RESEARCH PAPER

Ecofriendly Synthesis and Characterization of Silver Nanoparticles Using Typha Domingensis with Different pH Values and Multiple Temperature: an Experimental Study

Huda I. Waheed, Husam M. Kredy *

Department of Chemistry, College of Science, University of Thi-Qar, Al-Nasyrria, Iraq

ARTICLE INFO

Article History:

Received 14 August 2025 Accepted 22 October 2025 Published 01 January 2026

Keywords:

Antibacterial Activity Ecofriendly synthesis Nanoparticles Typha domingensis XRD

ABSTRACT

Nanobiotechnology is a highly promising domain within contemporary technology and nanoscience. Nanoparticles of metal are utilized in various applications across multiple domains, including agriculture, medicine, electronics, and catalysis. Silver nanoparticles were synthesized using Typha domingensis extract, an essential component in nanotechnology, to address the high cost and low biocompatibility associated with chemically and physically synthesized nanoparticles. This research aimed to explore the feasibility of synthesizing silver nanoparticles (Ag-NPs) using an aqueous extract of Typha domingensis. The synthesized Ag nanoparticles were characterized using SEM, EDX, XRD, and UV-vis spectroscopy. The produced colloidal silver solution exhibited maximal absorption at 243 nm in UV-vis spectroscopy, with the best findings obtained at pH 9 and 45°C, and the silver nanoparticles had a spherical form with an average particle size of 31-69 nm, according to the X-ray diffraction and analysis. At concentrations of 25%, 50%, and 75%, the antibacterial activity of silver nanoparticles was examined against Escherichia coli and Pseudomonas aeruginosa (Gram-negative), and Staphylococcus aureus and Streptococcus (Gram-positive). The results showed that silver nanoparticles inhibited bacterial growth.

How to cite this article

Waheed H., Kredy H. Ecofriendly Synthesis and Characterization of Silver Nanoparticles Using Typha Domingensis with Different pH Values and Multiple Temperature: an Experimental Study. J Nanostruct, 2026; 16(1):89-98. DOI: 10.22052/JNS.2026.01.010

INTRODUCTION

Nanotechnology refers to the scientific and engineering disciplines that utilize phenomena at the nanoscale for Currently regarded as the most promising technology of the twenty-first century, nanotechnology has been investigated by researchers as a novel approach to medical research. Nanotechnology can boost industrial sectors' capacity and quality while also promoting economic growth [1]. Particles known as nanoparticles vary in size from 1 to 100 nm, which is nearly 1000 times smaller than a human hair's

diameter [2]. The nanoparticles can be classified as 0D, 1D, 2D, or 3D according to their morphology [3]. The importance of these nanoparticles became evident when researchers observed that size influences the physicochemical features of substances, including visual characteristics [4]. The diameter of a human hair is over 1000 times larger than nanoparticles, which are particles that range in size from 1 to 100 nanometers [5-11]. There are two types of approaches for synthesizing nanoparticles: top-down and bottom-up [12].

The development of There is an urgent

^{*} Corresponding Author Email: hmk20001999@sci.utq.edu.iq

demand for a non-toxic, ecologically safe NPs production technology. Motivated by the securityby-design theory, a number of green in recent years, synthesis techniques for NPs have been developed, that are safe, simple, economical, reproducible, and scalable. Thus, a number of biological systems, including, nowadays, NPs, are produced using a variety of green synthesis techniques, including the utilization of bacteria, fungus, yeast, and plant extracts. Among these green biological techniques, The gold standard for NP green synthesis is plant-based. due to its ease of use and variety of species [11, 13]. There are many different kinds of phytochemical substances found in plants, including flavonoids, terpenoids, polysaccharides, and phenolics, which have the ability to oxidation and reduction. Therefore, they are preferred for use in environmentally friendly nanoparticle synthesis. [14]. Strong antiinflammatory and antioxidant qualities, as well as strong antibacterial and anticancer qualities, are among the many major therapeutic qualities of these compounds [15]. Silver nanoparticles were used in this work to produced utilizing the plant Typha domingensis. the study aims to evaluate the antibacterial activity of the synthesized Ag NPs against selected bacterial strains to assess their potential as antimicrobial agents.

MATERIALS AND METHODS

Collection of Typha domingensis leaves

Typha domingensis leaves were obtained from the marshes of the Al-Chibayish area, Nasiriyah city, Iraq, in July 2024. The collected leaves were air-dried after being cleaned with distilled water. in a place away from sunlight for 14 days. They were then ground using a high-speed grinder to obtain a fine powder and kept in a refrigerator at 4°C until use.

