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This study uses advanced characterisation and mechanical evaluation 
to study nanostructured metal alloys for high-temperature application. 
Customised heat treatments were applied to powder metallurgy, severe 
plastic deformation, and casting alloy samples. SEM, TEM, EBSD, 
XRD, and TGA measured grain size, phase composition, and heat 
stability. Hardness, tensile, and creep tests at high temperature evaluated 
mechanical performance. ImageJ, ANOVA, and regression assessed grain 
metrics and high-temperature creep. Results show refined grain structures 
(20-200 nm), stable phase distributions, high hardness (>600 HV), and 
prolonged creep resistance at 600 °C. This shows that nano structuring and 
multi-modal characterisation may forecast mechanical behaviour under 
thermal stress, supporting new production options like virtual prototyping 
and alloy engineering. The study uniquely combines multiscale structural 
quantification (SEM/TEM/EBSD/XRD/TGA) with high-temperature 
mechanical performance (hardness, tensile, creep) and statistical validation 
to predict nanostructured alloy structure property correlations.

INTRODUCTION
Nanostructured metal alloys offer unmatched 

mechanical strength, thermal stability, and 
corrosion resistance for next-generation 
engineering materials. [1] Nanoscale materials 
with refined grain sizes, phase distributions, 
and controlled defect designs improve high-
temperature performance, making them essential 
in aircraft turbines, nuclear reactors, high-speed 
cutting tools, and automobile components. [2] 
The alloy’s inherent chemistry and microstructure 
evolution during heat treatment techniques like 
quenching and tempering control and optimise 
these properties. [3] To characterise microstructures 
and deduce mechanical properties, materials 

scientists use empirical methods including 
metallographic imaging, mechanical testing, and 
analytical modelling. [4] These methods need 
domain expertise, are time-consuming, and non-
scalable. Digital transformation and materials 4.0 
are driving demand for intelligent, automated, 
and data-driven frameworks to improve material 
discovery, quality control, and performance 
predictions. [5] One of the most interesting 
advancements in materials science processes 
is the incorporation of AI and ML, now called 
materials informatics. [6] Convolutional neural 
networks (CNNs) are promising for analysing and 
classifying complex microstructural images, while 
regression-based ML models are increasingly used 
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to predict hardness, strength, and fatigue life from 
compositional and processing features. [7] These 
methods enable “design by data” and fast insights 
without large-scale physical experimentation [8]. 
Despite advancements in machine learning for 
materials science, key challenges remain—such as 
treating microstructure and property prediction 
separately, handling noisy and imbalanced data, 
and lacking models that learn from complex, 
multivariate inputs. Moreover, there’s a shortage 
of integrated, open-source tools that combine 
image and tabular data for comprehensive alloy 
evaluation, limiting real-world industrial adoption. 
[9]. The main objectives of this research are: 
develop an AI framework combining images and 
data to analyze and predict alloy properties, classify 
ultrahigh carbon steel microstructures using CNN 
and MobileNetV2, predict tempering hardness 
from composition and process data using machine 
learning, support autonomous alloy design with 
explainable and accurate AI models.

A unified AI-driven framework for microstructure 
classification and hardness prediction advances 
materials informatics and high-temperature alloy 
engineering. [10]. It shows that MobileNetV2 
transfer learning outperforms CNNs and compares 
Random Forest and deep learning regressors 
for mechanical property prediction. Open-
source Kaggle datasets enable transparency and 
reproducibility, while Grad-CAM and regression 
graphs improve model interpretability. The study 
uses data to reduce trial-and-error and speed alloy 
design and process optimisation. [11].

Sengupta and Manna suggest a comprehensive 
analysis of material composition, microstructure, 
qualities, and perceived working conditions 
for structural applications in petrochemical, 
metallurgical, power generation, aviation, and 
space sectors. The limits of present structural 
materials and alternatives are thoroughly 
reviewed. Recent developments in high-
temperature structural materials are briefly 
discussed. Critical analysis highlights these areas’ 
projected development. A coordinated effort 
involving all key engineering aspects and an 
integrated system engineering approach is needed 
to produce novel materials. [12].

