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Linagliptin, a novel anti-diabetic drug, is a DPP-4 inhibitor used in the 
treatment of type II diabetes. One of the major disadvantages of Linagliptin 
is its low oral bioavailability of 29.5% due to first-pass metabolism and 
P-gp efflux. In an attempt to increase the oral bioavailability, Linagliptin 
nanostructured lipid carrier were developed with Glyceryl monostearate, 
Oleic acid and Tween 80 as P-gp inhibitors. Linagliptin nanostructured 
lipid carrier were formulated using Glyceryl monostearate, Oleic acid, 
Tween 80 and PEG-400 as solid lipid, oil, surfactant and co surfactant, 
respectively. Twenty-seven formulations were prepared by the hot 
emulsification-ultrasonication technique. Particle size, poly dispersity 
index, entrapment efficiency were evaluated as responses. An optimized 
formula was evaluated for intestinal transport of Linagliptin by the ex-
vivo intestinal permeation study using the non-everted sac model of 
Male Sprague Dawley rats. The mean particle size, polydispersity index, 
entrapment efficiency and zeta potential of the optimized formula were 
found to be 46.13 ± 2.19 nm, 0.279 ± 0.026, 79.75 ± 0.87% and – 12.8 ± 
4.3 Mv respectively. The permeation study showed of 2.97 and 2.98 times 
increment in the in the flux and permeability coefficient in comparison 
to Linagliptin suspension. The enhanced linagliptin permeation may be 
due to P-gp efflux inhibition and lymphatic targeting. Thus, Linagliptin 
nanostructured lipid carrier can be considered promising carriers for oral 
delivery.

INTRODUCTION
Diabetes mellitus is a chronic metabolic 

disorder marked by inadequate insulin secretion, 
diminished insulin efficacy, or a combination of 
both, resulting in hyperglycemia. Pharmaceutical 
specialists are continually looking for innovative 
alternatives for diabetes management [1, 2].

The American Diabetes Association guidelines 
for diabetes management identify dipeptidyl-
peptidase (DPP)-4 inhibitors as therapeutic 

options, resulting in their extensive incorporation 
into clinical practice. DPP-4 inhibitors operate 
by regulating the levels of various intestinal 
hormones, such as incretin, active glucagon-like 
peptide (GLP)-1, and gastric inhibitory peptide 
(GIP). Their superiority over current therapy is 
attributed to a diminished risk of weight gain and 
hypoglycemia [3].

Linagliptin (LGN) is a potent DPP-4 inhibitor 
that was approved by the US Food and Drug 
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Administration (FDA) in 2011 for the treatment of 
type II diabetes mellitus. LGP is a more effective 
DPP-4 inhibitor than other choices due to its unique 
pharmacokinetic/pharmacodynamic profile and 
lack of drug interactions. LGP immediate- and 
extended-release ts are available alone or in fixed-
dose combinations with other oral anti-diabetics. 
First-pass metabolism, poor penetration, and 
P-glycoprotein efflux reduce the medication’s oral 
bioavailability to 29.5% [4-6].

A limited number of studies have attempted to 
address some issues related to the bioavailability 
of LGP. Patel et al. formulated LGP solid SMEDDS 
using Labrasol, and Transcutol HP, Capmul MCM as 
the surfactant, co-surfactant and oil respectively, 
and conducted optimization by D-optimal mixture 
design [7]. Veni et al. developed solid lipid 
nanoparticles to mitigate first-pass metabolism 
[8], whereas Shaik et al. used natural polyphenols, 
including gallic acid and ellagic acid, to inhibit 
P-glycoprotein and enhance bioavailability [6]. 

To date, no study group has tried to use lipid 
nanoparticles in conjunction with a surfactant 
and oils that exhibit P-glycoprotein inhibitory 
activity. Nano-structured lipid carriers (NLCs) 
have garnered significant attention as innovative 
nanoparticulate drug carriers due to their 
advantages, including the capacity to incorporate 
hydrophobic and hydrophilic drugs, targeted drug 
delivery, elimination of organic solvents, excellent 
tolerability and stability, and feasibility for large-
scale production [9]. NLCs delivered via the oral 
route demonstrate lymphatic drug transport as the 
primary mode of drug absorption, circumventing 
first-pass metabolism. Lipid nanoparticles traverse 
the digestion and absorption phases, thereafter 
entering the circulatory system to enhance the 
oral bioavailability of the lipid-encapsulated 
medication [10].

 This study aimed to develop LGN-NLCs using 
lipids with surfactant characteristics, fatty acids 
as the oil, and Tween 80 besides span 80 as both 
a surfactant and a P-gp inhibitor, based on the 
hypothesis that evading first-pass metabolism 
through lymphatic transport, combined with 
P-gp inhibition, could improve oral bioavailability. 
And according to the particle size, zeta potential, 
polydispersity index (PDI) and  entrapment 
efficiency, optimized formulation has to find out 
and examine for the ex-vivo intestinal permeation 
study using the non-everted sac model of albino 
Wistar rat. 

MATERIALS AND METHODS
Materials 

LGP was purchased from BID pharmatech-
Chemicals Ltd., China. Stearic acid (S.A) and 
glyceryl behenate (G.B) from BDH Chemicals Ltd. 
Poole, England. Glyceryl monostearate (GMS) and 
cetyl alcohol (C.A) from Baoji Guokang Bio-tech.
co, Ltd in china. Tween 80 and span 80 purchased 
from Thomas Baker-India. Oleic acid and olive 
oil from Loba Chemie Pvt. Ltd., Mumbai, India. 
PG and all grades of PEG (200, 400 and 600) 
purchased from Provizer Pharma, India. Dialysis 
membrane (MWCO: 12–14 K) was purchased from 
HiMedia Laboratories Pvt. Ltd., Mumbai, India. All 
other chemicals utilized in the experiment were 
of analytical reagent grade. Double distilled water 
was used throughout the experimentation.

