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In this research, a series of 2,3-disubstituted quinazoline-4(3H)-
one derivatives has been synthesized in high selectivity by one-pot 
multicomponent reaction through the reflux method. The performance 
of various techniques was studied comparatively on the attributes of the 
product and catalyst by applying different characterized tests. The copper 
oxide/graphene oxide composites (CuO/GO nanocomposite) were well 
prepared using a co-precipitation method and characterized to confirm 
their structure and composition. According to the obtained data, the 
reflux method provides a mild process, and as a result, time and energy 
are saved. The reaction was efficiently promoted by 20 mg of CuO/GO 
composite as a robust and heterogeneous nano-sized catalyst. As expected, 
the proposed heterogeneous nano-sized catalyst that was designed and 
prepared, performed well in promoting the studied products (up to 93%). 
High to excellent yield, saving energy and time, chemical/thermal stability, 
eco-friendliness, and reusability of nanocatalyst (5 runs) are several of the 
outstanding advantages of this research. 

INTRODUCTION
Graphene Oxide (GO) has been substantially 

applied in energy storage [1], adsorption [2], 
catalyst [3], photocatalyst [4], and solar cells 
[5]. GO is easily soluble in water owing to many 
hydroxyl groups and hydrophilic reactive oxygen 
groups on its surface. The presence of –OH 
and reactive O on the GO or rGO offers various 
avenues, for instance, great solubility, and the 
formation of a complex with metal ions: aluminum 
oxide, iron oxide, and copper oxide [6]. Recently, 
the rGO surface has been modified with a range of 
metals oxide, metals, semiconducting materials, 
and various nanostructures that include Fe3O4 

[7], TiO2 [8], Au [9], Pd [10], and many more. This 
novel hybrid remarkably improves the ability of 
these structures to perform special tasks in several 
applications. These hybrid nanostructures often 
demonstrate improved properties and enhanced 
functionalities, due to synergic effects between 
nanoparticles and rGo nanosheets. 

The preparation and application of morphology 
and size-controlled Cu-based nanostructures have 
always received great attention in materials science 
and chemistry fields [11]. Especially, Cu-based 
nanostructures offer distinguished advantages, 
for instance, facile synthesis, inexpensive cost, 
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and high stability which makes them a great 
candidate for practical applications [12-13]. 
Although remarkable progress was achieved in 
the development of CuO/rGO nanostructures, 
their application in organic reactions as a 
heterogeneous catalyst needs more exploration 
[14-17]. Therefore, CuO nanostructures with well-
defined shapes on rGO nanosheets are required 
to study its catalytic performance and establish 
highly efficient heterogeneous catalytic systems in 
organic synthesis.  

Quinazolines scaffolds are found in numerous 
alkaloids [18-19]. In medicinal chemistry and 
organic products preparation, substituted 
quinazoline scaffolds play chief roles owing to 
their biological and pharmacological effects (e.g. 
anti-bacterial [20], anti-fungal [21], anticonvulsant 
[22], anti-hypertensive [23], and anti-cancer [24]). 
The preparation of substituted quinazolinones 
scaffolds is hitherto implemented in the presence 
of diverse catalysts, for instance, p-toluenesulfonic 
acid [25], silica sulfuric acid [26], Fe3O4 
nanoparticles [27], and Gallium (III) triflate [28].

This paper aims to design and prepare CuO/rGO 
composite as a robust and reusable nanocatalyst 
reported for fabricating the 2,3-disubstituted 
quinazoline-4(3H)-one derivative. A co-
precipitation method was used to fabricate the 
CuO/rGO composite. The experimental data have 
revealed that the designed nano-sized catalyst has 

a higher catalytic performance than the reported 
catalyst. In the following, 2,3-disubstituted 
quinazoline-4(3H)-one derivative was prepared by 
a three-component reaction of isotonic anhydride, 
various aryl aldehyde, and amine components 
using CuO/rGO composite.