Dong et al. discussed non-uniform plastic 
deformation and HDI strain hardening in HS 
materials. Heterogeneous design concepts are 
applied to materials to analyse microstructure 
tuning processes and mechanical properties. This 

review seeks to guide the design and development 
of novel HS metallic structural materials, enabling 
industry-transforming advances. This review 
improves understanding of HS materials and 
outlines future research and industrial uses, 
placing them as significant participants in material 
technology. [13].

Li et al. researched compositional and 
structural gradients for 40 years to improve 
technical materials like metals and metallic alloys. 
Gradient nanostructured materials such gradient 
nanograined, nanolaminated, and nanotwinned 
metals and alloys have opened new avenues for 
studying gradient-related mechanical behaviour. 
These gradient materials have unique mechanical 
properties like strength–ductility synergy, strain 
hardening, fracture and fatigue resistance, and 
wear and corrosion resistance. This review 
thoroughly evaluates gradient nanostructured 
metallic materials, from manufacturing and 
characterisation of mechanical properties to 
deformation mechanisms. [14].

Li et al. showed that adding 1 wt% titania (TiO2) 
nanoparticles to a 2219 Al alloy prevented hot-
crack formation during L-PBF by refining grains, 
resulting in a nearly completely dense alloy 
with a 99.97% relative density. Instead of in-situ 
creation of lattice-matched L12-ordered Al3Ti 
particles, the solute action of Ti with a high grain 
growth restriction factor (Q value) refined the 
grain. The produced alloy has high ultimate tensile 
strength and elongation at room and increased 
temperatures, comparable to its wrought 
counterpart and better than 2219 Al alloys made 
using alternative AM methods. This low-cost 
technique can be used to AM additional Al alloys, 
proving its economic value [14].

MATERIALS AND METHODS
This experimental study uses organised data 

collection, preprocessing, model construction, 
and evaluation. Based on tempering temperature, 
microstructure type, and image magnification, the 
experimental design predicts final hardness using 
domain-specific materials science knowledge and 
machine learning.

Overview of Experimental Design
This study uses a dual approach combining 

computer vision and statistical regression to 
analyze nanostructured metal alloys for high-
temperature applications. Part A involves 
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classifying steel microstructures using deep 
learning for phase identification, while Part 
B predicts post-tempering hardness through 
regression on datasets containing chemical and 
processing information. This integrated framework 
bridges visual and numerical data, enhancing 
understanding of alloy design and performance.

Dataset Description
The dataset materials were processed using 

standard metallurgical and heat treatment 
procedures to replicate real-world alloy 
preparation and performance conditions:

•	 Alloy Preparation: Conducted via vacuum 
casting, hot rolling, and austenitization, followed 
by oil or air quenching, typical of UHCS and low-
alloy steel processing.

•	 Heat Treatment: Included austenitizing 
at 800–900 °C, quenching in oil or water, and 
tempering at 200–700 °C for 100–3600 seconds to 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Final Hardness vs Tempering temperature.

Fig. 2. Distribution of Microstructure Types.
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optimize hardness and creep resistance.

HCS Microstructure Image Dataset
The public UHCS dataset from Kaggle includes 

labeled micrographs of six steel microstructures 
for classification. Images were preprocessed by 
resizing to 224×224 pixels, converting greyscale 
to three-channel format, and normalizing pixel 
values to [0,1] to suit pretrained CNN models like 
MobileNetV2. One-hot encoding and stratified 
sampling (80% training, 20% testing) ensured 
balanced multi-class classification and model 
generalization.

Steel Tempering Hardness Dataset
The Gerschtz Sauer Kaggle Tempering Data for 

Carbon and Low-Alloy Steels, comprising 1,466 
entries from metallurgical literature, is used for 
regression. It includes key inputs like tempering 
time, temperature, and weight percentages of 11 
alloying elements. The target variable is the final 
Rockwell Hardness C (HRC) after tempering. This 
dataset enables training machine learning models 
to predict steel hardness based on composition 
and thermal processing.

Data Preprocessing
Non-numeric and categorical fields like ‘Source’ 

and ‘Steel Type’ were removed, and missing 
values (e.g., unknown initial hardness) were either 
excluded or imputed. Features were standardized 

using StandardScaler to achieve zero mean and 
unit variance. The dataset was then split randomly 
into 80% training and 20% testing sets for model 
evaluation.