Methods
Determination of Solubility in Various Lipids

 The most important feature for the selection 
of the starting materials is the solubility of drug in 
both solid and liquid different lipids.

Solubility in Solid Lipid
Related to the ability of lipids to solubilize LGN 

The solubility of LGP in different lipids, including 
glyceryl monostearate, stearic acid, glyceryl 
behenate, and cetyl alcohol, was evaluated. A 
precise amount of LGP (5 mg) was measured and 
added into 50 mg of molten lipid while stirring 
with a magnet stirrer. Furthermore, a prescribed 
amount of fat was gradually added with stirring 
and heating until a clear solution was obtained. 
The total amount of each lipid that could have 
been contained in the complete solubility of LGP 
was recorded. The experiment was reproduced 
three times and results were reported as mean 
value (mg/g) ± standard deviation (SD) [11].

Solubility in Liquid Lipid (Oils)
Oleic acid, castor oil, cottonseed oil, and olive 

oil were evaluated for LGN solubility. To achieve 
this, an excess amount of LGN was added to 5mL of 
each oil in 10mL screw-capped tubes, which were 
kept in a water bath shaker at a constant stirring 
for 72 h at 37ºC. The supernatant was carefully 
collected and filtered by 0.45µm membrane filter 
after centrifugation of the mixture for 15 minutes 
at 5000 rpm. The filtrate was then appropriately 
diluted with methanol and measuring the 
UV absorbance at predetermined maximum 



241J Nanostruct 16(1): 239-260, Winter 2026

N. Name / Running title 

wavelength to determine LGN concentration in 
different oils. A blank solution was prepared from 
the corresponding oil diluted in methanol at the 
same dilution factor as the samples [12]. 

Preparation of LGP-NLCs 
LGN-NLCs were prepared by modified hot 

emulsification-ultrasonication technique [13]. A 
binary lipid blend of solid and liquid lipids of those 
with the highest solubility profiles were combined 
with 10 mg of LGN and heated to approximately 
10 ± 0.5°C above the melting point of solid lipid 

to form a homogeneous and transparent oily 
solution. An oil-in-water (o/w) pre-emulsion was 
prepared by gradual addition of the liquefied lipid 
phase into the preheated aqueous phase of Tween 
80 as a surfactant and PEG-400 as a co-surfactant 
in double distilled water with continuous stirring. 
Then, the hot nanoemulsion was prepared by 
probe sonication (Biobase, Germany) for 10 min at 
300Watts and cycles of 9 s on/off. Afterward, the 
nanoemulsion was cooled to allow the formations 
of LGN-NLCs . A 27 formulas were established to 
assess different factors affecting the properties of 

F Solid lipid GMS 
(mg) 

Oil 
O.A (mg) Surfactant type 

Surfactant 
concentration 

(%w/v) 

Co-surfactant 
type 

Co-surfactant 
concentration 

(%w/v) 
1 270 30 Tween 80 1 PEG-400 1 

2 270 30 Tween 80 1.5 PEG-400 1 

3 270 30 Tween 80 2 PEG-400 1 

4 270 30 Tween 80 2.5 PEG-400 1 

5 270 30 Tween 80 1 PEG-400 1.5 

6 270 30 Tween 80 1.5 PEG-400 1.5 

7 270 30 Tween 80 2 PEG-400 1.5 

8 270 30 Tween 80 2.5 PEG-400 1.5 

9 270 30 Tween 80 1 PEG-400 2 

10 270 30 Tween 80 1.5 PEG-400 2 

11 270 30 Tween 80 2 PEG-400 2 

12 270 30 Tween 80 2.5 PEG-400 2 

13 270 30 Tween 80 1 PEG-400 2.5 

14 270 30 Tween 80 1.5 PEG-400 2.5 

15 270 30 Tween 80 2 PEG-400 2.5 

16 270 30 Tween 80 2.5 PEG-400 2.5 

17 270 30 Span 80 1 PEG-400 1.5 

18 270 30 Span 80 1.5 PEG-400 1.5 

19 270 30 Span 80 2 PEG-400 1.5 

20 270 30 Span 80 2.5 PEG-400 1.5 

21 270 30 Tween 80 2.5 PEG-600 1.5 

22 270 30 Tween 80 2.5 PEG-200 1.5 

23 270 30 Tween 80 2.5 PG 1.5 

24 240 60 Tween 80 2.5 PEG-400 1.5 

25 210 90 Tween 80 2.5 PEG-400 1.5 

26 405 45 Tween 80 2.5 PEG-400 1.5 

27 540 60 Tween 80 2.5 PEG-400 1.5 

 

Table 1. LGN-NLCs formulas.
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LGN-NLCs and to obtained the optimized formula 
as shown in table 1 [14].

Determination of Particle Size Distribution and 
polydispersity index

 Dynamic light scattering is the most useful 
and reliable technique for routine determination 
of particle size and distribution of nanoparticle 
dispersion. The Zetasizer NanoZS® (Malvern, UK) 
was used at a scattering angle of a 173° at 25°C. 
From the analysis, the mean particle size and 
polydispersity index (PDI) were used to evaluate 
of LGN-NLCs. The measurements were done in 
triplicate, and standard deviations were calculated 
[15].