Preparation of Plant extract and Test Active Compounds

In a water bath, 50 g of dried the leaves were extracted using 500 ml of deionized water and agitated for 48 hours. After that, the extract was filtered three times with a Tetron cloth and once with a gauze cloth. After gathering the extract, A rotating evaporator was used to extract the solvent. set to 45 °C, and the crude extract was stored at 4 °C for additional tests.

Synthesis of silver nanoparticles

After dissolving 2 grams of Typha domingensis powder in 50 ml of purified water, 10 ml of the aforementioned extract were added to 90 ml of 0.1 M AgNO3 solution at temperatures of 70, 45, and 35, and pH was adjusted to 10 and 9 for each temperature. The mixture became brown, signifying formation Ag NPs. 24 hours were spent incubating. After centrifuging the solution, After disposing of the supernatant, the mixture was gathered [16], as depicted in Fig. 1.

Disk Diffusion Test

The effects of antibiotics were studied using the disk diffusion approach [17]. The 0.5 McFarland standard was followed in the preparation of a microbial suspension from single bacterial colonies in order to examine the impact of the disk diffusion method. Individual bacteria were

cultivated on nutrient agar. Each plate had three disks with varying amounts of silver nanoparticles on it, along with positive and negative controls (antibiotics such as ATM, CAZ, CFM, and VA) and negative controls (water and DMSO). For every sample, 10 μL was placed onto the disk. A 37°C oven was then used to incubate the plates. The microbial cloud was found to have ceased growing after a day [18]. Disk diffusion tests were conducted at 75%, 50%, and 25% concentrations.

Characterization of Aq NPs

The properties of the generated the green nanoparticles were investigated using a range of techniques, such as ultraviolet-visible spectroscopy to identify the surface plasmon resonance (SPR) band of the silver nanoparticles, scanning electron microscopy to assess the size and shape of the silver nanoparticles, and X-ray (XRD) to ascertain their crystal structure. (EDX) and (XRD) were used to determine the elemental composition and

chemical states of the silver nanoparticles [19].

RESULTS AND DISCUSSION

UV-visible spectroscopy

Nanoparticles range in from (2 – 100) nm, and their size changes depending on the metal, according to a study of the particles using UV-vis spectroscopy of absorption. Absorption spectroscopy of UV-vis has verified that the nanoparticles are usually formation between 300 and 800 nm [21]. Absorption of wavelengths between 200 and 800 nm was found to be appropriate for categorizing nanoparticles ranging in size from 2 and 100 nm [22]. The prepared silver nanoparticles gave an absorption range of 243-431 nm, which is close to the study conducted by Ghyadh, Bushra Ali [23].

Energy Dispersive X-ray Spectroscope

The compositional analysis (spectrum EDX) of the produced nanoparticles is displayed in Fig.

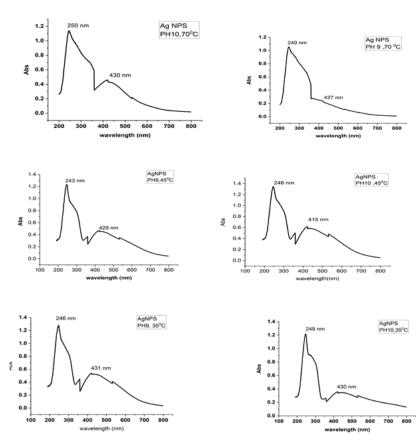


Fig. 2. analysis of Uv-visible of samples of Ag NPs.

3. The application of EDX analysis was to assess the combination of elements of Ag NPs, which were produced using Typha domingensis extract. Ag and Cl elements were found to have weight percentages of 93% and 7.0%, respectively, at pH 9 and 45 °C. Plant constituents are the source of carbon. The X- dispersive energy ray analysis supports the intensity (a. u.) of silver production and shows a high signal in the area of silver.

Weak C and CI signals were also picked up. This is caused by the analysis plate in addition to the phytochemical elements found in the plant, or the bounded biomolecules on the Ag NPs surface may be the cause of other elemental signals seen in the spectrum [24, 25].