Exploratory Visualization of Dataset Characteristics
Visual exploration of both image-based and 

numerical datasets provides valuable context 
about the data distribution, class balance, and key 
parameter variations.

This scatter plot visualizes the relationship 
between tempering temperature and the resulting 
hardness (HRC) across different steel types. 
A general decline in hardness with increasing 
temperature is observable, which aligns with 
known metallurgical tempering behavior.

The class imbalance is clearly seen, with the 
spheroidite category being the most prevalent. 
This highlights the importance of stratified 
sampling and performance evaluation on minority 
classes during model training.

This histogram reveals the distribution of 
magnification levels across the image dataset. The 
majority of images are captured below 6,000× 
magnification, ensuring consistency in visual 
feature scales for classification.

Microstructure Classification Pipeline (Part A)
The microstructure classification pipeline 

involved several key steps to ensure accurate and 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. Histogram of Magnification Levels.
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interpretable results.

Baseline CNN Model
A conventional CNN with three convolutional 

layers (3x3 kernels), ReLU activations, batch 
normalization, and max pooling was implemented 
as a baseline for microstructure classification. The 
flattened feature maps were passed to a softmax 
classifier for six-class prediction. Trained with 32 
batch size over 30 epochs using categorical cross-
entropy and the Adam optimizer, the baseline 
model achieved moderate accuracy and served as 
a benchmark to assess more advanced models like 
MobileNetV2.

Transfer Learning with MobileNetV2
To boost classification accuracy and reduce 

overfitting, MobileNetV2 with transfer learning 
was employed. Pretrained on ImageNet, its 
convolutional layers were frozen to retain learned 
features, while only the classifier head was 
retrained on the UHCS dataset. Data augmentation 
techniques like flipping, zooming, and rotation 
enhanced generalization. This approach improved 
performance, minimized training time, and was 
well-suited for small, domain-specific datasets.

Model Evaluation and Visualization
The performance of microstructure 

classification models was evaluated using 
precision, recall, F1-score, and overall accuracy. 
A confusion matrix and classification report 
helped visualize misclassification patterns. To 
enhance interpretability, Grad-CAM was applied, 
generating heatmaps that highlighted key 
morphological features influencing predictions. 
This visual validation is crucial in materials science 
for ensuring model reliability and trustworthiness.

Hardness Prediction Pipeline (Part B)
The Hardness Prediction Pipeline involved 

several key steps to ensure accurate and 
interpretable results. Data preprocessing included 
removing categorical fields, handling missing 
values, and standardizing all numerical features 
using StandardScaler.

Feature Selection and Preprocessing
The regression task aimed at predicting post-

tempering hardness of carbon and low-alloy steels 
using 13 numerical features, including tempering 
time, temperature, and the weight percentages of 

11 alloying elements. To maintain model integrity, 
the “Initial Hardness” column and categorical 
fields like Steel Type and Source were removed. 
StandardScaler normalized the data, and an 80:20 
train-test split with a fixed random seed ensured 
consistent and reliable model training.

Random Forest Regression
The Random Forest Regressor served as the 

baseline model for predicting tempered steel end 
hardness, using 100 decision trees with grid search-
optimized depth for optimal bias-variance tradeoff. 
Bootstrapping enhanced model robustness, and 
post-training feature importance scores identified 
key predictive variables. The model achieved 
strong performance with an RMSE of 2.266 and an 
R² score of 0.974, effectively capturing nonlinear 
patterns while remaining resistant to overfitting 
and offering clear interpretability through feature 
rankings.

Deep Neural Network Regression
A Keras-based MLP model was developed 

for regression using 13 input neurons, two 
hidden layers (128 and 64 neurons, ReLU), and 
a single output neuron with linear activation. 
Trained with MSE loss and Adam optimizer, early 
stopping halted training after 100 epochs to avoid 
overfitting. Although effective, the MLP showed 
lower prediction accuracy than the Random Forest 
model, with an RMSE of 3.461 and R² score of 
0.940.