Determination of Entrapment Efficiency
The entrapment efficiency (EE %) represents the 

percentage of LGN encapsulated within the NLC, 
obtained indirectly by measuring the concentration 
of free LGN in the dispersion medium. The 
quantity of unentrapped free medication was 
ascertained utilizing an ultrafiltration approach 
[16]. In summary, 5 mL of LGN-NLCs solution was 
introduced into the upper chamber of a centrifuge 
tube paired with an ultrafilter possessing a 
molecular weight cut-off of (MWCO) 10 kDa and 
subjected to centrifugation for 30 minutes at 4000 
rpm. The ultrafiltrate containing the unbound 
medication was diluted with methanol, and the 
concentration of unentrapped LGN was quantified 
spectrophotometrically at the predetermined 
maximum wavelength. The EE% was determined 
utilizing Eq. 1:

EE% = wt. of total drug −   wt. of free drug 
wt. of total drug  × 100 

  

  

  
(1)

Zeta Potential (ζ)
The zeta potential of LGN-NLCs was measured 

using the Zetasizer NanoZS, which employs the 
Phase Analysis Light Scattering methodology, 
offering sensitivity up to 1000 times greater than 
conventional light scattering methods based on 
frequency spectrum shifts. The conductivity of the 
diluted samples was assessed to determine the 
detection model. The entire measurement was 
conducted at 25°C [17].

Optimized Formulation
The formula that showed the best result 

regrading to lower Particle Size and polydispersity 

index and higher Entrapment Efficiency (EE%) 
was selected as optimized formula and furtherly 
optimized with different sonication times of 8, 10 
and 15min. The formula with sonication time that 
showed the best results will be use as a selected 
formula. 

Freeze-Drying of LGN-NLC
 Lyophilization of LGN-NLCs selected formula 

was performed with mannitol as cryoprotectant at 
different ratios of 1.5, 3 and 5% w/v, using freeze 
dryer (Labconco, Canda), the obtained powder 
were stored in a tightly closed container for further 
investigations [14].

Microscopic Evaluation by Transmission Electron 
Microscopy (TEM)

The selected formula was examined for their 
morphology and size using TEM (model Zeiss 
Libra® 120 PLUS/ Carl Zeiss NTS GmbH/ Germany). 
The NLCs dispersion was applied on a carbon-
coated copper grid, and the excess sample was 
drained off using filter paper. The sample allow for 
air dry and then the images of the sample were 
captured at an accelerating voltage of 21KV and 
the sample was viewed at suitable magnification 
power [18].

Evaluation of the Solid State
Powder X-Ray Diffraction (PXRD) analysis 

PXRD is used for the analysis of crystallinity 
of pharmaceuticals and excipients. The 
diffractograms can be used to determine whether 
the LGN present in the NLC samples is in crystalline 
or amorphous state. PXRD was applied using CuKα 
radiation with a wavelength of 1.5405 Å as the 
X-ray source. Samples were then placed in the 
glass holder and scanned from 2θ = (5 to 80), 
continuously. The operational voltage and current 
were maintained at 40 kV and 30 mA. Data were 
usually acquired every 0.05° using a detector with 
a resolution in the diffraction angle (2θ) ranging 
from 10°C to 60°C at room temperature, including 
pure LGN samples, GMS, physical mixture, and 
LGN-NLCs [19].

Fourier Transform Infra-Red Spectroscopy (FTIR)
Fourier-transform infrared spectroscopy (FTIR) 

was utilized to identify potential interaction 
between LGN and other excipients, as well as to 
confirm drug identification. FTIR spectra were 
recorded for pure drug, Glyceryl monostearate, 
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physical mixtures of drug and lipids and lyophilized 
LGN-NLCs, using FTIR Shimadzu (Model No. 8400S- 
Japan). The sample was weighed and formulated 
properly on KBr disk. The spectrum was recorded 
in the 4000–400 cm−1 range with a spectral 
resolution of 4 cm−1 [20].

Differential Scanning Colorimetry (DSC) 
DSC allows anticipating the possible 

interactions between LGN and other excipients 
used in the research during the manufacture of 
LGN-NLCs by detecting the thermal characteristics 
of materials. Thermal analysis of pure LGN , GMS, 
and lyophilized LGN-NLCs. Samples of each were 
placed in standard aluminum pans and heated with 
a constant rate of 10°C/min in the temperature 
range of 30–300°C, using an empty aluminum pan 
as reference. The experiment was run under inert 
conditions with continuous nitrogen purging (30 
ml/min) [21]. 

Evaluation of Powder Flowability 
Carr’s Index (CI) and Hausner’s Ratio (HR) 

Five grams of lyophilized LGN-NLCs powder 
were placed in a 15 mL graduated cylinder, which 
was tapped 2-3 times to level the powder, and the 
initial untapped volume (V0) was documented. 
Subsequently, the cylinder was manually tapped 
on a hard surface approximately 100 times, after 
which the final tapped volume (Vf) was recorded 
[22]. Carr’s Index (Eqs. 2 and 3) and Hausner’s 
ratio (Eqs. 2-4) were computed based on the 
values obtained from the tapping density tests 
(i.e., V0 and Vf).

Bulk density = Powder mass
Bulk volume  

  

                              
(2)

Tapped density = Powder mass
Tapped volume 

  

                      
(3)

CI(%) = Tapped density − Bulk density 
Tapped density  × 100 

  

      
(4)

HR = Tapped density
Bulk density  

  

                                            (5)

Evaluation of Angle of Repose (θ)
The powder flow characteristics of the 

lyophilized LGN-NLCs were assessed by measuring 
the angle of repose (θ) via the fixed funnel and 

free-standing cone technique. This method 
involves pouring powder through a funnel to 
create a cone, where the height of the cone (h) is 
divided by the radius (r) of its base and the inverse 
tangent of this ratio is designated as the angle of 
repose [23].

Tan(θ) = h
r   

  

                                                              (6)

Short term Stability Study of LGN-NLCs Optimized 
Formula

The short-term durability of the liquid LGN-
NLCs examine  under varying storage conditions, 
the optimized formula was distributed into two 
firmly sealed amber glass containers, with each 
container held at 25º C and 2-8º C for a duration 
of three months. The average P.S, PDI, and E.E% 
of the nanoparticles were assessed at 0, 45, and 
90 days of storage, with results conducted in 
triplicate.