Scanning Electron Microscope

The electrons are used in the SEM technique to

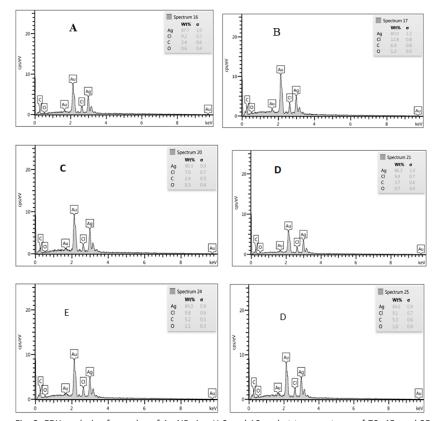


Fig. 3. EDX analysis of samples of Ag NPs in pH 9 and 10 and at temperatures of 70, 45, and 35 $^{\circ}$ C, respectively.

Table 1. size of Nanoparticles under different pH and temperature.

рН	Temperature	Size of Ag NPS				
9 10	70 °C	50-82 nm 28-72 nm				
9 10	45 °C	31-69 nm 37-71 nm				
9	35 °C	34-63 nm 23-84 nm				

J Nanostruct 16(1): 89-98, Winter 2026

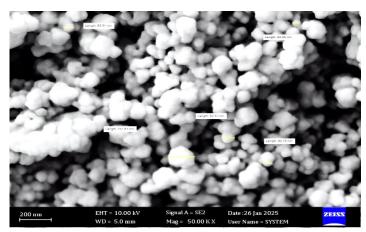


Fig. 4. SEM image for Ag NPs pH 9, 70 °C.

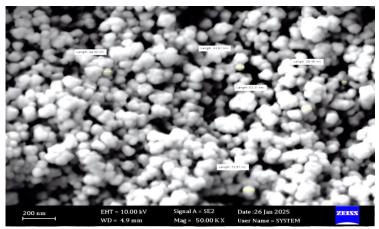


Fig. 5. SEM image for Ag NPs pH 10, 70 $^{\circ}$ C.

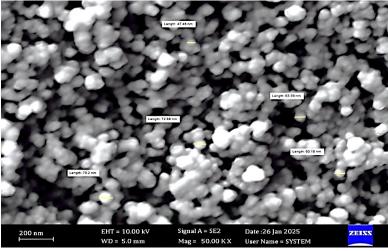


Fig. 6. SEM image for Ag NPs in pH 9, 45 $^{\circ}\text{C}\cdot$

create an output image [26]. The SEM evaluation is utilized to signify the dimensions Form, morphology, and distribution of produced silver nanoparticles [27]. The nanoparticles synthesized from the plant extract exhibited sharp peaks, indicating that they were on the nanoscale. The mean size of the silver the range of nanoparticles was (20 – 100) nanometers and were spherical in shape [28]. In this study, nanoparticles of different sizes were obtained at different pH levels and temperatures. The best nanoparticle size was obtained at pH 9 and 45°C, with sizes ranging from (31-69) nm, which is similar to the research carried out by Liaqat et al [29]. The prepared

nanoparticles' sizes under other conditions were as shown in Table 1.

X-ray dispersive spectroscope (XRD)

Material atomic structures can be investigated using X-ray diffraction. This system facilitates the process of determining the qualitative and quantitative levels of materials. The size and structure of hard crystalline nanoparticles were determined and confirmed using X-ray dispersive spectroscope analysis. [30]. In order to investigate the particle dimension of nanomaterials from X-ray dispersive spectroscope data, the width of the Bragg reflection law used the Debye-Scherrer

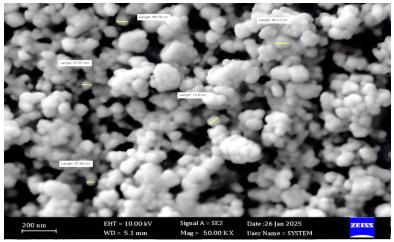


Fig. 7. SEM image for Ag NPs in pH 10, 45 °C.

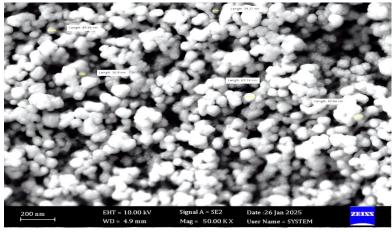


Fig. 8. SEM image for Ag NPS in pH 9, 35 $^{\circ}\text{C}.$

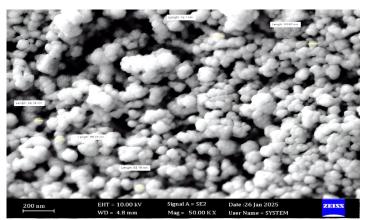


Fig. 9. SEM image for Ag NPS in pH 10, 35 °C.