MATERIALS AND METHODS
Synthesis route of GO

GO sheets were prepared via the oxidation 
of natural powders (Hummers’ procedure) [29]. 
In an ice bath (0 °C), graphite powder (3 g) and 
potassium permanganate (18 g) were mixed and 
slowly added to the mixture of H3PO4:H2SO4 (1:9 
ratio), exactly 40 and 360 mL, respectively. After 
that, the mixture was kept at 50 °C and stirred for 
12 h. Next, the resultant solution was first cooled 
to room temperature and then, H2O2 (3 mL, 30%) 
was added to the ice bath. The resulting mixture 
was filtered. The obtained solid was washed with 
distilled water, diluted hydrochloric acid, and 
ethanol. Finally, the obtained solid was dried in a 
vacuum oven (30 °C). 

Synthesis route of nano-sized CuO/rGO composites
The nano-sized CuO/rGO composite was 

synthesized through a co-precipitation procedure 
in an alkaline medium [30]. Added rGO powder 
(0.2 g) to DI water (100 mL) and the mixture was 
sonicated at 40 °C for 60 min. The nitrate salts of 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. XRD patterns of pure rGO nanosheets (purple) and CuO/
rGO nanocomposites (blue).
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the copper (II) (1.5 g) and nickel (II) (1.5 g) were added 
to the above-dispersed solution, respectively. 
The resulting mixture was stirred for 2 h at room 
temperature. For pH 10-11, ammonia solution 
(0.5 M) was droply added and then, stirred for 2 
h at room temperature again. The solid product 
was washed with DI water, dried, and calcined at 
400 °C for 2 h, yielding the nano-sized CuO/rGO 
composite.   

Typical method for the synthesis of quinazolinone 
derivatives 

Typically, the isatoic anhydride (1 mmol), various 
aryl aldehyde (1 mmol), amine components 
(aryl amines, aliphatic amines, and ammonium 
acetate), CuO/rGO (0.25 g, catalyst), and ethanol 
as green solvent (7 mL), were mixed at reflux 
conditions for an appropriate duration of time. 
Thin layer chromatography (TLC) technique was 
used to investigate the completion of the reaction. 
The desired compounds were characterized by 
melting point, FT-IR, 1H & 13C NMR, and CNHS. 

RESULTS AND DISCUSSION
Characterization of CuO/rGO nanocomposites 

The XRD patterns of pure rGO nanosheets 
and CuO/rGO nanocomposites are shown in Fig. 
1. Based on Fig. 1a, a district diffraction peak at 
2 theta: 11.75° is related to rGO nanosheets 
[31]. The CuO/rGO nanocomposites show typical 

diffraction peaks at 2 theta: 32.7, 3.8, 38.5, 49.1, 
53.6, 58.2, 61.5, 65.9, 66.6, 68.2, 72.4, and 75.6 
degrees (JCPDS Card No. 80-1916) (Fig. 1b) [32]. 
These peaks confirmed the presence of the CuO 
nanostructures. Also, Miller’s index (001) was 
seen in the final XRD pattern. 

The investigation of functional groups of pure 
rGO was done by FT-IR analysis. The FT-IR spectrum 
of rGO is shown in Fig. 2a. The absorption band 
at 3450 cm-1 and also a weak peak at 1620 cm-1 
come from the -OH stretching and bending peaks, 
respectively. Absorption peaks at 1170, 1575, 
1691, and 2923 cm-1 were related to C-O, C=C 
aromatic, C=O, and C-Hsp2 groups, respectively (Fig. 
2a) [33]. From the final spectrum, the new band 
at 537 cm-1 is related to the Cu-O band. According 
to this, the CuO/rGO nanocomposite was formed 
(Fig. 2b).

The composition was tested by EDX analysis. 
The elemental test results of the CuO and CuO/
rGO nanocomposite are tabulated in Fig. 3. As 
seen, the chemical composition of the pure CuO 
and CuO/rGO nanocomposite contain C, Cu, and O 
elements without any purities.