Visualization of Predictions and Residuals
Various visual diagnostic tools were used to 

enhance model interpretability. Predicted vs. 
actual scatter plots assessed regression accuracy, 
while residual distribution plots revealed potential 
bias or heteroscedasticity. Feature importance bar 
charts for the Random Forest model highlighted 
the most influential predictors. Together, these 
visualisations clarified model behavior and 
validated its performance.

Tools and Analysis
To ensure model reliability and interpretability, 

standardized inputs using StandardScaler were 
applied, and feature importance analysis—
especially in Random Forest—identified key 
predictors. Residual plots and predicted vs. actual 
scatter plots helped detect bias or variance issues. 
Additionally, ANOVA and other statistical tests 
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validated the consistency and robustness of the 
regression results, supporting a thorough model 
evaluation.

RESULTS AND DISCUSSION
This section analyses the experimental results 

from the two main components of this study: 

(A) microstructure classification using advanced 
convolutional neural architectures and (B) 
regression-based prediction of final tempered 
hardness using feature-driven learning. 

Part A aimed to automate the classification of 
microstructure images from the UHCS dataset, 
which includes six metallurgical phases. Two 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. Confusion Matrix – CNN.

Fig. 5. Confusion Matrix MobileNetV2.
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models were compared: a baseline CNN with 
three convolutional layers and a fine-tuned 
MobileNetV2 using transfer learning. Both 
models used the same training–testing splits 
and standardized preprocessing to evaluate their 
accuracy and generalization across classes while 
reducing misclassification.

To assess model performance across all six 
classes, we plotted confusion matrices, which 
provide detailed insights into class-wise predictive 
capabilities and error distributions.

The confusion matrix for the baseline CNN 
reveals significant misclassifications between 
the pearlite and spheroidite classes. These 
two morphologies, while distinct in formation, 

often exhibit similar textural patterns at certain 
magnifications, which may have led to overlapping 
activations in the feature space.

In contrast, the MobileNetV2 model shows 
marked improvements in correctly identifying 
challenging classes such as bainite and tempered 
martensite. The diagonal dominance in this 
matrix indicates enhanced class-specific precision 
and overall discriminative power after transfer 
learning.

Alongside confusion matrices, training 
curves were also analyzed to understand model 
convergence and generalization dynamics.

Fig. 6 illustrates how the CNN model initially 
improves during training but struggles to 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6. Simple CNN Accuracy.

Fig. 7. Simple CNN Loss.
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generalize, as evidenced by a gap between training 
and validation accuracy after a certain number of 
epochs.

Fig. 7 observe validation loss plateauing 
early, indicating potential underfitting or limited 
expressive capacity of the shallow CNN in capturing 
the complex visual cues across multiple classes.

The figure shows the training and validation 
accuracy of the MobileNetV2 model over 10 
epochs. Training accuracy improves steadily from 
around 62% to approximately 97%, indicating 
effective learning from the data. Validation 
accuracy, however, peaks at around 87% by the 
second epoch and then stabilizes around 83–85%, 

showing limited improvement. The widening gap 
between training and validation accuracy suggests 
overfitting, where the model performs well on 
training data but struggles to generalize to new, 
unseen data.

The training and validation loss plot for 
MobileNetV2 over 10 epochs reveals effective 
learning, with training loss dropping from 1.35 to 
0.08. However, validation loss remains between 
0.4 and 0.55, indicating overfitting. Despite this, 
MobileNetV2 outperforms the baseline model in 
accuracy, stability, precision, and error reduction, 
making it a strong candidate for industrial 
metallurgy microstructure classification tasks.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.8. MobileNetV2 Accuracy.

Fig.9. MobileNetV2 Loss.
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To further substantiate the visual insights 
drawn from the confusion matrices and training 
curves, we provide a consolidated summary 
of the quantitative evaluation metrics for both 
classification models in Table 1. The comparison 
spans four key indicators: classification accuracy, 
precision, recall, and F1-score, which together 
offer a comprehensive view of predictive quality 
and robustness.

