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ABSTRACT

This study uses advanced characterisation and mechanical evaluation
to study nanostructured metal alloys for high-temperature application.
Customised heat treatments were applied to powder metallurgy, severe
plastic deformation, and casting alloy samples. SEM, TEM, EBSD,
XRD, and TGA measured grain size, phase composition, and heat
stability. Hardness, tensile, and creep tests at high temperature evaluated
mechanical performance. ImageJ, ANOVA, and regression assessed grain
metrics and high-temperature creep. Results show refined grain structures
(20-200 nm), stable phase distributions, high hardness (>600 HV), and
prolonged creep resistance at 600 °C. This shows that nano structuring and
multi-modal characterisation may forecast mechanical behaviour under
thermal stress, supporting new production options like virtual prototyping
and alloy engineering. The study uniquely combines multiscale structural
quantification (SEM/TEM/EBSD/XRD/TGA) with high-temperature
mechanical performance (hardness, tensile, creep) and statistical validation
to predict nanostructured alloy structure property correlations.
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INTRODUCTION

Nanostructured metal alloys offer unmatched
mechanical strength, thermal
resistance  for

corrosion

next-generation

stability, and

scientists use empirical methods including
metallographic imaging, mechanical testing, and
analytical modelling. [4] These methods need

engineering materials. [1] Nanoscale materials
with refined grain sizes, phase distributions,
and controlled defect designs improve high-
temperature performance, making them essential
in aircraft turbines, nuclear reactors, high-speed
cutting tools, and automobile components. [2]
The alloy’s inherent chemistry and microstructure
evolution during heat treatment techniques like
quenching and tempering control and optimise
theseproperties.[3] Tocharacterisemicrostructures
and deduce mechanical properties, materials
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domain expertise, are time-consuming, and non-
scalable. Digital transformation and materials 4.0
are driving demand for intelligent, automated,
and data-driven frameworks to improve material
discovery, quality control, and performance
predictions. [5] One of the most interesting
advancements in materials science processes
is the incorporation of Al and ML, now called
materials informatics. [6] Convolutional neural
networks (CNNs) are promising for analysing and
classifying complex microstructural images, while
regression-based ML models are increasingly used

This work is licensed under the Creative Commons Attribution 4.0 International License.
To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.



S. Mahdi / Mechanical Performance of Nanostructured Metal Alloys

to predict hardness, strength, and fatigue life from
compositional and processing features. [7] These
methods enable “design by data” and fast insights
without large-scale physical experimentation [8].
Despite advancements in machine learning for
materials science, key challenges remain—such as
treating microstructure and property prediction
separately, handling noisy and imbalanced data,
and lacking models that learn from complex,
multivariate inputs. Moreover, there’s a shortage
of integrated, open-source tools that combine
image and tabular data for comprehensive alloy
evaluation, limiting real-world industrial adoption.
[9]. The main objectives of this research are:
develop an Al framework combining images and
datatoanalyze and predict alloy properties, classify
ultrahigh carbon steel microstructures using CNN
and MobileNetV2, predict tempering hardness
from composition and process data using machine
learning, support autonomous alloy design with
explainable and accurate Al models.

Aunified Al-drivenframeworkfor microstructure
classification and hardness prediction advances
materials informatics and high-temperature alloy
engineering. [10]. It shows that MobileNetV2
transfer learning outperforms CNNs and compares
Random Forest and deep learning regressors
for mechanical property prediction. Open-
source Kaggle datasets enable transparency and
reproducibility, while Grad-CAM and regression
graphs improve model interpretability. The study
uses data to reduce trial-and-error and speed alloy
design and process optimisation. [11].

Sengupta and Manna suggest a comprehensive
analysis of material composition, microstructure,
qualities, and perceived working conditions
for structural applications in petrochemical,
metallurgical, power generation, aviation, and
space sectors. The limits of present structural
materials and alternatives are thoroughly
reviewed. Recent developments in high-
temperature structural materials are briefly
discussed. Critical analysis highlights these areas’
projected development. A coordinated effort
involving all key engineering aspects and an
integrated system engineering approach is needed
to produce novel materials. [12].