 The surface morphology of pure CuO and CuO/
rGO nanocomposite was studied via the FE-SEM 
technique. The FE-SEM results are shown in Fig. 
4. The morphology of pure CuO nanoparticles 
formed a spherical structure (Fig. 4a). From Fig. 
4b, the surface of CuO nanoparticles was fully 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. FT-IR spectrums of pure rGO nanosheets (purple) and CuO/rGO nanocomposites (blue).
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covered by rGO nanosheets.  

Catalytic performance of CuO/rGO nanocomposite 
in preparation of 2,3-disubstituted quinazoline-
4(3H)-one scaffold

The preparation of 2,3-disubstituted 
quinazoline-4(3H)-ones can be found in various 
published reports [34-37]. It is interesting to note 
that every one of these methods can prepare 
these compounds. Thus, a comprehensive 
comparative investigation was conducted to 
highlight the performance of the catalyst and 
optimization of the methodology (Table 1). The 
reported outcomes (Table 1) revealed that the as-

prepared final product in the presence of the CuO/
rGO catalyst has some advantages including the 
highest yield of synthetic product and reasonable 
reaction time in mild conditions. 

The one-pot tandem reaction: isatoic 
anhydrate (1 mmol), benzaldehyde (1 mmol), and 
diethylamine (1 mmol) was primarily chosen as a 
sample reaction to study of catalytic performance 
of the as-prepared CuO/rGO nanocomposites. The 
reaction was optimized by scrutinizing various 
conditions (solvents and catalyst dosage). The 
empirical data are summarized in Table 2. From 
empirical data, the protic solvents revealed the 
best results. The protic solvents have a greater 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. EDX analysis of pure CuO nanoparticles (a) and CuO/rGO nanocomposites (b).

Fig. 4. FE-SEM images of pure CuO nanoparticles (a) and CuO/rGO nanocomposites (b).
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ability to solve anion intermediates. The activation 
energy was therefore decreased and the 
compounds were formed with a significant yield 
in a short period [38]. Ethanol was also chosen 
as the most suitable solvent. After that, to study 
various catalysts, pure CuO, pure rGO, and CuO/
rGO composite were tested. We observed that 
convincing data were provided when the CuO/
rGO composite was present in the reaction. The 
catalyst dosage was also checked. The reaction 
yield was improved from 85% to 93% when the 
catalyst dosage was adjusted to 10, 15, and 20 mg. 
The catalyst dosage was increased (up to 25 mg), 
but the reaction yield did not change. To expand 
the scope of our protocol, different electron-

withdrawing/donating aryl aldehydes and amine 
components were employed for the preparation 
of 2,3-disubstituted quinazoline-4(3H)-ones under 
optimization conditions. The finding demonstrated 
that electron-withdrawing aryl aldehydes gave the 
obtained product excellent yields (Table 3). 

A reaction mechanism in preparation of 
2,3-disubstituted quinazoline-4(3H)-ones

An acceptable reaction mechanism is proposed 
in Scheme 1. In short, the designed nanocatalyst 
has played a vital Lewis acid role. Therefore, the 
acidic sites of CuO/rGO composite bind with 
electron pair O atom of carbonyl and π electron 
of C=N group. The primary amine attack on 

No. Catalyst (dosage) Solvent Conditions Time Yield Ref. 
1 p-Toluenesulfonic acid (0.6 mmol) Ethanol Reflux 5.5 h 70% [25] 
2 Silica sulfuric acid (0.11 g) Ethanol Reflux 3 h 90% [26] 
3 Gallium (II) triflate (1 mol%) Ethanol Reflux 40 min 91% [28] 
4 CuO/rGO nanocomposite (20 mg) Ethanol Reflux 35 min 93% This job 

 
  

 
 
 
 
 
 
 
 
 
 

No. Solvents Catalyst dosage Conditions Time (min) Yield (%)b 
1 Dichloromethane 20 mg Reflux 65 < 13 
2 Acetonitrile 20 mg Reflux 40 54 
3 Water 20 mg Reflux 52 68 
4 Ethanol Nano-CuO 15 mg Reflux 40 70 
5 Ethanol Nano-rGO 28 mg Reflux 50 61 
6 Ethanol 10 mg Reflux 50 85 
7 Ethanol 15 mg Reflux 45 90 

11 Ethanol 20 mg Reflux 35 93 
12 Ethanol 25 mg Reflux 35 93 

a Reaction conditions: Isatoic anhydrate (1 mmol), benzaldehyde (1 mmol), and diethylamine (1 mmol) in the presence of CuO/rGO composites as 
a catalyst. 
b Isolated yield 
  
 
 
 
 

No. amine R’ Time (min) Yield (%) m.p. (˚C) 
Observed 

m.p. (˚C) 
Reported TOF Ref. 

