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ABSTRACT

In this research, a series of 2,3-disubstituted quinazoline-4(3H)-
one derivatives has been synthesized in high selectivity by one-pot
multicomponent reaction through the reflux method. The performance
of various techniques was studied comparatively on the attributes of the
product and catalyst by applying different characterized tests. The copper
oxide/graphene oxide composites (CuO/GO nanocomposite) were well
prepared using a co-precipitation method and characterized to confirm
their structure and composition. According to the obtained data, the
reflux method provides a mild process, and as a result, time and energy
are saved. The reaction was efficiently promoted by 20 mg of CuO/GO
composite as a robust and heterogeneous nano-sized catalyst. As expected,
the proposed heterogeneous nano-sized catalyst that was designed and
prepared, performed well in promoting the studied products (up to 93%).
High to excellent yield, saving energy and time, chemical/thermal stability,
eco-friendliness, and reusability of nanocatalyst (5 runs) are several of the
outstanding advantages of this research.
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INTRODUCTION

Graphene Oxide (GO) has been substantially
applied in energy storage [1], adsorption [2],
catalyst [3], photocatalyst [4], and solar cells
[5]. GO is easily soluble in water owing to many
hydroxyl groups and hydrophilic reactive oxygen
groups on its surface. The presence of —-OH
and reactive O on the GO or rGO offers various
avenues, for instance, great solubility, and the
formation of a complex with metal ions: aluminum
oxide, iron oxide, and copper oxide [6]. Recently,
the rGO surface has been modified with a range of
metals oxide, metals, semiconducting materials,

and various nanostructures that include Fe O,
* Corresponding Author Email: fadaeian.mano130@gmail.com

[7], TiO, [8], Au [9], Pd [10], and many more. This
novel hybrid remarkably improves the ability of
these structures to perform special tasks in several
applications. These hybrid nanostructures often
demonstrate improved properties and enhanced
functionalities, due to synergic effects between
nanoparticles and rGo nanosheets.

The preparation and application of morphology
and size-controlled Cu-based nanostructures have
always received great attention in materials science
and chemistry fields [11]. Especially, Cu-based
nanostructures offer distinguished advantages,
for instance, facile synthesis, inexpensive cost,
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and high stability which makes them a great
candidate for practical applications [12-13].
Although remarkable progress was achieved in
the development of CuO/rGO nanostructures,
their application in organic reactions as a
heterogeneous catalyst needs more exploration
[14-17]. Therefore, CuO nanostructures with well-
defined shapes on rGO nanosheets are required
to study its catalytic performance and establish
highly efficient heterogeneous catalytic systems in
organic synthesis.

Quinazolines scaffolds are found in numerous
alkaloids [18-19]. In medicinal chemistry and
organic  products preparation, substituted
quinazoline scaffolds play chief roles owing to
their biological and pharmacological effects (e.g.
anti-bacterial [20], anti-fungal [21], anticonvulsant
[22], anti-hypertensive [23], and anti-cancer [24]).
The preparation of substituted quinazolinones
scaffolds is hitherto implemented in the presence
of diverse catalysts, for instance, p-toluenesulfonic
acid [25], silica sulfuric acid [26], Fe,O
nanoparticles [27], and Gallium (111) triflate [28].

This paper aims to design and prepare CuO/rGO
composite as a robust and reusable nanocatalyst
reported for fabricating the 2,3-disubstituted
quinazoline-4(3H)-one derivative. A co-
precipitation method was used to fabricate the
CuO/rGO composite. The experimental data have
revealed that the designed nano-sized catalyst has

4

a higher catalytic performance than the reported
catalyst. In the following, 2,3-disubstituted
quinazoline-4(3H)-one derivative was prepared by
a three-component reaction of isotonic anhydride,
various aryl aldehyde, and amine components
using CuO/rGO composite.