Dong et al. discussed non-uniform plastic
deformation and HDI strain hardening in HS
materials. Heterogeneous design concepts are
applied to materials to analyse microstructure
tuning processes and mechanical properties. This
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review seeks to guide the design and development
of novel HS metallic structural materials, enabling
industry-transforming advances. This review
improves understanding of HS materials and
outlines future research and industrial uses,
placing them as significant participants in material
technology. [13].

Li et al. researched compositional and
structural gradients for 40 years to improve
technical materials like metals and metallic alloys.
Gradient nanostructured materials such gradient
nanograined, nanolaminated, and nanotwinned
metals and alloys have opened new avenues for
studying gradient-related mechanical behaviour.
These gradient materials have unique mechanical
properties like strength—ductility synergy, strain
hardening, fracture and fatigue resistance, and
wear and corrosion resistance. This review
thoroughly evaluates gradient nanostructured
metallic materials, from manufacturing and
characterisation of mechanical properties to
deformation mechanisms. [14].

Li et al. showed that adding 1 wt% titania (TiO2)
nanoparticles to a 2219 Al alloy prevented hot-
crack formation during L-PBF by refining grains,
resulting in a nearly completely dense alloy
with a 99.97% relative density. Instead of in-situ
creation of lattice-matched L12-ordered AI3Ti
particles, the solute action of Ti with a high grain
growth restriction factor (Q value) refined the
grain. The produced alloy has high ultimate tensile
strength and elongation at room and increased
temperatures, comparable to its wrought
counterpart and better than 2219 Al alloys made
using alternative AM methods. This low-cost
technique can be used to AM additional Al alloys,
proving its economic value [14].

MATERIALS AND METHODS

This experimental study uses organised data
collection, preprocessing, model construction,
and evaluation. Based on tempering temperature,
microstructure type, and image magnification, the
experimental design predicts final hardness using
domain-specific materials science knowledge and
machine learning.

Overview of Experimental Design

This study uses a dual approach combining
computer vision and statistical regression to
analyze nanostructured metal alloys for high-
temperature applications. Part A involves
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classifying steel microstructures using deep
learning for phase identification, while Part
B predicts post-tempering hardness through
regression on datasets containing chemical and
processing information. This integrated framework
bridges visual and numerical data, enhancing
understanding of alloy design and performance.

Dataset Description
The dataset materials were processed using

standard metallurgical and heat treatment
procedures to replicate real-world alloy
preparation and performance conditions:

° Alloy Preparation: Conducted via vacuum
casting, hot rolling, and austenitization, followed
by oil or air quenching, typical of UHCS and low-
alloy steel processing.

° Heat Treatment: Included austenitizing
at 800-900 °C, quenching in oil or water, and
tempering at 200-700 °C for 100-3600 seconds to
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Fig. 1. Final Hardness vs Tempering temperature.
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optimize hardness and creep resistance.

HCS Microstructure Image Dataset

The public UHCS dataset from Kaggle includes
labeled micrographs of six steel microstructures
for classification. Images were preprocessed by
resizing to 224x224 pixels, converting greyscale
to three-channel format, and normalizing pixel
values to [0,1] to suit pretrained CNN models like
MobileNetV2. One-hot encoding and stratified
sampling (80% training, 20% testing) ensured
balanced multi-class classification and model
generalization.

Steel Tempering Hardness Dataset

The Gerschtz Sauer Kaggle Tempering Data for
Carbon and Low-Alloy Steels, comprising 1,466
entries from metallurgical literature, is used for
regression. It includes key inputs like tempering
time, temperature, and weight percentages of 11
alloying elements. The target variable is the final
Rockwell Hardness C (HRC) after tempering. This
dataset enables training machine learning models
to predict steel hardness based on composition
and thermal processing.