Ex-vivo Intestinal Permeation Study
Ex vivo permeation study  of LGN-NLCs were 

conducted utilizing a modified non-everted rat 
gut sac method [24]. Two dispersed formulations 
containing an equivalent of 1mg for both optimized 
formula and 1mg LGN in 1mL normal saline were 
used as test and control, respectively. Male 
Sprague Dawley rats, weighing around 250–300 g, 
from the animal house in the College of Pharmacy/ 
University of Basrah were used in this study. The 
rats had an overnight fast with unrestricted access 
to water, followed by anesthesia with chloroform. 
Upon confirming the absence of pain reflex, a 
longitudinal abdominal incision was performed, 
and the small intestine was excised, with the 
mesentery manually peeled away [25]. The small 
intestine was cleaned out gently with cold normal 
saline solution using a syringe equipped with blunt 
end needle. The sanitized intestine was sectioned 
into sacs measuring 10 ± 0.2 cm in length and 
had a diameter of 0.25 cm. Upon securing one 
end with a silk suture, the intestinal sac was 
filled with 1 mL of the sample. Subsequently, 
the opposite end of the sac was tied, and the 
sac was immersed in a beaker containing 100mL 
of Kreb’s-Ringer phosphate buffer saline at pH 
7.4. The entire system was maintained at 37 ± 
1.0°C using a magnetic stirrer set to 100 rpm and 
constantly aerated with oxygen (60 bubbles/min). 
A 5 mL sample was extracted and substituted with 
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Kreb’s-Ringer solution at intervals of 30, 60, 90, 
120, 150, 180, 210, and 240 minutes [26]. The 
released medication from one intestinal segment 
was quantified utilizing a UV spectrophotometer 
[27]. The apparent permeability coefficients were 
calculated utilizing Eq. 7 [28]:

Papp = F
SA ×  C°  

                                                      
(7)

The (Papp, cm/min) is the apparent 

permeability, (F, µg/min) is the flux, (SA, cm2) 
is the area of the intestinal sac and (C0, µg/ml) 
is the initial concentration of drug. The linear 
segment slope of the plot was considered as the 
permeation flux (F), (r) is the intestinal radius and 
(h) is the segment length.

RESULTS AND DISCUSSION
Determination of Solubility in Various Lipids

For a successful NLCs system formulation of 
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practically insoluble LGN, selection of suitable 
solid lipid and liquid lipid is essential to produce 
optimum drug loading. All excipients are of 
Generally Regarded as Safe (GRAS) grade were 
selected for NLCs fabrication [29].

Solubility in Solid Lipids 
The solid lipids used to prepare the formulations 

should be considered to ensure high drug 
entrapment efficiency and loading capacity. This 
is because the appropriate lipid matrix selection 
enhances the physical and chemical stability of 

the entrapped drug [30]. As shown in Fig. 1, the 
solubility of LGN in GMS, cetyl alcohol, stearic acid 
and glyceryl behenate were found to be 34.61 ± 
0.076 mg/g, 31.48 ± 0.061 mg/g, 27.77 ± 0.094 
mg/g, and 22.62 ± 0.057 mg/g respectively. Thus, 
GMS was chosen as the lipid phase for LGN - NLCs 
formulation [31].

 
Solubility in Liquid Lipids

 As shown in Fig. 2, the oil solubility study of 
LGN shows that oleic acid has a better solubility 
for LGN compared to other oils explored in this 

F Average particle size(nm) Polydispersity Index Entrapment Efficiency % 

1 175.4 ± 3.16 0.382 ± 0.012 66.8± 2.74 

2 119.9 ± 7.12 0.324 ± 0.009 70.2 ± 2.6 

3 119 ± 6.79 0.314 ± 0.008 72.4 ± 3.96 

4 112.5 ± 2.14 0.301 ± 0.036 84.5 ± 3.65 

5 127.1 ± 9.3 0.382 ± 0.043 67.81 ± 0.54 

6 122.4 ± 3.65 0.357 ± 0.019 69.2 ± 2.21 

7 62.86 ± 4.41 0.314 ± 0.011 72.24 ± 4.23 

8 46.13 ± 2.19 0.279 ± 0.026 79.75 ± 0.87 

9 117.8 ± 1.86 0.338 ± 0.038 69.57 ± 3.76 

10 115.1 ± 9.54 0.247 ± 0.002 68.8 ± 2.43 

11 112.8 ± 1.56 0.281 ± 0.008 71.1.4 ± 2.54 

12 71.56 ± 6.79 0.216 ± 0.003 73.78 ± 2.73 

13 113.6 ± 7.56 0.441 ± 0.038 76.55 ± 1.76 

14 85.29 ± 5.18 0.384 ± 0.017 72.35 ± 2.1 

15 71.5 ± 3.9 0.298 ± 0.033 74.08 ± 4.1 

16 71.39 ± 4.52 0.274 ± 0.005 81.7 ± 0.86 

17 407.34 ± 19.21 0.422 ± 0.037 64.91 ± 3.9 

18 357.12 ± 12.5 0.373 ± 0.033 67.44 ± 5.3 

19 316.81 ± 17.52 0.336 ± 0.005 65.14 ± 3.48 

20 247.77 ± 14.07 0.352 ± 0.026 72.68 ± 2.98 

21 362.51 ± 29.89 0.294 ± 0.006 70.74 ± 1.9 

22 273.17 ± 15.86 0.413 ± 0.041 66.19 ± 1.32 

23 216.6 ± 12.43 0.469 ± 0.039 76.83 ± 3.1 

24 167.19 ± 6.75 0.37 ± 0.027 80.34 ± 6.25 

25 223.24 ± 11.3 0.437 ±0.053 82.8 ± 3.81 

26 207.87 ± 9.87 0.343 ± 0.002 84.91 ± 2.23 

27 289.67 ± 21.42 0.384 ± 0.009 85.07 ± 1.13 

 
  

Table 2. Particle size. Polydispersity Index and Entrapment Efficiency % of LGN-NLCs (Mean ± SD (n=3).