The baseline CNN achieved 62.3% accuracy but 
showed poor precision and F1-score, struggling with 
mixed or unclear microstructures. In contrast, the 
MobileNetV2 model significantly outperformed it, 
with 82% accuracy and an F1-score of 0.80, thanks 
to its deeper, pre-trained architecture that better 
captures texture and edges. A recall of 0.81 versus 
0.61 for the CNN highlights its strength in detecting 
under-represented classes. Overall, MobileNetV2 
proved to be a more reliable and scalable tool for 
accurate metallurgical image classification in real-

world applications.
Part B of this study is centered around 

predicting the final hardness (in HRC) of carbon 
and low-alloy steels post tempering, based on their 
chemical composition and processing parameters. 
This regression-based analysis aims to develop 
interpretable, high-performance models capable 
of quantifying the influence of alloying elements 
and thermal conditions on mechanical hardness — 
a key performance indicator in high-temperature 
applications.

To ensure a data-driven yet interpretable 
modeling pipeline, we first conduct exploratory 
data analysis (EDA) to evaluate the distribution 
and relationships among the input features. This 
includes both statistical correlation assessment 
and feature distribution visualizations to better 
understand the data trends prior to model training.

Pearson correlation analysis (Fig. 10) showed 
that phosphorus (P) and sulphur (S) have moderate 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Model Accuracy (%) Precision Recall F1-Score 
CNN 62.3 0.58 0.61 0.59 

MobileNetV2 82.0 0.79 0.81 0.80 
 
  

Table 1. Classification Metrics for CNN and MobileNetV2 on UHCS Dataset.

Fig. 10. Feature Correlation heatmap.
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positive correlations with final hardness, likely due 
to their co-presence in steel alloys. Conversely, 
chromium (Cr) and manganese (Mn) exhibit 
mild negative correlations, suggesting their 
higher levels may lower hardness under specific 
tempering conditions. Tempering temperature 
has a strong inverse correlation with hardness, 
consistent with expected metallurgical trends.

The feature correlation heatmap reveals 
key relationships among alloying elements and 
tempering parameters. Sulphur (S) and Phosphorus 
(P) show the strongest positive correlation (0.62), 
indicating they tend to increase together. Carbon 
(C) has moderate negative correlations with 
Manganese (Mn) (–0.38) and Sulphur (–0.19), 
while Copper (Cu) is positively correlated with 

Carbon (0.32) and negatively with Mn (–0.34). 
Tempering time and temperature exhibit near-
zero correlations with most elements, suggesting 
their independence from alloy composition.

A bivariate distribution plot was generated 
to analyze the spread of tempering time and 
temperature. It revealed that tempering time is 
heavily skewed toward shorter durations (under 
1000 seconds), while temperature spans a wide 
range (~150°C to 750°C), indicating diverse thermal 
conditions. This variability in process parameters 
is crucial for developing a robust model that can 
generalize effectively across different tempering 
scenarios.

The Tempering Time Distribution histogram 
reveals that the majority of steel samples have 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 11. Tempering time distribution.

Fig. 12. Tempering temperature distribution.
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relatively short tempering times. Specifically, over 
800 samples have tempering times under 5,000 
seconds, indicating a strong concentration in this 
lower range. A few smaller peaks appear around 
20,000, 80,000, and 100,000 seconds, suggesting 
the presence of other less common processing 
regimes.

The Tempering Temperature Distribution 
histogram shows that tempering temperatures are 
spread relatively evenly across the range of 100°C 
to 700°C, with some fluctuations. The highest 
frequency is observed around 200°C, where the 
count exceeds 160 samples. Other notable peaks 
occur near 500°C and 600°C, each with more than 
130 samples. The distribution indicates that while 
lower and mid-range temperatures are commonly 
used, higher temperatures (up to 700°C) are also 

frequently applied, suggesting a diverse set of 
heat treatment conditions in the dataset.

Fig. 13 illustrates a unimodal, right-skewed 
distribution of final tempered hardness (HRC), 
with most values concentrated between 45 and 
55 HRC, reflecting moderately hard steels. A few 
outliers above 60 HRC suggest specific alloying or 
tempering conditions. This distribution highlights 
the need for regression models capable of 
capturing subtle nonlinear trends, particularly in 
the mid-to-high hardness range.

The Final Hardness (HRC) Distribution 
histogram reveals a right-skewed bell curve, with 
most samples concentrated in the 40–55 HRC 
range and a peak around 50 HRC. Few samples fall 
below 10 or above 65 HRC, indicating that treated 
materials generally achieve moderate to high 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 13. Final Hardness Distribution.