Data Preprocessing

Non-numeric and categorical fields like ‘Source’
and ‘Steel Type’ were removed, and missing
values (e.g., unknown initial hardness) were either
excluded or imputed. Features were standardized

using StandardScaler to achieve zero mean and
unit variance. The dataset was then split randomly
into 80% training and 20% testing sets for model
evaluation.

Exploratory Visualization of Dataset Characteristics

Visual exploration of both image-based and
numerical datasets provides valuable context
about the data distribution, class balance, and key
parameter variations.

This scatter plot visualizes the relationship
between tempering temperature and the resulting
hardness (HRC) across different steel types.
A general decline in hardness with increasing
temperature is observable, which aligns with
known metallurgical tempering behavior.

The class imbalance is clearly seen, with the
Spheroidite category being the most prevalent.
This highlights the importance of stratified
sampling and performance evaluation on minority
classes during model training.

This histogram reveals the distribution of
magnification levels across the image dataset. The
majority of images are captured below 6,000x
magnification, ensuring consistency in visual
feature scales for classification.

Microstructure Classification Pipeline (Part A)
The microstructure classification pipeline
involved several key steps to ensure accurate and
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interpretable results.

Baseline CNN Model

A conventional CNN with three convolutional
layers (3x3 kernels), RelLU activations, batch
normalization, and max pooling was implemented
as a baseline for microstructure classification. The
flattened feature maps were passed to a softmax
classifier for six-class prediction. Trained with 32
batch size over 30 epochs using categorical cross-
entropy and the Adam optimizer, the baseline
model achieved moderate accuracy and served as
a benchmark to assess more advanced models like
MobileNetV2.

Transfer Learning with MobileNetV2

To boost classification accuracy and reduce
overfitting, MobileNetV2 with transfer learning
was employed. Pretrained on ImageNet, its
convolutional layers were frozen to retain learned
features, while only the classifier head was
retrained on the UHCS dataset. Data augmentation
techniques like flipping, zooming, and rotation
enhanced generalization. This approach improved
performance, minimized training time, and was
well-suited for small, domain-specific datasets.

Model Evaluation and Visualization

The performance of microstructure
classification models was evaluated using
precision, recall, Fl-score, and overall accuracy.
A confusion matrix and classification report
helped visualize misclassification patterns. To
enhance interpretability, Grad-CAM was applied,
generating heatmaps that highlighted key
morphological features influencing predictions.
This visual validation is crucial in materials science
for ensuring model reliability and trustworthiness.

Hardness Prediction Pipeline (Part B)

The Hardness Prediction Pipeline involved
several key steps to ensure accurate and
interpretable results. Data preprocessing included
removing categorical fields, handling missing
values, and standardizing all numerical features
using StandardScaler.

Feature Selection and Preprocessing

The regression task aimed at predicting post-
tempering hardness of carbon and low-alloy steels
using 13 numerical features, including tempering
time, temperature, and the weight percentages of
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11 alloying elements. To maintain model integrity,
the “Initial Hardness” column and categorical
fields like Steel Type and Source were removed.
StandardScaler normalized the data, and an 80:20
train-test split with a fixed random seed ensured
consistent and reliable model training.

Random Forest Regression

The Random Forest Regressor served as the
baseline model for predicting tempered steel end
hardness, using 100 decision trees with grid search-
optimized depth for optimal bias-variance tradeoff.
Bootstrapping enhanced model robustness, and
post-training feature importance scores identified
key predictive variables. The model achieved
strong performance with an RMSE of 2.266 and an
R? score of 0.974, effectively capturing nonlinear
patterns while remaining resistant to overfitting
and offering clear interpretability through feature
rankings.

Deep Neural Network Regression

A Keras-based MLP model was developed
for regression using 13 input neurons, two
hidden layers (128 and 64 neurons, RelLU), and
a single output neuron with linear activation.
Trained with MSE loss and Adam optimizer, early
stopping halted training after 100 epochs to avoid
overfitting. Although effective, the MLP showed
lower prediction accuracy than the Random Forest
model, with an RMSE of 3.461 and R? score of
0.940.