1 NH3 H 35  90 234-235 234-235 1.54 [32] 
3 EtNH2 4-NO2 35 93 191-192 190-192 2.05 [33] 
3 EtNH2 4-OMe 43 89 125-127 125-128 1.94 [33] 
4 EtNH2 4-Cl 35 92 111-112 108-112 1.97 [33] 
5 EtNH2 4-Br 38 92 109-110 110-112 2.28 [34] 
6 EtNH2 4-CN 37 90 192-193 190-192 1.91 [34] 
7 (p-Tolyl)ethylamine 4-Me 48 88 145-146 144-146 2.36 [34] 
8 Benzylamine H 50 89 152-153 152-153 2.17 [35] 
9 Propylamine H 35 91 124-125 -- 2.18 Our Job 

10 Butylamine H 50 88 101-103 -- 2.28 Our Job 
11 Butylamine 4-NO2 36 92 242-243 242-244 2.24 [33] 
12 Butylamine 4-Cl 39 90 204-205 203-205 2.17 [34] 

a Reaction conditions: isatoic anhydride (1 mmol), various aryl aldehyde (1 mmol), amine components (1 mmol), and ethanol (7 mL) under 
ultrasound probe-treated in the presence of nano-scale TiO2@SiO2 composite 
b Isolated Yield 
TOF: (mmol of reagent×Yiled) ÷ mmol of catalyst 
 

Table 1. Comparison of various conditions for the preparation of 3-ethyl-2-phenyl quinazoline-4(3H)-ones.

Table 2. Optimization of conditions for the fabrication of the 2,3-disubstituted quinazoline-4(3H)-ones a. 

Table 3. Fabrication of 2,3-disubstituted quinazoline-4(3H)-ones using the CuO/rGO composites under reflux conditions. a
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activated C=O (isatoic acid). Next, decarboxylation 
was observed and intermediate (I) was formed. 
An aryl aldehyde carbonyl group is the target of 
nucleophilic attack in the next step (intermediate 
II). The cyclization and intramolecular nucleophilic 
attack of intermediate (II) on imine was done to 
form the intermediate (III). In the final step of the 
mechanism, the obtained product was formed via 
oxidation.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5. Proposed reaction mechanism.

Fig. 6. Reusability of CuO/rGO composites.

Reusability of CuO/rGO Catalyst
The investigation of reusability is one of the 

critical characteristic features of catalysts. Hence, 
the model reaction was conducted again (under 
optimized conditions). After the accomplishment 
of the reaction process, the as-prepared catalyst 
was recovered. It was then washed with cold 
acetone three times (3×12 mL), dried at 40 °C 
for 5 h, and reused for further cycles with a fresh 
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surface. Findings revealed that the CuO/rGO 
heterogeneous catalyst could well be used for 
seven cycles with no dramatic loss in its efficiency 
(Fig. 5).

CONCLUSION
As a result, we have used the co-precipitation 

method as a facile strategy to design the robust 
CuO/rGO composite as a catalyst. Moreover, 
2,3-disubstituted quinazoline-4(3H)-one 
derivatives was well synthesized via reflux 
conditions. Also, high to excellent yields within 
short reaction time, reduced catalyst dosage, 
green solvent, and reusability of catalyst (5 runs) 
are other advantages of this research. For future 
studies, the prepared products have the potential 
to become an oral antibacterial drug and also, 
the role of catalyst morphology in the reaction 
process, the use of a catalyst prepared via plant 
extraction, re-checked drug design methods, and 
computational chemistry in aliphatic aldehydes 
can help improve research in this field.
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