MATERIALS AND METHODS
Synthesis route of GO

GO sheets were prepared via the oxidation
of natural powders (Hummers’ procedure) [29].
In an ice bath (0 °C), graphite powder (3 g) and
potassium permanganate (18 g) were mixed and
slowly added to the mixture of H,PO,:H,SO, (1:9
ratio), exactly 40 and 360 mL, respectively. After
that, the mixture was kept at 50 °C and stirred for
12 h. Next, the resultant solution was first cooled
to room temperature and then, H,0, (3 mL, 30%)
was added to the ice bath. The resulting mixture
was filtered. The obtained solid was washed with
distilled water, diluted hydrochloric acid, and
ethanol. Finally, the obtained solid was dried in a
vacuum oven (30 °C).

Synthesis route of nano-sized CuO/rGO composites

The nano-sized CuO/rGO composite was
synthesized through a co-precipitation procedure
in an alkaline medium [30]. Added rGO powder
(0.2 g) to DI water (100 mL) and the mixture was
sonicated at 40 °C for 60 min. The nitrate salts of
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Fig. 1. XRD patterns of pure rGO nanosheets (purple) and CuO/

rGO nanocomposites (blue).
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the copper ™ (1.5 g) and nickel " (1.5 g) were added
to the above-dispersed solution, respectively.
The resulting mixture was stirred for 2 h at room
temperature. For pH 10-11, ammonia solution
(0.5 M) was droply added and then, stirred for 2
h at room temperature again. The solid product
was washed with DI water, dried, and calcined at
400 °C for 2 h, yielding the nano-sized CuO/rGO
composite.

Typical method for the synthesis of quinazolinone
derivatives

Typically, the isatoic anhydride (1 mmol), various
aryl aldehyde (1 mmol), amine components
(aryl amines, aliphatic amines, and ammonium
acetate), CuO/rGO (0.25 g, catalyst), and ethanol
as green solvent (7 mL), were mixed at reflux
conditions for an appropriate duration of time.
Thin layer chromatography (TLC) technique was
used to investigate the completion of the reaction.
The desired compounds were characterized by
melting point, FT-IR, *H & *C NMR, and CNHS.

RESULTS AND DISCUSSION
Characterization of CuO/rGO nanocomposites

The XRD patterns of pure rGO nanosheets
and CuO/rGO nanocomposites are shown in Fig.
1. Based on Fig. 1a, a district diffraction peak at
2 theta: 11.75° is related to rGO nanosheets
[31]. The CuO/rGO nanocomposites show typical

diffraction peaks at 2 theta: 32.7, 3.8, 38.5, 49.1,
53.6, 58.2, 61.5, 65.9, 66.6, 68.2, 72.4, and 75.6
degrees (JCPDS Card No. 80-1916) (Fig. 1b) [32].
These peaks confirmed the presence of the CuO
nanostructures. Also, Miller’s index (001) was
seen in the final XRD pattern.

The investigation of functional groups of pure
rGO was done by FT-IR analysis. The FT-IR spectrum
of rGO is shown in Fig. 2a. The absorption band
at 3450 cm™ and also a weak peak at 1620 cm™
come from the -OH stretching and bending peaks,
respectively. Absorption peaks at 1170, 1575,
1691, and 2923 cm® were related to C-O, C=C
omarir =0, and C-H_, groups, respectively (Fig.
2a) [33]. From the final spectrum, the new band
at 537 cm™ is related to the Cu-O band. According
to this, the CuO/rGO nanocomposite was formed
(Fig. 2b).

The composition was tested by EDX analysis.
The elemental test results of the CuO and CuO/
rGO nanocomposite are tabulated in Fig. 3. As
seen, the chemical composition of the pure CuO
and CuO/rGO nanocomposite contain C, Cu, and O
elements without any purities.

The surface morphology of pure CuO and CuO/
rGO nanocomposite was studied via the FE-SEM
technique. The FE-SEM results are shown in Fig.
4. The morphology of pure CuO nanoparticles
formed a spherical structure (Fig. 4a). From Fig.
4b, the surface of CuO nanoparticles was fully
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Fig. 2. FT-IR spectrums of pure rGO nanosheets (purple) and CuO/rGO nanocomposites (blue).
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covered by rGO nanosheets.