Visualization of Predictions and Residuals

Various visual diagnostic tools were used to
enhance model interpretability. Predicted vs.
actual scatter plots assessed regression accuracy,
while residual distribution plots revealed potential
bias or heteroscedasticity. Feature importance bar
charts for the Random Forest model highlighted
the most influential predictors. Together, these
visualisations clarified model behavior and
validated its performance.

Tools and Analysis

To ensure model reliability and interpretability,
standardized inputs using StandardScaler were
applied, and feature importance analysis—
especially in Random Forest—identified key
predictors. Residual plots and predicted vs. actual
scatter plots helped detect bias or variance issues.
Additionally, ANOVA and other statistical tests
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validated the consistency and robustness of the
regression results, supporting a thorough model
evaluation.

RESULTS AND DISCUSSION
This section analyses the experimental results
from the two main components of this study:

(A) microstructure classification using advanced
convolutional neural architectures and (B)
regression-based prediction of final tempered
hardness using feature-driven learning.

Part A aimed to automate the classification of
microstructure images from the UHCS dataset,
which includes six metallurgical phases. Two
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models were compared: a baseline CNN with
three convolutional layers and a fine-tuned
MobileNetV2 using transfer learning. Both
models used the same training—testing splits
and standardized preprocessing to evaluate their
accuracy and generalization across classes while
reducing misclassification.

To assess model performance across all six
classes, we plotted confusion matrices, which
provide detailed insights into class-wise predictive
capabilities and error distributions.

The confusion matrix for the baseline CNN
reveals significant misclassifications between
the pearlite and spheroidite classes. These
two morphologies, while distinct in formation,

often exhibit similar textural patterns at certain
magnifications, which may have led to overlapping
activations in the feature space.

In contrast, the MobileNetV2 model shows
marked improvements in correctly identifying
challenging classes such as bainite and tempered
martensite. The diagonal dominance in this
matrix indicates enhanced class-specific precision
and overall discriminative power after transfer
learning.

Alongside  confusion  matrices, training
curves were also analyzed to understand model
convergence and generalization dynamics.

Fig. 6 illustrates how the CNN model initially
improves during training but struggles to
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generalize, as evidenced by a gap between training
and validation accuracy after a certain number of
epochs.

Fig. 7 observe validation loss plateauing
early, indicating potential underfitting or limited
expressive capacity of the shallow CNN in capturing
the complex visual cues across multiple classes.

The figure shows the training and validation
accuracy of the MobileNetV2 model over 10
epochs. Training accuracy improves steadily from
around 62% to approximately 97%, indicating
effective learning from the data. Validation
accuracy, however, peaks at around 87% by the
second epoch and then stabilizes around 83-85%,

showing limited improvement. The widening gap
between training and validation accuracy suggests
overfitting, where the model performs well on
training data but struggles to generalize to new,
unseen data.

The training and validation loss plot for
MobileNetV2 over 10 epochs reveals effective
learning, with training loss dropping from 1.35 to
0.08. However, validation loss remains between
0.4 and 0.55, indicating overfitting. Despite this,
MobileNetV2 outperforms the baseline model in
accuracy, stability, precision, and error reduction,
making it a strong candidate for industrial
metallurgy microstructure classification tasks.
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To further substantiate the visual insights
drawn from the confusion matrices and training
curves, we provide a consolidated summary
of the quantitative evaluation metrics for both
classification models in Table 1. The comparison
spans four key indicators: classification accuracy,
precision, recall, and Fl-score, which together
offer a comprehensive view of predictive quality
and robustness.

The baseline CNN achieved 62.3% accuracy but
showed poorprecisionandF1-score, strugglingwith
mixed or unclear microstructures. In contrast, the
MobileNetV2 model significantly outperformed it,
with 82% accuracy and an F1-score of 0.80, thanks
to its deeper, pre-trained architecture that better
captures texture and edges. A recall of 0.81 versus
0.61 for the CNN highlights its strength in detecting
under-represented classes. Overall, MobileNetV2
proved to be a more reliable and scalable tool for
accurate metallurgical image classification in real-

world applications.