246

N. Name / Running title 

J Nanostruct 16(1): 239-260, Winter 2026

research like castor oil, olive oil and cottonseed 
oil. Oleic acid shows significantly better solubility 
for LGN than other oils resulting from optimal 
solubilization ability likely due to the hydrogen 
bonds formed by the carboxylic group of fatty acids 
with drug molecules. Therefore, it was chosen to 
be the liquid lipid for the LGN-NLCs formulation 
[32]. 

Preparation
LGN-NLCs were effectively prepared using melt 

emulsification and ultrasonication. Optimization 
was done on several formulation parameters, such 
as adding melted lipid phase to the aqueous phase 
at ~1 mL/min dropwise. After dispersing each drop 
in the aqueous surfactant solution, add the next 
and stir thoroughly. During LGN-NLCs preparation, 
all lipids produced a transparent microemulsion at 
70°C. However, upon chilling, lower temperatures 
caused turbidity and solidification, resulting in 
a translucent dispersion upon warming. Table 
2, shows the mean particle size distribution, 
polydispersity index, and entrapment efficiency of 
the LGN-NLCs.

Characterization of prepared LGN-NLCs
Particle Size Distribution and Polydispersity Index

Most of the prepared LGN-NLCs had particle sizes 
in the sub-micrometer region (Table 2). Particle 
size analysis is crucial for the characterization of 
lipid nanoparticles as the drug pharmacokinetics, 
the tissue-distribution, elimination, and clearance 

of the drug all are influenced. A particle size 
of ≤100 nm seems to be the most effective for 
intestinal uptake of nano-structured lipid carriers 
(NLCs) [33].

In lipid-based drug delivery systems, a PDI 
of 0.3 or less is considered ideal as a system is 
homogeneously dispersed [34]. The PDI of most 
of the developed LGN- NLCs was less than 0.4 
denoting a narrow size distribution. 

Effect of Surfactant Type and Concentration
Our study demonstrated that, as the surfactant 

content increased, the particle size of the 
formed LGN-NLCs was decreased. The reduction 
in the particle size was seen on increasing the 
concentration of tween 80. where the size of F1 
that have 1% w/v tween80 was 127±6.79 nm 
reduced to 112.5±7.13 nm when concentration 
of tween 80 rise to 2.5% w/v in F4. The Tween 80 
amount has significant (p<0.05) effect on particle 
size and polydispersity index of the formulated 
NLCs. This may be due to the lack of surfactant 
molecules at low concentrations of surfactant to 
fully coat the new hydrophobic surfaces created 
during the solidification of the lipid matrix [35]. 

The results are shown in Fig. 3A. When the 
concentration of the lipophilic surfactant span80 
was increased from 1% in formula F17 up to 
2.5% in formula F20 a significant decrease in the 
particle size (p<0.05) from 407.34 ± 19.21 nm 
(F11) to reach 247.77 ± 14.07 nm and PDI was 
approximately ≤ 0.4 in all the concentrations of 
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Fig. 3. The effect of (A)- Tween 80 concentration, (B)- Span 80 concentration on the particle size distribution and PDI of LGN-NLCs.
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span80 as shown below in Fig. 3B.

Effect of Co-surfactant Type and Concentration
A co-surfactant is required for the preparation 

of a homogeneous dispersion of NLCs as the use 
of surfactants only suppress the interfacial tension 
between melted lipid droplets and the aqueous 
phase to a limited extent [36]. As such, the role of 
a co-surfactant is important for enabling the facile 
preparation of stable LGN-NLCs. PEG400 was a co-
surfactant in the present study. It can be observed 
from the results in Fig. 4, that when the PEG 400 
concentration is increased from 1% to 2.5%, there 
are significant decreases in particle size and PDI 

of the LGN-NLCs (p<0.05). It is suggested that the 
particle size decrease may be due to the interaction 
of PEG400 with the surfactant molecules at the 
interface of the lipid nanodroplets decreasing 
interfacial tension and consequently lowering 
the possibility of nanoparticle coalescence and 
increasing the overall system stability. Similar 
results were also found by Liu et al. and his co-
workers [37]. 

The influence of different co-surfactants 
(PEG400, PEG600, PEG200, and Propylene glycol) 
was tested on the particle size of LGN-NLCs in 
formulas F8, F21, F22 and F23 respectively. As 
revealed from the data in Table 2, the type of co-
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Fig. 4. The effect of PEG-400 concentration on the particle size distribution and PDI of LGN-NLCs.

Fig. 5. The effect of (A)- Oil concentration, (B)- Total lipid concentration on the particle size distribution and PDI of LGN-NLCs.
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surfactant had a significant effect on the particle 
size distribution (p<0.05). PEG-400 offers the 
smallest particle size (46.13 ± 2.19 nm) among the 
employed co-surfactants, thus proving effective 
co-surfactant to produce relatively uniform 
dispersion of LGN-NLCs.

Effect of Liquid Lipid Type and Ratio
When the ratio of oleic acid to GMS was 

increased from 10% in the formula F8 to 20% 
and 30% in the formula F24 and 25 we found an 
increase in the particle size from (46.13 ± 2.19 nm) 
of F8 to (223.24 ± 11.3 nm) of F25. This agrees with 
the claim that at higher than 10% concentration of 
oleic acid, the particle size will be increased with 
more oleic acid adding into the core of the oleic 
acid loading nanoparticles. This same observation 

was reported by Dai et al. and his co-workers 
[38]. Therefore, increasing the ratio of liquid lipid 
beyond 10% has a significant effect (p<0.05) on 
the particle size of the PGN-NLCs, and the effect 
on the particle size distribution can be observed 
from Fig. 5A by increasing oleic acid ratio.

