displacements are not due to mere physical 
mixing, but rather are conclusive evidence of a real 
interaction at the atomic/crystal scale between 

 

  

Fig. 3. XRD patterns of Fullerene-Au films
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gold and carbon. The gold particles are not just 
sitting on the surface; they permeate the structure 
and create internal stress.

3. Concentration and structure dependence: 
The magnitude of the response (amount of 
displacement) varies depending on the type of 
carbon molecule (C₈₀ was most affected) and the 
gold concentration, indicating that the reaction 
mechanism and the extent of each structure’s 
influence may differ.

The rightward shift of the peaks is direct 
experimental evidence that nanogold exerts 
pressure on the carbon crystal structures, altering 
their fundamental physical properties. This is 
critical to the performance of the hybrid material 
in various applications such as catalysis and 
electronics.

Fig. 4 represents FE-SEM images that mainly 
give morphological information about the surface 
of the prepared Fullerenes and AuNPs-fullerene 
nanofiber with 0, 0.4, 1.9, and 3.6 ppm.

A clear separation was observed between the 
different particles, especially the nanofibers, which 
are believed to be C60 polymers with an average 
diameter of approximately 39 nm, as shown in Fig. 
4. The addition of gold nanoparticles led to a clear 
change in the stages of nanofiber formation. The 
addition of gold at concentrations of 0, 0.4, 1.9, 
and 3.6 ppm resulted in a variety of formations, 

consisting of scattered spherical particles with 
diameters ranging from 17.86 to 

35.73 nm in the absence of gold. In addition, hairs 
with a thickness of approximately 29 nm to 42 nm 
and nanofibers with a diameter of approximately 
53 nm also appeared. At a concentration of 0.4 
ppm, nanofibers with sizes ranging from 21.99 nm 
to 80.5 nm appeared, as did small, few-numbered 
spheres with diameters ranging from 24.56 nm 
to 42.43 nm, which are believed to be either gold 
or a by-product of the nanofibers due to the high 
speed of the collecting drum. At a concentration 
of 1.9 ppm, holes appeared in the tissue with 
diameters ranging from 37.9 nanometers to 120.6 
nanometers. Increasing the concentration of gold 
nanoparticles to 3.6 ppm led to the appearance 
of large random clusters, while the spheres had 
diameters ranging from 224.6 nanometers to 
422.7 nanometers, as shown in Fig. 4.

Cyclic Voltammetry test
Here, the results of cyclic voltammetry (CV) 

analysis of nanofibers fabricated as biosensors are 
presented, using a mixture of carbon nanoparticles 
and gold nanoparticles at varying concentrations 
of carbon and carbon-gold (0, 0.4, 1.9 and 3.6) 
ppm.

The electrodes were fabricated by depositing 
gold on a square piece of glass with a mask, then 

 

  
Fig. 4. FE-SEM images of the prepared fullerenes and AuNPs-
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depositing the aforementioned mixture onto 
the nanofiber electrodes using an electrospray. 
The biosensor was supplied with a voltage 
ranging from -5 V to +5 V. The voltage between 
the electrodes and the current flowing through 
them were measured after applying different 
concentrations of CAII to each experiment over 
four cycles for subsequent study and evaluation of 
the sensor. The current intensity often increases 
with increasing CAII concentration. Redox signals 
are considered an indicator and diagnostic of 
fullerene interactions with tumor [21]. The 
inclusion of gold electrodes also improved the 
currents, due to the nature of gold nanoparticles, 
which provides a large surface area that enhances 

the interaction, which is crucial for enhancing the 
sensitivity of chemical sensing. The large surface 
area of ​​gold nanoparticles allows for greater 
adhesion of reagents, which promotes increased 
interaction between the analyte and the biological 
receptor, thus amplifying signal transmission. Gold 
nanoparticles (AuNPs) are considered an ideal 
support for the development of sensors, due to 
their properties, most notably good conductivity 
and high surface area [22, 23, 24].

0 ng/mL (Blank)
In the absence of CA II, the electrode surface 

remains fully active, resulting in a relatively 
high oxidation peak current (≈0.76 nA) and a 

 

  

 

  

Fig. 5. CV curve for 0 ng/mL (Blank) concentration

Fig. 6. CV curve for 10 ng/mL concentration
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total charge of ≈ −18.4 nC. This reflects efficient 
electron transfer through the AuNP/CNT/PAni/PVA 
film layer. This condition represents the baseline 
response, which is used for comparison with the 
other tested concentrations.

10 ng/mL
At this low concentration, CA II molecules 

begin to bind to the active sites on the electrode 
surface. Consequently, the oxidation peak current 
decreases to ≈0.59 nA, and the total charge 
decreases to ≈ −15.7 nC. This reduction indicates 

the formation of a thin protein layer that partially 
blocks electron transfer pathways, producing a 
clear and measurable response relative to the 
blank.

30 ng/mL
As the concentration increases, more CA II 

molecules bind to the surface, yet the oxidation 
peak current slightly increases to ≈0.77 nA while 
the charge continues to decrease to ≈ −14.2 nC. 
This dual behavior suggests protein reorganization 
on the electrode surface, where the adsorbed 

 

  

 

Fig. 7. CV curve for 30 ng/mL concentration

Fig. 8. CV curve for 125 ng/mL concentration



286

A. Jasim et al. / Preparation New Nanostructure for Medical Biosensor

J Nanostruct 16(1): 279-287, Winter 2026

layer becomes more compact while still leaving 
limited electron transport channels available. This 
stage is commonly observed in biosensors near 
pre-saturation binding levels.

125 ng/mL
At high CA II concentration, dense protein 

accumulation occurs on the electrode surface. 
This leads to a reorganization effect that creates 
localized electron transfer pathways, which is 
reflected by an increase in the oxidation peak 
current to ≈0.83 nA and a rise in charge to ≈ 
−24.4 nC. This behavior is known as the surface 
reorganization effect, confirming that the sensor 
response is concentration-dependent and arises 
from specific interaction with the target protein.

Electrochemical Sensor Evaluation for CA II 
Detection

Based on the cyclic voltammetry (CV) analysis 
and extracted charge (Q) values, current (Ip) from 
four consecutive cycles at, CA II concentrations 
ranging from 0 to 125 ng/mL, the AuNP/CNT/
PAni/PVA composite electrode deposited on a 
gold substrate exhibited a clear dose–response 
behavior. Both the total charge (Q) and the 
oxidation current decreased progressively with 
increasing CA II concentration, indicating effective 
electron-transfer modulation due to specific 
antigen binding at the electrode surface (Table 1).

CONCLUSION
The AuNP/CNF/PAni/PVA-based electrochemical 

sensor demonstrates reliable sensitivity and 
selectivity toward the CA II biomarker. The clear 
dose-dependent signal suppression, high linearity 
(R² ≈ 0.97), and low LOD (~5–7 ng/mL) indicate 
that the sensor effectively detects CA II within the 
studied range (0–125 ng/mL). The low RSD (<10%) 
further supports film stability and consistent 
electrochemical response. Hence, this sensor can 
be considered a promising platform for cancer 
biomarker detection using CV techniques.
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