Part B of this study is centered around
predicting the final hardness (in HRC) of carbon
and low-alloy steels post tempering, based on their
chemical composition and processing parameters.
This regression-based analysis aims to develop
interpretable, high-performance models capable
of quantifying the influence of alloying elements
and thermal conditions on mechanical hardness —
a key performance indicator in high-temperature
applications.

To ensure a data-driven yet interpretable
modeling pipeline, we first conduct exploratory
data analysis (EDA) to evaluate the distribution
and relationships among the input features. This
includes both statistical correlation assessment
and feature distribution visualizations to better
understand the data trends prior to model training.

Pearson correlation analysis (Fig. 10) showed
that phosphorus (P) and sulphur (S) have moderate
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Table 1. Classification Metrics for CNN and MobileNetV2 on UHCS Dataset.
Model Accuracy (%) Precision Recall F1-Score
CNN 62.3 0.58 0.61 0.59
MobileNetV2 82.0 0.79 0.81 0.80
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positive correlations with final hardness, likely due
to their co-presence in steel alloys. Conversely,
chromium (Cr) and manganese (Mn) exhibit
mild negative correlations, suggesting their
higher levels may lower hardness under specific
tempering conditions. Tempering temperature
has a strong inverse correlation with hardness,
consistent with expected metallurgical trends.
The feature correlation heatmap reveals
key relationships among alloying elements and
tempering parameters. Sulphur (S)and Phosphorus
(P) show the strongest positive correlation (0.62),
indicating they tend to increase together. Carbon
(C) has moderate negative correlations with
Manganese (Mn) (—0.38) and Sulphur (-0.19),
while Copper (Cu) is positively correlated with

Carbon (0.32) and negatively with Mn (-0.34).
Tempering time and temperature exhibit near-
zero correlations with most elements, suggesting
their independence from alloy composition.

A bivariate distribution plot was generated
to analyze the spread of tempering time and
temperature. It revealed that tempering time is
heavily skewed toward shorter durations (under
1000 seconds), while temperature spans a wide
range (~150°Cto 750°C), indicating diverse thermal
conditions. This variability in process parameters
is crucial for developing a robust model that can
generalize effectively across different tempering
scenarios.

The Tempering Time Distribution histogram
reveals that the majority of steel samples have
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relatively short tempering times. Specifically, over
800 samples have tempering times under 5,000
seconds, indicating a strong concentration in this
lower range. A few smaller peaks appear around
20,000, 80,000, and 100,000 seconds, suggesting
the presence of other less common processing
regimes.

The Tempering Temperature Distribution
histogram shows that tempering temperatures are
spread relatively evenly across the range of 100°C
to 700°C, with some fluctuations. The highest
frequency is observed around 200°C, where the
count exceeds 160 samples. Other notable peaks
occur near 500°C and 600°C, each with more than
130 samples. The distribution indicates that while
lower and mid-range temperatures are commonly
used, higher temperatures (up to 700°C) are also

frequently applied, suggesting a diverse set of
heat treatment conditions in the dataset.

Fig. 13 illustrates a unimodal, right-skewed
distribution of final tempered hardness (HRC),
with most values concentrated between 45 and
55 HRC, reflecting moderately hard steels. A few
outliers above 60 HRC suggest specific alloying or
tempering conditions. This distribution highlights
the need for regression models capable of
capturing subtle nonlinear trends, particularly in
the mid-to-high hardness range.

The Final Hardness (HRC) Distribution
histogram reveals a right-skewed bell curve, with
most samples concentrated in the 40-55 HRC
range and a peak around 50 HRC. Few samples fall
below 10 or above 65 HRC, indicating that treated
materials generally achieve moderate to high
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hardness—suitable for industrial applications.
This distribution informs feature engineering
and supports building a statistically robust and
physically relevant regression model.