Effect of Drug to Lipid Ratio 
Increasing the lipid to drug ratio from 300mg of 

total lipid in formula F20 up to 450mg and 600mg 
in formulas F26 and F27 respectively shows a 
significant increase in the particle size and the 
polydispersity index (P˂0.05), When the amount 
of solid lipid increases at a fixed concentration of 
surfactant, it is difficult for surfactant molecules 
to cover the entire surfaces of the lipid droplets, 
resulting in aggregation of the particles and an 
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increase in both particle size and dispersity. A 
similar observation was described by Dandagi et 
al. [39], the effect of lipid ratio on particle size 
distribution was shown in Fig. 5B.

 
Entrapment Efficiency

Entrapment efficiency (%EE) refers to the 
proportion of the drug effectively integrated 
into the lipid matrix of the nanoparticles relative 
to the total drug quantity introduced during the 
lipid nanoparticle manufacturing process [40]. 
They constitute essential parameters in the 
formulation owing to their impact on drug release 
characteristics and, therefore, its bioavailability 
to the biological system. Hydrophobic drug 
molecules are incorporated into NLCs with more 
efficiency than hydrophilic pharmaceuticals, since 

the latter tend to partition into the aqueous phase 
during homogenization, leaving the lipid phase 
[41]. The current study achieved a satisfactory 
encapsulation efficiency (%EE) for the majority of 
the formulated LGN-NLCs, likely owing to LGN’s 
good affinity for the lipid matrix, as shown by its 
lipophilic partition coefficient (logP: 1.9) [42].

An apparent increase of entrapment efficiency 
was found when the concentration of the various 
surfactants was increased from 1% to 2.5%, with 
a 2.5% concentration of surfactant revealing the 
highest %EE for all formulations. The %EE of most 
of the prepared LGN-NLCs are acceptable, which 
may be due to a good solubility of the drug in solid 
and liquid lipids (used in the production method) 
and its low aqueous solubility. As a consequence 
of this, the %EE depends mainly on the 

 

  

 

 Sonication time 

Time (min) 8  10  15  

P. S 62.86 ± 4.41 46.13 ± 2.19 44.73 ± 2.72 

PDI 0.314 ± 0.011 0.279 ± 0.026 0.259 ± 0.0079 

 
  

Fig. 8. Zeta potential of LGN-NLCs of optimized formula (F8).

Table 3. The Effect of Sonication Time on the Particle Size Distribution of LGN-NLCs F8, Mean values ±SD (n=3).
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physicochemical properties of the encapsulated 
drug and the lipid phase applied [43].

Increase in the oleic acid content (at 10% and 
then 20% and 30% of the total lipid) for F20, 
F24, F25, respectively in Fig. 7A led in modest 
increase in %EE. This result can be explained by 
the presence of more imperfections on the lipid 
structure, which enables the entry of a higher 

amount of drug molecules in the nanoparticle and 
because the solubility of the drug in oil is greater 
than in solid lipid, as observed by Le-Jiao Jia et al. 
[44]. 

The higher percentage of entrapped drug was 
obtained by increasing the ratio of GMS because of 
its high level of mono-, di-, and triglycerides which 
also improve the solubility of the lipophilic drug 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 9. Transmission electron micrographs of LGN loaded NLCs at 

magnification powers (A-65,000, B-200,000 and C-500,000.
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[45]. statistically significant difference (p<0.05) in 
EE% was observed between F8 and both F26 and 
F27 while the increase in the EE% between F31 and 
F32 was non-significant (P>0.05) indicated that 
there was no extra benefit from further increase 
in lipid ratio. Similar results were presented by 
Sangsen et al. [46], results were shown in Fig. 7B.

Zeta Potential (ζ)
 The assessment of zeta potential (ZP) values 

of the formulated LGN-NLCs is a critical factor in 
evaluating the long-term stability of the system 
during storage. The measurement of electrical 
potential at the particle shear plane indicates 
that a larger ZP value correlates with increased 
stability of the colloidal system, as it enhances 
repulsion between proximate, similarly charged 
particles, hence preventing particle aggregation 
[47]. In Fig. 8 showing formula F8 utilizing 2.5% 
Tween 80 as a surfactant, Zeta Potential peaking 
at -12.8 mV. This negative charge on the particles 
provides stability preventing and their aggregation 
due to electrostatic repulsion. On the other hand, 
Tween 80 being a non-ionic surfactant, provides 
stabilization by steric repulsion [48]. 

Selection of Optimized Formula 
Regarding to the data resulted from 

determination of particle size, polydispersity 
index, zeta potential, drug entrapment efficiency 
the formula F8 was selected as the best formula. 
It shows particle size of (46.13 nm) and PDI of 
(0.279) and a zeta potential of (-12.8 mV), with 
drug entrapment of (79.75 %).

Effect of Sonication Time
Formula F8 was employed to investigate the 

impact of sonication duration on particle size 
distribution, revealing a significant reduction (p 
<0.05) in mean particle size and polydispersity 
index after extending the sonication time to 10 
min. Conversely, at a 12min sonication duration, a 
slight increase in particle size was noted (p > 0.05), 
as illustrated in Table 3. Prolonged sonication 
duration delivers more energy to disintegrate the 
particles. Consequently, smaller particles were 
produced as the duration of sonication increased 
which directly influences the final dispersion 
particle size. Nevertheless, the decrease in size 
was minimal after 10 minutes of sonication 
duration [49].

Microscopic Evaluation by Transmission Electron 
Microscopy (TEM)

Imaging Transmission electron microscopy 
(TEM) is commonly used method for the analysis 

 

  

Figure 10: PXRD pattern of pure linagliptin.