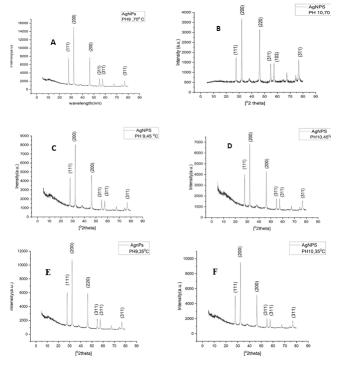


Fig 10. EDX analysis of samples of Ag NPs.

Fig. 11. Antibiotics activity against (Staphylococcus aureus and Streptococcus pneumoniae) and Gram-negative (Pseudomonas aeruginosa and Escherichia coli).

formula to compute. This equation is [31,32].

$$d = \frac{K\lambda}{\beta cos\theta}$$

where β is the full width half maximum and λ is the X-ray wavelength, d is the particle size (in

nanometers), K is the Scherrer constant, and θ is the diffraction angle that corresponds to the lattice plane [33]. Fig. 10 (C,F,E,A, B, D) demonstrates the peaks in the prepared NPs XRD peaks for 2θ values of 76.8° (311), 46.3° (200), 32.2° (111), 57.5° (311), and 54.82°, corresponding to the (220) planes of silver, were observed [31, 34-37].27.9° (100) [31].

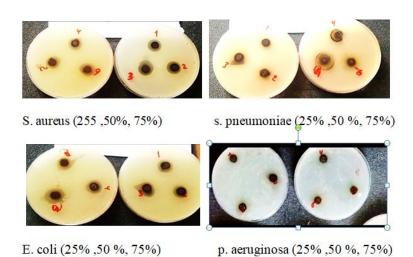


Fig. 12. antibacterial activities.

Table 2. The inhibitory ability of silver nanoparticles against strains.

Bacteria name	Bacteria strain	Inhibition zone (mm)							
		25%	50%	75%	VA	CFM	CAZ	ATM	DMSO
P. aeruginosa in pH 10 ,70 °C	-	20	23	30	28	0	0	0	0
P. aeruginosa in pH 9, 45 °C	-	19	28	29	28	0	0	0	0
E. coli in pH 10, 70 °C	-	25	28	29	0	0	0	0	0
E. coli in pH 9, 45 °C		25	27	29	0	0	0	0	0
Streptococcus in PH 10, 70 °C	+	25	26	28	0	0	0	0	0
Streptococcus in PH 9, 45 °C	+	31	30	29	0	0	0	0	0
S. aureus in pH 10, 70 °C	+	25	26	29	20	30	0	0	0
S. aureus in pH 9, 45 °C	+	25	24	23	20	30	0	0	0

Antibacterial Activity

Using the agar disk diffusion method, the antibacterial activity of silver nanoparticles (Ag NPs) against four pathogens was found to be effective against both Gram-positive (Staphylococcus aureus and Streptococcus pneumoniae) and Gram-negative (Pseudomonas aeruginosa and Escherichia coli) bacteria. As seen in Figs. 11and 12, the antibacterial activities were also contrasted with those of the antibiotics (ATM, CAZ, CFM, and VA) According to the data, silver nanoparticles had a strong capacity to stop microbial development. Silver nanoparticles had the strongest antibacterial action against S. aureus (29 mm), streptococcus (31 mm), E. coli (29 mm), and (30 mm) for P. aeruginosa. Both the zones of inhibition of silver nanoparticles and the zones of bacterial inhibition of ATM, CAZ, CFM, and VA tablets against Pseudomonas aeruginosa, Staphylococcus aureus, Streptococcus, and Escherichia coli are displayed in Table 2. The green synthesis silver nanoparticles outperformed conventional antibiotics in terms of their potent antibacterial action. The outcomes closely matched the research carried out by Kredy, Husam M [24].

CONCLUSION

Using the reducing qualities of an aqueous extract of Typha domingensis leaves, we present an easy and eco-friendly way to create silver nanoparticles. When exposed to silver ions, the Typha domingensis leaf extract produces silver nanoparticles within minutes. This extract has stabilizing and reducing properties, and it is easy, quick, and inexpensive to make the nanoparticles.

CONFLICT OF INTEREST

The authors declare that there is no conflict of interests regarding the publication of this manuscript.