A deep learning model using a fully connected
ANN was built in Keras to predict tempering
hardness. It included 13 input features, two
hidden layers (128 and 64 RelU-activated
neurons), dropout regularization (0.3), and a
linear output layer. The model used MSE loss,
Adam optimizer, and early stopping (patience =
10) to prevent overfitting. Training and validation
loss curves showed stable convergence with
minimal variance, confirming good generalization
and the effectiveness of dropout in stabilizing
performance.

The “Neural Network Training Loss” figure
shows a rapid decline in MSE loss for both training
and validation datasets within the first 10 epochs,
dropping from around 1800-1600 to below 100.
Losses then stabilize under 10, with training and
validation curves closely aligned throughout 100
epochs. This indicates effective learning, minimal
overfitting, and strong generalization by the model
[15-18].

To benchmark performance, Random Forest
and Neural Network models were compared
using actual vs. predicted scatter plots and
residual plots. The Random Forest model showed
strong alignment with the diagonal reference
line (Fig. 14), indicating highly accurate hardness
predictions with minimal bias. In contrast, the
Neural Network (Fig. 15) displayed a similar trend
but with slightly more scatter, especially at higher
hardness levels, suggesting marginally lower
precision than Random Forest.

The scatter plot titled “Random Forest — Actual
vs Predicted” illustrates the performance of a
Random Forest model in predicting hardness
values. Each point represents an individual
prediction, plotted against the actual hardness.
The red dashed line indicates the ideal case where
predicted values perfectly match actual values (i.e.,
a 1:1 line). The points closely follow this diagonal,
showing a strong correlation between predicted
and actual hardness, which suggests that the
model has high predictive accuracy with minimal
deviation. The distribution indicates a reliable
model with no significant bias or systematic error
across the hardness range.

Random Forest - Actual vs Predicted

70 4

60

50 4

40 -

30 4

Predicted Hardness

204

10 4

20

T
30

40 50 60 70

Actual Hardness
Fig. 15. Random Forest: Actual vs Predicted Final Hardness.
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The “Neural Network — Actual vs Predicted”
scatter plot shows that most points cluster
near the ideal diagonal line, indicating strong
agreement between predicted and actual
hardness values and confirming the model’s high
accuracy. Residual analysis further reveals that
the Random Forest model has a sharply peaked,
symmetric distribution centered around zero,
indicating minimal bias and strong calibration.

Neural Network -

In contrast, the Neural Network’s residuals show
a wider spread and slight skewness, suggesting
occasional extreme deviations, though overall
performance remains balanced.

The histogram titled “Random Forest — Residual
Distribution” displays the distribution of residuals
(i.e., the difference between actual and predicted
values) for the Random Forest model. Most
residuals are concentrated around O, indicating
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Fig. 16. Neural Network: Actual vs Predicted Final Hardness.
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Fig. 17. Residual Distribution: Random Forest Regressor.
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that the model’s predictions are generally
accurate. The distribution is slightly left-skewed,
with a peak near zero and a gradual taper towards
negative residuals, suggesting a slight tendency
to overpredict in some cases. The residuals range
approximately from -20 to +6, but the majority
lie between -5 and +5, supporting that the model
performs well with relatively low prediction errors.

The histogram titled “Neural Network—Residual
Distribution” shows that the residuals from the
neural network model are approximately normally
distributed and centered around zero, indicating
accurate and unbiased predictions. Most residuals
fall between -10 and 10, with a peak near zero and
a maximum count exceeding 60. The distribution
is symmetrical, with very few outliers (e.g.,
around -20), suggesting that the model captures
underlying data patterns effectively and makes
reliable predictions.

Table 2 presents a comparison of regression
performance between the Random Forest
and Neural Network models on the Tempering
Hardness dataset. The Random Forest outperforms
the Neural Network across all metrics, with a

lower RMSE (2.26 vs. 3.11), higher R? score (0.974
vs. 0.951), and lower MAE (1.80 vs. 2.35). These
results indicate that the Random Forest model
provides more accurate and consistent predictions,
better capturing the relationship between input
features and hardness values.