252

N. Name / Running title 

J Nanostruct 16(1): 239-260, Winter 2026

and visualization of subjects in the nanoscale 
size range in a higher resolution compared to 
other techniques because it utilizes a high energy 
electron beam with a shorter wavelength than 
light [50]. A TEM study of the selected formula 
F8 reveals that LGN-NLCs particles were almost 
spherical in shape with smooth surfaces and their 
particle sizes are within the nanoscale range and 
no particle aggregation was observed as seen in 
Fig. 9 A, B and C.

Evaluation of the Solid State
Powder X-ray Diffraction Analysis (PXRD)

We now compared the XRD patterns from pure 

LGN, GMS, a physical mixture of LGN and GMS 
and LGN-NLCs. It was demonstrated that the XRD 
pattern of pure LGN in Fig. 10 contained sharply 
crystalline structures characterized by several 
sharp peaks with strong diffraction intensities 
which appeared at the angles 2θ− 4.4710°, 
23.5469° and 25.6282°. The diffraction pattern 
produced by the physical mixture was strikingly 
different from that for LGN-NLCs. The diffraction 
peaks were obtained at 2θ values of 18.5057°, 
23.8859°, and 38.7918° as depicted in Fig. 11 
together with the diffractogram of GMS in Fig. 
12. But these signature peaks disappeared, and 
their intensity reduced dramatically relative to 

 

  

 

  

Fig. 11. PXRD pattern of Glyceryl monostearate.

Fig. 12. PXRD diffractogram of physical mixture (LGN + GMS).
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LGN-NLCs, as illustrated in Fig. 13. Furthermore, 
the PXRD results showed the GMS reveals a 
random crystallin in the NLCs. There is absence of 
characteristic peaks for LGN in the diffractogram 
of the optimized NLCs, indicating that LGN is either 
amorphous or molecularly dispersed (probably 
because it is entrapped in the lipid matrix of the 
nanoparticle dispersion formed). 

Fourier Transform Infra-Red Spectroscopy (FTIR) 
FTIR spectroscopic study is important to check 

the compatibility of the drug with other excipients 
and is one of the basic criteria in selection of 

better excipients. FTIR is a powerful technique for 
evaluating possible structural alterations of the 
drug due to harsh and stressful situations faced 
during the formulation process. Figs. 14-16 display 
FTIR spectra of pure LGN, GMS, the physical 
mixture, and drug-loaded NLCs, respectively.

The spectrum of LGN (Fig. 14) presented typical 
peaks due to the carbonyl group (C=O stretching) 
in purine ring at 1695.14 cm-1 and 1652.02. Also, 
A peak at 3356.41 cm-1 (N-H stretching) overlaps 
with (N-H) stretching of the piperidine group, Peak 
at 1566 cm-1 constitutes (N-H bending of amide), 
peak at 1502 cm-1 signifies (C=C aromatic). In 

 

  

 

  

Fig. 13. PXRD diffractogram of lyophilized LGN-NLCs of optimized formula (F8).

Fig. 14. FTIR spectrum of pure linagliptin.
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addition, the two peaks were detected at 2829.95 
cm-1 and 2930.2 cm-1 which indicated the (C-H 
stretch) of alkane groups. The peaks observed IR 

spectra confirm the purity of the drug [51].
The IR spectrum of GMS was shown in Fig. 15 

exhibited broad two peaks at 3299.77 cm-1 and 

 

  

 

  

Fig. 15. FTIR spectrum of GMS.

Fig. 16. the FTIR of physical mixture (LGN + GMS).

 

  

  

Fig. 17. The FTIR of lyophilized LGN-NLCs of F8.
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3232.64 cm-1 indicating (O-H) stretching of glycerol 
moiety, two peaks that are at 2914.86 and 2849.51 
cm-1. These peaks are due to (C-H) stretching of 
alkane, the carboxyl group (C=O) stretching peak 
is observed at 1730.09 cm-1 and strong peak at 
1173.82 cm--1 for (C-O) stretching of ester [52]. 

FT-IR spectrum of F8 showed fewer LGN peaks 

(Fig. 17), signifying a higher entrapment of LGN in 
the lipid matrix. However, no shifting of specific 
peaks was observed, and these peaks were present 
in their respective positions in the individual 
spectra, suggesting no interaction of the drug and 
the excipient. The preparation process was not 
affecting the molecular structure and the chemical 

 

 

 

 

 

 
Fig. 18. DCS thermogram (A) linagliptin, (B) GMS, (C) physical mixture (LGN + GMS) and (D) lyophilized LGN-NLCs 

of optimized formula (F8).
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integrity of LGN. Thus, FTIR spectroscopy serves 
as additional evidence of interactions between 
LGN and various excipients (lipids, stabilizers, etc.) 
prior to and post formulation.

Differential Scanning Calorimetry Study (DSC)
 The thermal properties of the LGN, GMS, 

their physical mixture, and lyophilized optimized 
formula (F8) were evaluated by DSC, which was 
shown in Figs. 18, A-D. 

The DSC thermograms of pure drug (Fig. 18A) 
shows a sharp endothermic peak at 204.45ºC, 
attributed to its melting point; so it expresses that 
LGN is pure and in crystalline anhydrous form [51]. 
Fig. 18B shows the thermogram of GMS where 
endothermic peak with at 66.43ºC was observed, 
indicating a very high ordered molecular structure. 

The thermogram of physical mixture (Fig 18C) 
also shows the endothermic peaks of GMS and 
LGN indicating their compatibility and crystalline 
nature. The fact that no endothermic peak of the 
drug was detected from the LGN-loaded NLCs 
(F8) thermogram (Fig. 18D) proved that the drugs 
were entrapped in the matrix and are present in 
the amorphous phase. This can be due to the fast 
cooling of a hot nanoemulsion to form the NLC 
whereby the drug does not crystallize at this drug 
level in this case. Moreover, the surfactant will 
also inhibit the medicament to crystallize [53]. 