REFERENCES

- 1. Haleem A, Javaid M, Singh RP, Rab S, Suman R. Applications of nanotechnology in medical field: a brief review. Global Health Journal. 2023;7(2):70-77.
- Jan H, Shah M, Usman H, Khan MA, Zia M, Hano C, et al. Biogenic Synthesis and Characterization of Antimicrobial and Antiparasitic Zinc Oxide (ZnO) Nanoparticles Using Aqueous Extracts of the Himalayan Columbine (Aquilegia pubiflora). Frontiers in Materials. 2020;7.
- Specify some heavy metals in select wellsWater at Basrah,Iraq. University of Thi-Qar Journal of Science. 2019:24-33.
- Ijaz I, Gilani E, Nazir A, Bukhari A. Detail review on chemical, physical and green synthesis, classification,

- characterizations and applications of nanoparticles. Green Chemistry Letters and Reviews. 2020;13(3):223-245.
- Gul R, Jan H, Lalay G, Andleeb A, Usman H, Zainab R, et al. Medicinal Plants and Biogenic Metal Oxide Nanoparticles: A Paradigm Shift to Treat Alzheimer's Disease. Coatings. 2021;11(6):717.
- Jadoun S, Arif R, Jangid NK, Meena RK. Green synthesis of nanoparticles using plant extracts: a review. Environ Chem Lett. 2020;19(1):355-374.
- Letchumanan D, Sok SPM, Ibrahim S, Nagoor NH, Arshad NM. Plant-Based Biosynthesis of Copper/Copper Oxide Nanoparticles: An Update on Their Applications in Biomedicine, Mechanisms, and Toxicity. Biomolecules. 2021;11(4):564.
- Anjum S, Ishaque S, Fatima H, Farooq W, Hano C, Abbasi BH, et al. Emerging Applications of Nanotechnology in Healthcare Systems: Grand Challenges and Perspectives. Pharmaceuticals. 2021;14(8):707.
- Khan AK, Renouard S, Drouet S, Blondeau J-P, Anjum I, Hano C, et al. Effect of UV Irradiation (A and C) on Casuarina equisetifolia-Mediated Biosynthesis and Characterization of Antimicrobial and Anticancer Activity of Biocompatible Zinc Oxide Nanoparticles. Pharmaceutics. 2021;13(11):1977.
- Andleeb A, Andleeb A, Asghar S, Zaman G, Tariq M, Mehmood A, et al. A Systematic Review of Biosynthesized Metallic Nanoparticles as a Promising Anti-Cancer-Strategy. Cancers (Basel). 2021:13(11):2818.
- Hano C, Abbasi BH. Plant-Based Green Synthesis of Nanoparticles: Production, Characterization and Applications. Biomolecules. 2021;12(1):31.
- Green synthesis of silver nanoparticles using Lawsonia inermis leaves extract and its Antibacterial activity. University of Thi-Qar Journal. 2019.
- Al Zaidi Dk, Husam Mohammed K. The production bioethanol from Ceratophyllum demersum L . in Iraq. University of Thi-Qar Journal of Science. 2023;10(2):49-52.
- 14. Vijayaram S, Razafindralambo H, Sun Y-Z, Vasantharaj S, Ghafarifarsani H, Hoseinifar SH, et al. Applications of Green Synthesized Metal Nanoparticles a Review. Biol Trace Elem Res. 2023;202(1):360-386.
- Abd alKhudhur salman N. Overview of the Biochemical Potential of Solanum Nigrum. University of Thi-Qar Journal of Science. 2024;11(1):190-196.
- Vijay Kumar PPN, Pammi SVN, Kollu P, Satyanarayana KVV, Shameem U. Green synthesis and characterization of silver nanoparticles using Boerhaavia diffusa plant extract and their anti bacterial activity. Industrial Crops and Products. 2014;52:562-566.
- Jha AK, Prasad K, Prasad K, Kulkarni AR. Plant system: Nature's nanofactory. Colloids Surf B Biointerfaces. 2009;73(2):219-223.
- Behravan M, Hossein Panahi A, Naghizadeh A, Ziaee M, Mahdavi R, Mirzapour A. Facile green synthesis of silver nanoparticles using Berberis vulgaris leaf and root aqueous extract and its antibacterial activity. Int J Biol Macromol. 2019;124:148-154.
- Wu S, Rajeshkumar S, Madasamy M, Mahendran V. Green synthesis of copper nanoparticles using Cissus vitiginea and its antioxidant and antibacterial activity against urinary tract infection pathogens. Artificial Cells, Nanomedicine, and Biotechnology. 2020;48(1):1153-1158.
- Dilshad R, Khan K-u-R, Ahmad S, Aati HY, Al-qahtani JH, Sherif AE, et al. Phytochemical profiling, in vitro biological

