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in a Bremer Epoxy resin (50/100) mixture. Various composites were formed
using cobalt ferrite powder at 1 %-4 % wt. The specimens were prepared
in the form of a cylindrical disc with different densities (15 mm). Density
of individual samples have been calculated using dimensional analysis.
Composites were screened using a Geiger counter. Mass attenuation
reduction A key parameter in the study of how gamma rays interact with
matter is mass attenuation. It represents the mass attenuation coefficient of
gamma radiation by a material.
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INTRODUCTION

Finally, in order to enhance the accuracy of
atomicand/or mass attenuation coefficient, aseries
of measurements were presented. The value of
mass attenuation coefficient is not only important
for the medical imaging systems, but also for the
design of shielding materials against radiation
[1]. Even though there are intriguing anecdotal
evidence in this direction, in practice theory
and experiment often have little to do with one
another especially for novel or complex materials
[2]. Such variations could lead to insufficient
attenuation, or errors in image donation and
highlight the need for regular validation of these
data [3,4]. The gamma ray attenuation effect from
sources such as Am-241, Cs-137, and Co-60 by this
material of different densities had been reported
previously in some other investigations [5, 6]. The
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main purpose of irradiating source samples [7] is
to find the density (m) and m/ for each sample
source. The low-density materials are proven to
be effective in shielding the low y emitters [8]. For
high energy sources such as Co-60, it is required to
use High Z or thick material with high mass density
materials for efficient radiation shielding [9]. The
mode should be extended to character formation
in media with complex geometries, composites
of materials58 different [10] for better prediction
accuracy of the attenuation coefficients. This
work could be a contribution in the literature as
an investigation of scintillation properties of the
material for gamma-ray absorption application.
These results can be of interest in all the fields
such as nuclear medicine, material science and
radiotherapy [11]. The results may serve as a useful
data for the researchers in the field of radiation
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shielding, dosimeter, and simulation based on
radiation physics. Efferent substances are essential
in fields such as nuclear medicine, radiological
safety, and industrial radiography. Owing to their
high penetration capabilities, gamma rays interact
through mechanisms such as the photoelectric
effect, Compton scattering, and pair production.

Research Objectives:

1. To define and explain the mass attenuation
coefficient in relation to gamma ray interactions
with matter.

2. To review and analyze relevant experimental
and theoretical studies involving various materials
and their attenuation characteristics.

MATERIALS AND METHODS

Epoxy resin composites reinforced with 35
nm cobalt ferrite nanopowder were prepared
by adding 1%-4% of cobalt ferrite powder to
epoxy resin. Mechanical mixing and ultrasonic
technology were applied to distribute the powder
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within the resin before adding the hardener. The
mixture was poured into standard sample molds
of 20 mm diameter and 15 mm thickness. A
Geiger counter was used to calculate the linear
absorption coefficient and mass absorption for
all radioactive sources and the same sample.
This device detects ionizing radiation, including
gamma rays. Its working principle is based on the
ionization of the gas inside the tube when exposed
to radiation, resulting in an electrical pulse that
can be detected and recorded. For the analysis of
gamma ray attenuation, the device measures the
radiation intensity before and after the radiation
passes through a material. The attenuation rate
W is then calculated using appropriate equations
[12]:

n=(1/x)*In(lo /1)

where: p = linear attenuation coefficient,
x = sample thickness, lo = original intensity, |

NanolLAB-MOST SEM MAG: 200 x
SEM HV: 20.0 KV Date(m/dly): 02/20/25/ 200 pm

I
RANEE

Fig. 1. The image in Figure 1 shows a scanning electron microscope examination of cobalt ferrite powder.
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= measured radiation intensity after passing
through the material.

RESULTS AND DISCUSSION
SEM analysis

The image in Fig. 1 shows a scanning electron
microscope examination of cobalt ferrite powder.
The Fig. 1 shows the presence of clusters and
aggregates, the reason for which is due to the
method of preparation. The figure also shows
the overlap and regular distribution between
the ferrite and cobalt, which gives the polymer
magnetic properties and increases the magnetic
susceptibility.

This study investigates the interaction between
the gamma rays emitted by different radioactive
sources (Am-241, Cs-137, and Co-60) and a
shielding material of varying densities (Tables
1-3 and Fig. 1). The goal is to evaluate the linear
attenuation coefficient (1) and mass attenuation
coefficient (u/p) for each source and sample.

Linear Attenuation Coefficient (u), Calculated as u
=1/xInl,/1
Am-241 (59.6 keV) is associated with the

highest linear attenuation coefficient across all
the samples. This is expected, as low-energy
photons are likely to be absorbed or scattered
by matter, leading to a high attenuation. Cs-
137 (661.6 keV) is associated with moderate
linear attenuation values. As the photon energy
increases, the probability of interaction (especially
photoelectric effect) decreases, thereby reducing
the linear attenuation. Co-60 (1173 and 1332 keV)
is associated with the lowest p values. This finding
is consistent with high-energy gamma rays having
a low likelihood of interaction per unit distance in
matter.

Mass Attenuation Coefficient (u/p), Where p =
density

The mass attenuation coefficient normalizes
linear attenuation to the material’s density for a
comparison across different sample densities.
While p decreases with the increasing energy, u/p
emphasizes the difference in material effectiveness
regardless of density [13]. u/p shows a decreasing
trend in the order of Am-241>Cs-137>Co-60,
confirming the inverse relationship between
photon energy and attenuation efficiency. This

Table 1. Results of Gamma Ray Attenuation by Nanocomposites Under Different Radiation Sources.