Furthermore, it was observed that the melting 
endotherm of bulk GMS decreased to 56.13ºC 
during LGN-NLC, and this reduction in melting 
endotherm has been attributed to heterogeneity 
in content of NLCs such as solid lipid, oil and drug 
which are encapsulated into the particle. These 

defects in solid lipid structure with molecular 
distribution of the added oil throughout the lipid 
blend led to decreased crystallinity of the solid 
lipid and drug molecules and distortion of the 
solid lipid matrix [54].

 New endothermic peak at 162.7ºC representing 
the melting endotherm of mannitol that used as 
lyoprotectants in freeze drying process [55].

Short Term Stability Study 
A stability investigation was performed at two 

distinct storage temperatures: 2-8ºC (refrigerator) 
and 25ºC during a duration of ninety days. 
Samples were collected at the initiation of the 
study (day zero), the midpoint (day 45), and the 
conclusion (day 90). The measurements of particle 
size, polydispersity index (PDI), and percent 
entrapment efficiency (%EE) were documented. 
The results collected are presented in Table 4 
below:

The particle size distribution results indicate 
a substantial increase in particle size and 
polydispersity index (PDI) at a storage temperature 
of 25ºC (p<0.05) by the conclusion of the study, in 
comparison to measurements taken on day zero. 
The rate of particle growth was more pronounced 
at 25ºC than at 2-8ºC, which exhibited minimal 
alterations in particle size and PDI. Notably, 
flocculation was observed on the 30th day of 
storage at 25ºC, corroborating the findings of Hu 
et al. [56]. This can be elucidated by the fact that 
elevated temperatures result in increased energy, 
which in turn raises the rate of collisions between 
particles and therefore enhances the likelihood of 
particle aggregation [57].

Time Day zero Day 45th Day 90th 

Temp. 0-8 Co 25 Co 0-8 Co 25 Co 0-8 Co 25 Co 

P. S 46.13 ± 2.19 46.13 ± 2.19 47.09 ± 1.8 73.55 ± 1.19 51.62 ± 2.51 110.81 ± 2.87 

PDI 0.279 ± 0.03 0.279 ± 0.03 0.297 ± 0.01 0.318 ± 0.04 0.321 ± 0.026 0.345 ± 0.037 

E.E% 79.75 ± 0.87 79.75 ± 0.87 77.14 ± 0.63 75.54 ± 1.3 76.39 ± 0.97 71.92 ± 2.23 

 

Table 4. Physical Characterization of LGN-NLCs after Short-Term Stability Study, Results Mean ±SD (n=3).
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Ex-vivo Study Using the Non-Everted Intestinal Sac 
Model

The non-everted intestinal sac technique was 
employed in this study owing to its numerous 
advantages over alternative technique, such as 
reduced structural damage to intestinal tissue 
compared to the everted sac model, an easier 
and more accessible procedure, reduced test 

sample requirements, and facilitated collection of 
consecutive serosal test samples. Fig. 19 illustrates 
the quantity of LGN permeate from the optimized 
formula F8 and the control in the jejunum 
segments utilized in the investigation.

By assuming the intestinal segments as a 
cylinder with a mean diameter of 0.25 cm and a 
length of 10 cm, the surface area of the gut sac may 
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Fig. 20. A)-The permeation rate (flux) and (B)-The permeability coefficient(cm/min) of LGN and LGN-NLCs. 

Fig. 19. Permeation of linagliptin from optimized formula F8 and control through non-everted rat duodenum, values of mean ±SD 
(n=3).
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be readily calculated. The intestinal permeability 
results indicated that the tested LGN-NLCs formula 
F8 demonstrated significantly greater intestinal 
permeability than the control (p <0.05). The flux 
(µg/min) of LGN derived from formula F8 in Fig. 
20A was determined to be 2.88 ± 0.18 from jejunal 
segments, while the flux for pure drug suspension 
was 0.97 ± 0.074 from the jejunum. The apparent 
permeability coefficient (cm/min) for the optimal 
formula F8 Fig. 20B was determined to be 3.67 ± 
0.26, while the value for the pure drug suspension 
was 1.23 ± 0.069 for the jejunum, indicating a 
threefold enhancement in drug permeability from 
LGN-NLC relative to pure LGN suspension.

The observed results may be attributed to 
several factors: the diminutive particle size and 
significant adhesion resulting from the large 
surface area, which facilitate increased drug 
diffusion and dissolution, potentially explaining 
the augmented drug penetration [58, 59]. The 
application of permeability-enhancing excipients, 
such as Tween 80 and oleic acid, which reduce 
intestinal P-glycoprotein efflux pump activity, 
likely enhances drug permeability [60, 61]. The 
LGN-loaded NLCs significantly contribute to drug 
protection and the regulation of drug release, 
leading to enhanced penetration across the 
intestinal barrier [62].

CONCLUSION
LGP-NLCs were effectively synthesized by 

the modified hot emulsification-ultrasonication 
technique and optimized via a 27 formulation. 
LGP-NLCs were characterized using DLS, XRD, 
FTIR spectroscopy, DSC, and TEM techniques. 
The nanometric range of size indicated targeting 
of intestinal lymphatics. Rat noneverted sac 
permeability tests demonstrated that the 
incorporation of P-glycoprotein inhibitors such as 
oleic acid and Tween 80 in lipid-core nanostructured 
lipid carriers enhanced the absorptive transport of 
LGP NLCs compared to LGP-SOL. The enhanced 
bio-absorption would result in a decrease in 
dosage, NLCs represent promising vehicles for the 
oral delivery of the novel anti-diabetic agent LGP; 
however, clinical trials are necessary to validate 
the proof of concept.
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