Catalytic performance of CuO/rGO nanocomposite
in preparation of 2,3-disubstituted quinazoline-
4(3H)-one scaffold

The preparation of  2,3-disubstituted
quinazoline-4(3H)-ones can be found in various
published reports [34-37]. It is interesting to note
that every one of these methods can prepare
these compounds. Thus, a comprehensive
comparative investigation was conducted to
highlight the performance of the catalyst and
optimization of the methodology (Table 1). The
reported outcomes (Table 1) revealed that the as-
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prepared final product in the presence of the CuO/
rGO catalyst has some advantages including the
highest yield of synthetic product and reasonable
reaction time in mild conditions.

The one-pot tandem reaction: isatoic
anhydrate (1 mmol), benzaldehyde (1 mmol), and
diethylamine (1 mmol) was primarily chosen as a
sample reaction to study of catalytic performance
of the as-prepared CuO/rGO nanocomposites. The
reaction was optimized by scrutinizing various
conditions (solvents and catalyst dosage). The
empirical data are summarized in Table 2. From
empirical data, the protic solvents revealed the
best results. The protic solvents have a greater
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Fig. 3. EDX analysis of pure CuO nanoparticles (a) and CuO/rGO nanocomposites (b).
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Fig. 4. FE-SEM images of pure CuO nanoparticles (a) and CuO/rGO nanocomposites (b).
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ability to solve anion intermediates. The activation
energy was therefore decreased and the
compounds were formed with a significant yield
in a short period [38]. Ethanol was also chosen
as the most suitable solvent. After that, to study
various catalysts, pure CuO, pure rGO, and CuO/
rGO composite were tested. We observed that
convincing data were provided when the CuO/
rGO composite was present in the reaction. The
catalyst dosage was also checked. The reaction
yield was improved from 85% to 93% when the
catalyst dosage was adjusted to 10, 15, and 20 mg.
The catalyst dosage was increased (up to 25 mg),
but the reaction yield did not change. To expand
the scope of our protocol, different electron-

withdrawing/donating aryl aldehydes and amine
components were employed for the preparation
of 2,3-disubstituted quinazoline-4(3H)-ones under
optimization conditions. The finding demonstrated
that electron-withdrawing aryl aldehydes gave the
obtained product excellent yields (Table 3).

A reaction mechanism in preparation of
2,3-disubstituted quinazoline-4(3H)-ones

An acceptable reaction mechanism is proposed
in Scheme 1. In short, the designed nanocatalyst
has played a vital Lewis acid role. Therefore, the
acidic sites of CuO/rGO composite bind with
electron pair O atom of carbonyl and m electron
of C=N group. The primary amine attack on

Table 1. Comparison of various conditions for the preparation of 3-ethyl-2-phenyl quinazoline-4(3H)-ones.

No. Catalyst (dosage) Solvent Conditions Time Yield Ref.
1 p-Toluenesulfonic acid (0.6 mmol) Ethanol Reflux 5.5h 70% [25]
2 Silica sulfuric acid (0.11 g) Ethanol Reflux 3h 90% [26]
3 Gallium (1) triflate (1 mol%) Ethanol Reflux 40 min 91% [28]
4 CuO/rGO nanocomposite (20 mg) Ethanol Reflux 35 min 93% This job

Table 2. Optimization of conditions for the fabrication of the 2,3-disubstituted quinazoline-4(3H)-ones®.