Sample Am-241 Cs-137 117(:30-264?(6\/ Co-60 Density Thickness Weight
Code 59.6Kev 661.66 Kev ’ 1332.3 Kev g\cm? X mm g
lo 10787 6190 1173.24 1332.3
Counts | out | out | out | out
So 1419 2505 1059 902 1.24 15 4.8
S1 1341 2395 1091 900 1.67 15 4.59
S2 1341 2493 1066 883 189 15 4.26
S3 1342 2312 1018 851 2.1 15 4.86
Sq 1235 2137 940 791 2.6 15 5.63
Table 2. Linear and Mass Attenuation Coefficients under Different Radioactive Sources.
Source Energy (keV) u (cm”-1) u/rho (cm”2/g)
Am-241 59.6 1.352 1.09
Cs-137 661.66 0.602 0.485
Co-60 1173.24 0.069 0.056

Co-60 13323

0.26 0.21
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trend aligns with the following well-established
photon—matter interaction principles:

1- At low energies, the photoelectric effect
dominates. This effect has a strong dependence on
atomic number (Z) and results in high attenuation
(as observed for Am-241).

2- Atintermediate energies, Compton scattering
is the primary mode of interaction, contributing
moderately to attenuation (e.g., Cs-137).

3- At high energies, pair production becomes
possible (above 1.022 MeV) but contributes
less than the photoelectric effect and Compton
scattering unless the material is extremely dense
or thick, explaining the low p for Co-60.

These findings confirm that for effective gamma
shielding:

1- Low-energy gamma-ray sources require less
dense material for significant attenuation.

2- High-energy gamma-ray sources such as
Co-60 require materials with high Z and/or great
thickness.

Table 3 shows the linear attenuation coefficient
(u) and mass attenuation coefficient (u/rho) for
each radioactive source and sample (S0-S4) based
on experimental data. Sample SO is considered
the baseline sample with initial intensity
measurements presented in [14]. Table 1 presents
the linear (u) and mass attenuation coefficients

Table 3. Linear and Mass Attenuation Coefficients for Epoxy and Nanocomposites.

Sample Density (g/cm?) Am-241 Cs-137 Co-60 (1173) Co-60 (1332)
P 18 (u/ u/rho) (u/ u/rho) (u/ u/rho) (u/ u/rho)
SO 1.24 1.352/1.09 0.602 / 0.485 0.069 / 0.056 0.260/0.210
S1 1.67 1.278 / 0.765 0.569 /0.341 0.050/0.030 0.261/0.156
S2 1.89 1.273/0.673 0.584 /0.309 0.062 /0.033 0.279/0.147
S3 2.1 1.271/0.605 0.541/0.257 0.071/0.034 0.296/0.141
S4 2.6 1.163 /0.447 0.468 / 0.180 0.094 / 0.036 0.351/0.135
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Fig. 2. Variation of linear and mass attenuation coefficients across samples with increasing densities
under different radioactive sources.
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(u/p) of five different samples (SO to S4) with
increasing density exposed to gamma radiation
from four radioactive sources: Am-241, Cs-137,
and Co-60 (1173 and 1332 keV).

Effect of Energy on Attenuation

An inverse relationship exists between photon
energy and both attenuation coefficients. Am-
241 (59.6 keV) consistently shows the highest u
and u/p values across all the samples. As energy
increases (Cs-137 at 661 keV and Co-60 at 1173
and 1332 keV), both coefficients decrease [15].
This finding is in line with the theory of gamma
interaction with matter: The photoelectric effect
is strongly dependent on atomic number (2)
dominates at low energies, leading to significant
attenuation. At intermediate energies, Compton
scattering becomes dominant, causing moderate
attenuation. At high energies (>1 MeV), pair
production becomes significant, though only in
very dense materials.

Effect of Material Density (Sample Variation)

As the sample density increases from SO (1.24
g/cm?3) to S4 (2.60 g/cm?), the following patterns
are observed: The mass attenuation coefficient
(u/p) tends to decrease, indicating that increasing
density alone is not always efficient for shielding
enhancement (Fig. 2). The linear attenuation
coefficient (u) slightly decreases or plateaus,
especially for high-energy gamma-ray sources,
due to the diminishing effect of added thickness
on highly penetrating radiation [16].

CONCLUSION

The linear (u) and mass (u/p) attenuation
coefficients of samples S0-S4 in the presence of
gamma-ray sources Am-241, Cs-137, and Co-60
were analyzed. The following conclusions were
drawn:

1- Low-energy gamma-ray sources (e.g., Am-
241 at 59.6 keV) exhibit significantly higher
attenuation coefficients than high-energy gamma-
ray sources.

2- Photon energy is inversely related to linear
and mass attenuation coefficients.

3- The mass attenuation coefficient (u/p)
decreases with the increasing material density,
indicating diminishing returns in shielding beyond
certain density thresholds.

4- The linear attenuation coefficient (u) shows a
plateau trend at high densities, especially for high-

2116

energy gamma-ray sources such as Co-60.

5- As a baseline, sample SO provides a reference
point for assessing the impact of increasing density
in subsequent samples.

6- Effective gamma shielding design must
consider photon energy and material properties
(such as density and thickness).

7- The results align with expected radiation—
matter interaction models: photoelectric effect,
Compton scattering, and pair production.

8- For low-energy gamma-ray sources,
increasing density significantly improves shielding.
For high-energy radiation, material selection and
total thickness are more crucial than density.
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