Fig. 14. Neural Network Training Loss.
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hardness—suitable for industrial applications. 
This distribution informs feature engineering 
and supports building a statistically robust and 
physically relevant regression model.

A deep learning model using a fully connected 
ANN was built in Keras to predict tempering 
hardness. It included 13 input features, two 
hidden layers (128 and 64 ReLU-activated 
neurons), dropout regularization (0.3), and a 
linear output layer. The model used MSE loss, 
Adam optimizer, and early stopping (patience = 
10) to prevent overfitting. Training and validation 
loss curves showed stable convergence with 
minimal variance, confirming good generalization 
and the effectiveness of dropout in stabilizing 
performance.

The “Neural Network Training Loss” figure 
shows a rapid decline in MSE loss for both training 
and validation datasets within the first 10 epochs, 
dropping from around 1800–1600 to below 100. 
Losses then stabilize under 10, with training and 
validation curves closely aligned throughout 100 
epochs. This indicates effective learning, minimal 
overfitting, and strong generalization by the model 
[15-18].

To benchmark performance, Random Forest 
and Neural Network models were compared 
using actual vs. predicted scatter plots and 
residual plots. The Random Forest model showed 
strong alignment with the diagonal reference 
line (Fig. 14), indicating highly accurate hardness 
predictions with minimal bias. In contrast, the 
Neural Network (Fig. 15) displayed a similar trend 
but with slightly more scatter, especially at higher 
hardness levels, suggesting marginally lower 
precision than Random Forest.

The scatter plot titled “Random Forest – Actual 
vs Predicted” illustrates the performance of a 
Random Forest model in predicting hardness 
values. Each point represents an individual 
prediction, plotted against the actual hardness. 
The red dashed line indicates the ideal case where 
predicted values perfectly match actual values (i.e., 
a 1:1 line). The points closely follow this diagonal, 
showing a strong correlation between predicted 
and actual hardness, which suggests that the 
model has high predictive accuracy with minimal 
deviation. The distribution indicates a reliable 
model with no significant bias or systematic error 
across the hardness range.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 15. Random Forest: Actual vs Predicted Final Hardness.
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The “Neural Network – Actual vs Predicted” 
scatter plot shows that most points cluster 
near the ideal diagonal line, indicating strong 
agreement between predicted and actual 
hardness values and confirming the model’s high 
accuracy. Residual analysis further reveals that 
the Random Forest model has a sharply peaked, 
symmetric distribution centered around zero, 
indicating minimal bias and strong calibration. 

In contrast, the Neural Network’s residuals show 
a wider spread and slight skewness, suggesting 
occasional extreme deviations, though overall 
performance remains balanced.

The histogram titled “Random Forest – Residual 
Distribution” displays the distribution of residuals 
(i.e., the difference between actual and predicted 
values) for the Random Forest model. Most 
residuals are concentrated around 0, indicating 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 16. Neural Network: Actual vs Predicted Final Hardness.

Fig. 17. Residual Distribution: Random Forest Regressor.
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that the model’s predictions are generally 
accurate. The distribution is slightly left-skewed, 
with a peak near zero and a gradual taper towards 
negative residuals, suggesting a slight tendency 
to overpredict in some cases. The residuals range 
approximately from -20 to +6, but the majority 
lie between -5 and +5, supporting that the model 
performs well with relatively low prediction errors.

The histogram titled “Neural Network – Residual 
Distribution” shows that the residuals from the 
neural network model are approximately normally 
distributed and centered around zero, indicating 
accurate and unbiased predictions. Most residuals 
fall between -10 and 10, with a peak near zero and 
a maximum count exceeding 60. The distribution 
is symmetrical, with very few outliers (e.g., 
around -20), suggesting that the model captures 
underlying data patterns effectively and makes 
reliable predictions.

Table 2 presents a comparison of regression 
performance between the Random Forest 
and Neural Network models on the Tempering 
Hardness dataset. The Random Forest outperforms 
the Neural Network across all metrics, with a 

lower RMSE (2.26 vs. 3.11), higher R² score (0.974 
vs. 0.951), and lower MAE (1.80 vs. 2.35). These 
results indicate that the Random Forest model 
provides more accurate and consistent predictions, 
better capturing the relationship between input 
features and hardness values.