No. Solvents Catalyst dosage Conditions Time (min) Yield (%)°
1 Dichloromethane 20 mg Reflux 65 <13
2 Acetonitrile 20 mg Reflux 40 54
3 Water 20 mg Reflux 52 68
4 Ethanol Nano-CuO 15 mg Reflux 40 70
5 Ethanol Nano-rGO 28 mg Reflux 50 61
6 Ethanol 10 mg Reflux 50 85
7 Ethanol 15 mg Reflux 45 90
11 Ethanol 20 mg Reflux 35 93
12 Ethanol 25 mg Reflux 35 93

9Reaction conditions: Isatoic anhydrate (1 mmol), benzaldehyde (1 mmol), and diethylamine (1 mmol) in the presence of CuO/rGO composites as

a catalyst.
blsolated yield

Table 3. Fabrication of 2,3-disubstituted quinazoline-4(3H)-ones using the CuO/rGO composites under reflux conditions. @

. , . . . o m.p. (°C) m.p. (°C)

No. amine R Time (min) Yield (%) Observed Reported TOF Ref.
1 NHs H 35 90 234-235 234-235 1.54 [32]
3 EtNH: 4-NO2 35 93 191-192 190-192 2.05 [33]

3 EtNH: 4-OMe 43 89 125-127 125-128 1.94 [33]
4 EtNH: 4-Cl 35 92 111-112 108-112 1.97 [33]
5 EtNH: 4-Br 38 92 109-110 110-112 2.28 [34]
6 EtNH: 4-CN 37 90 192-193 190-192 1.91 [34]
7 (p-Tolyl)ethylamine 4-Me 48 88 145-146 144-146 2.36 [34]
8 Benzylamine H 50 89 152-153 152-153 2.17 [35]
9 Propylamine H 35 91 124-125 -- 2.18 Our Job

10 Butylamine H 50 88 101-103 -- 2.28 Our Job
11 Butylamine 4-NO2 36 92 242-243 242-244 2.24 [33]
12 Butylamine 4-Cl 39 90 204-205 203-205 2.17 [34]

9 Reaction conditions: isatoic anhydride (1 mmol), various aryl aldehyde (1 mmol), amine components (1 mmol), and ethanol (7 mL) under
ultrasound probe-treated in the presence of nano-scale TiO.@SiO, composite

blsolated Yield
TOF: (mmol of reagentxYiled) + mmol of catalyst
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activated C=0 (isatoic acid). Next, decarboxylation
was observed and intermediate (1) was formed.
An aryl aldehyde carbonyl group is the target of
nucleophilic attack in the next step (intermediate
I). The cyclization and intramolecular nucleophilic
attack of intermediate (II) on imine was done to
form the intermediate (lll). In the final step of the
mechanism, the obtained product was formed via
oxidation.

Reusability of CuO/rGO Catalyst

The investigation of reusability is one of the
critical characteristic features of catalysts. Hence,
the model reaction was conducted again (under
optimized conditions). After the accomplishment
of the reaction process, the as-prepared catalyst
was recovered. It was then washed with cold
acetone three times (3x12 mL), dried at 40 °C
for 5 h, and reused for further cycles with a fresh

0 .. 0
) H,N-R
HN O 7 N
O condensation
R -EooH
N H
~
N
)\© 3 ylation
[01< R | CO,
(o] ; 10
.R ;
N 3 : NH2
() HJ\@ 1 0

intramolecular
nucleophilic attack

Fig. 5. Proposed reaction mechanism.
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Fig. 6. Reusability of CuO/rGO composites.
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surface. Findings revealed that the CuO/rGO
heterogeneous catalyst could well be used for
seven cycles with no dramatic loss in its efficiency

(Fig. 5).

CONCLUSION

As a result, we have used the co-precipitation
method as a facile strategy to design the robust
CuO/rGO composite as a catalyst. Moreover,
2,3-disubstituted quinazoline-4(3H)-one
derivatives was well synthesized via reflux
conditions. Also, high to excellent yields within
short reaction time, reduced catalyst dosage,
green solvent, and reusability of catalyst (5 runs)
are other advantages of this research. For future
studies, the prepared products have the potential
to become an oral antibacterial drug and also,
the role of catalyst morphology in the reaction
process, the use of a catalyst prepared via plant
extraction, re-checked drug design methods, and
computational chemistry in aliphatic aldehydes
can help improve research in this field.
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