J Nanostruct 16(1): 89-98, Winter 2026

- activities, and in-silico molecular docking studies of Typha domingensis. Arabian Journal of Chemistry. 2022;15(10):104133.
- Khan MQ, Kumar P, Khan RA, Ahmad K, Kim H. Fabrication of Sulfur-Doped Reduced Graphene Oxide Modified Glassy Carbon Electrode (S@rGO/GCE) Based Acetaminophen Sensor. Inorganics. 2022;10(12):218.
- 22. Begum SJP, Pratibha S, Rawat JM, Venugopal D, Sahu P, Gowda A, et al. Recent Advances in Green Synthesis, Characterization, and Applications of Bioactive Metallic Nanoparticles. Pharmaceuticals. 2022;15(4):455.
- Bushra Ali G, Manal Badi S. Biosynthesize of Silver Nanoparticles by Eschriesca coli isolated from clinical samples in Nassryah city –south of Iraq. Journal of Pharmaceutical Negative Results. 2022:2101-2108.
- S R, Santhosh Kumar G. Green Synthesis of Silver Nanoparticles using Kaempferia Galanga Extract and Study of its Antibacterial Effect. International Journal of Science and Research (IJSR). 2023;12(10):1812-1815.
- Aisida SO, Ugwu K, Akpa PA, Nwanya AC, Ejikeme PM, Botha S, et al. Morphological, optical and antibacterial study of green synthesized silver nanoparticles via Vernonia amygdalina. Materials Today: Proceedings. 2021;36:199-203.
- Klein T, Buhr E, Georg Frase C. TSEM. Advances in Imaging and Electron Physics: Elsevier; 2012. p. 297-356.
- 27. Mason J. Microbial Warriors: Using Predatory Bacteria to Combat Pathogens. Molecular Pathogens. 2024.
- Janardhanan R, Karuppaiah M, Hebalkar N, Rao TN. Synthesis and surface chemistry of nano silver particles. Polyhedron. 2009;28(12):2522-2530.
- Liaqat N, Jahan N, Khalil ur R, Anwar T, Qureshi H. Green synthesized silver nanoparticles: Optimization, characterization, antimicrobial activity, and cytotoxicity study by hemolysis assay. Frontiers in Chemistry. 2022;10.

- 30. Habeeb Rahuman HB, Dhandapani R, Narayanan S, Palanivel V, Paramasivam R, Subbarayalu R, et al. Medicinal plants mediated the green synthesis of silver nanoparticles and their biomedical applications. IET Nanobiotechnology. 2022;16(4):115-144.
- 31. Ali IAM, Ahmed AB, Al-Ahmed HI. Green synthesis and characterization of silver nanoparticles for reducing the damage to sperm parameters in diabetic compared to metformin. Sci Rep. 2023;13(1).
- Bedlovičová Z. Green synthesis of silver nanoparticles using actinomycetes. Green Synthesis of Silver Nanomaterials: Elsevier; 2022. p. 547-569.
- Alaallah NJ, Abd Alkareem E, GhaiDan A, A. Imran N. Ecofriendly Approach for Silver Nanoparticles Synthesis from Lemon Extract and their Anti-oxidant, Anti-bacterial, and Anti-cancer Activities. Journal of the Turkish Chemical Society Section A: Chemistry. 2023;10(1):205-216.
- Taleb Safa MA, Koohestani H. Green synthesis of silver nanoparticles with green tea extract from silver recycling of radiographic films. Results in Engineering. 2024;21:101808.
- Moosavy M-H, de la Guardia M, Mokhtarzadeh A, Khatibi SA, Hosseinzadeh N, Hajipour N. Green synthesis, characterization, and biological evaluation of gold and silver nanoparticles using Mentha spicata essential oil. Sci Rep. 2023:13(1).
- Hanna AL, Hamouda HM, Goda HA, Sadik MW, Moghanm FS, Ghoneim AM, et al. Biosynthesis and Characterization of Silver Nanoparticles Produced by Phormidium ambiguum and Desertifilum tharense Cyanobacteria. Bioinorg Chem Appl. 2022;2022(1).
- Siddiqui MR, Khan M, Khan, Adil, Tahir, Tremel W, et al. Green synthesis of silver nanoparticles mediated by Pulicaria glutinosa extract. International Journal of Nanomedicine. 2013:1507.

(CO) BY