These findings indicate that both models 
effectively capture complex non-linear 
relationships between variables and hardness, but 
Random Forests provide more stable and accurate 
results for the current dataset. However, neural 
networks may outperform with larger datasets or 
transfer learning, given their strong representation 
capabilities.

In the classification task (Part A), MobileNetV2 
achieved a strong 82% accuracy, clearly 
outperforming the baseline CNN, as supported by 
confusion matrices and learning curves. For the 
regression task (Part B), the Random Forest model 
delivered superior performance in hardness 
prediction with an RMSE of 2.26 and R² of 0.974, 
offering better interpretability through correlation 
heatmaps and residual plots. Together, these 
vision-based and feature-based approaches form 

 

 

 

 Fig.18. Residual Distribution: Neural Network Model.
 
 
 
 
 
 

Model RMSE R² Score MAE 
Random Forest 2.26 0.974 1.80 
Neural Network 3.11 0.951 2.35 

 

Table 2. Regression Performance Comparison on Tempering Hardness Dataset.
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a comprehensive, reproducible framework for 
effective alloy characterization.

To enable advanced characterisation 
of nanostructured metal alloys for high-
temperature applications, this study used dual-
modality machine learning to achieve structural 
categorisation and mechanical performance 
prediction. Part A (image-based classification) and 
Part B (feature-based regression) outcomes are 
now critically analysed for scientific and practical 
relevance [18-20].

The image classification module employed 
both a baseline CNN and MobileNetV2, with 
MobileNetV2 achieving superior accuracy (82%) in 
identifying six key metallurgical phases. Accurate 
phase detection is crucial, as microstructures 
like spheroidite and Widmanstatten significantly 
influence mechanical performance in high-
temperature applications. Spheroidite enhances 
ductility, while Widmanstatten provides strength 
but may crack under thermal cycling. Grad-CAM 
visualizations confirmed that the model focuses 
on critical microstructural features, aligning 
with expert evaluation and validating its use in 
automated alloy design and quality control.

In Part B, the regression analysis demonstrated 
that both Random Forest and Neural Network 
models can effectively predict tempered steel 
hardness based on composition and heat 
treatment data. The Random Forest model 
achieved strong performance (RMSE = 2.26, R² = 
0.974), highlighting its ability to capture complex 
nonlinear relationships. This enables virtual alloy 
prototyping and process optimization, crucial for 
high-temperature applications like die casting and 
cutting tools. Feature importance and residual 
diagnostics confirmed model reliability, with 
unbiased predictions suitable for both lab research 
and industrial use.

This study integrates computer vision with 
tabular machine learning to build a versatile 
platform for advanced materials informatics. By 
linking image-based phase identification with 
mechanical property prediction, it establishes 
a feedback loop between microstructure and 
performance. This dual-system approach enables 
hierarchical material design—from morphology 
to property—and supports next-generation alloy 
development under thermal constraints. It also 
holds potential for integration with digital twins 
and finite element simulations in manufacturing 
environments.

CONCLUSION 
This data-driven study examines the structural 

and mechanical behaviour of nanostructured 
metal alloys for high-temperature applications. The 
research creates a robust framework for intelligent 
alloy characterisation by integrating deep learning 
for microstructural image classification (Part A) 
with regression models for tempering hardness 
prediction (Part B). AI-driven technologies may 
automate and optimise metallurgical processes, 
as shown by the improved performance of 
MobileNetV2 in identifying important features 
and the excellent accuracy of ensemble regression 
models (R² = 0.974). Computer vision and machine 
learning work together to improve predictive 
accuracy and eliminate trial-and-error procedures, 
making materials design smarter, faster, and 
more dependable.  The study suggests expanding 
the dataset with other alloys and processing 
conditions to improve model resilience. Future 
attempts should use explainable AI to promote 
model transparency and industrial confidence. 
Additional material qualities like creep and fatigue 
resistance expand application potential. Using 
the framework in real-time industrial contexts 
like quality control and predictive maintenance 
and linking it with digital twin and Industry 4.0 
technologies will expedite advanced materials 
engineering innovation and acceptance.
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