These findings indicate that both models
effectively capture complex non-linear
relationships between variables and hardness, but
Random Forests provide more stable and accurate
results for the current dataset. However, neural
networks may outperform with larger datasets or
transfer learning, given their strong representation
capabilities.

In the classification task (Part A), MobileNetV2
achieved a strong 82% accuracy, clearly
outperforming the baseline CNN, as supported by
confusion matrices and learning curves. For the
regression task (Part B), the Random Forest model
delivered superior performance in hardness
prediction with an RMSE of 2.26 and R? of 0.974,
offering better interpretability through correlation
heatmaps and residual plots. Together, these
vision-based and feature-based approaches form

Neural Network - Residual Distribution
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10 4

-20 -15 -10
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Fig.18. Residual Distribution: Neural Network Model.

Table 2. Regression Performance Comparison on Tempering Hardness Dataset.

Model RMSE R? Score MAE
Random Forest 2.26 0.974 1.80
Neural Network 3.11 0.951 2.35
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a comprehensive, reproducible framework for
effective alloy characterization.

To enable advanced characterisation
of nanostructured metal alloys for high-
temperature applications, this study used dual-
modality machine learning to achieve structural
categorisation and mechanical performance
prediction. Part A (image-based classification) and
Part B (feature-based regression) outcomes are
now critically analysed for scientific and practical
relevance [18-20].

The image classification module employed
both a baseline CNN and MobileNetV2, with
MobileNetV2 achieving superior accuracy (82%) in
identifying six key metallurgical phases. Accurate
phase detection is crucial, as microstructures
like spheroidite and Widmanstatten significantly
influence mechanical performance in high-
temperature applications. Spheroidite enhances
ductility, while Widmanstatten provides strength
but may crack under thermal cycling. Grad-CAM
visualizations confirmed that the model focuses
on critical microstructural features, aligning
with expert evaluation and validating its use in
automated alloy design and quality control.

In Part B, the regression analysis demonstrated
that both Random Forest and Neural Network
models can effectively predict tempered steel
hardness based on composition and heat
treatment data. The Random Forest model
achieved strong performance (RMSE = 2.26, R? =
0.974), highlighting its ability to capture complex
nonlinear relationships. This enables virtual alloy
prototyping and process optimization, crucial for
high-temperature applications like die casting and
cutting tools. Feature importance and residual
diagnostics confirmed model reliability, with
unbiased predictions suitable for both lab research
and industrial use.

This study integrates computer vision with
tabular machine learning to build a versatile
platform for advanced materials informatics. By
linking image-based phase identification with
mechanical property prediction, it establishes
a feedback loop between microstructure and
performance. This dual-system approach enables
hierarchical material design—from morphology
to property—and supports next-generation alloy
development under thermal constraints. It also
holds potential for integration with digital twins
and finite element simulations in manufacturing
environments.

J Nanostruct 16(1): 11-26, Winter 2026
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CONCLUSION

This data-driven study examines the structural
and mechanical behaviour of nanostructured
metal alloys for high-temperature applications. The
research creates a robust framework for intelligent
alloy characterisation by integrating deep learning
for microstructural image classification (Part A)
with regression models for tempering hardness
prediction (Part B). Al-driven technologies may
automate and optimise metallurgical processes,
as shown by the improved performance of
MobileNetV2 in identifying important features
and the excellent accuracy of ensemble regression
models (R? = 0.974). Computer vision and machine
learning work together to improve predictive
accuracy and eliminate trial-and-error procedures,
making materials design smarter, faster, and
more dependable. The study suggests expanding
the dataset with other alloys and processing
conditions to improve model resilience. Future
attempts should use explainable Al to promote
model transparency and industrial confidence.
Additional material qualities like creep and fatigue
resistance expand application potential. Using
the framework in real-time industrial contexts
like quality control and predictive maintenance
and linking it with digital twin and Industry 4.0
technologies will expedite advanced materials
engineering innovation and acceptance.
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