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The growing worldwide need for pure water has spurred greater research 
into eco-friendly and effective water treatment approaches. Activated nano-
carbon, valued for its numerous pores and large surface area, continues to 
be a key material in purification methods that use adsorption. Lately, focus 
has turned to synthesizing activated nano-carbon from natural materials, 
like farm waste, because they are inexpensive, readily available, and better 
for environment. This detailed review covers the basics of activated nano-
carbon’s characteristics, as its surface area, pore arrangement, and how 
it adsorbs substances. It also looks at how the choice of starting material 
and activation processes i.e., physical, chemical, and using microwaves 
affect its qualities. Natural sources like coconut shells, wood, corn cobs, 
and rice husks are given special attention, with an analysis of how well 
they work for removing specific pollutants. The review thoroughly 
examines how activated nano-carbon from natural sources is used in water 
treatment, including the adsorption of organic pollutants, heavy metals, 
disinfection byproducts, and compounds that cause unpleasant tastes and 
smells. The benefits, such as being renewable, cost-effective, and having 
a smaller environmental impact, are discussed alongside drawbacks 
like inconsistencies in the raw materials. The review also evaluates the 
environmental and economic consequences, suggesting the use of life cycle 
assessments to maximize sustainability.  

INTRODUCTION 
In modern society, growing industrial 

progress led to polluting water sources due to 
presence of variety of contaminants in it. These 

water pollutants may include metals, dyes, 
pharmaceutical products and some other organic 
and inorganic pollutants. Main sources of these 
pollutants include waste coming from different 
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industries as textile, food, pharmaceutical 
industries, agricultural waste and pesticide sector. 
When these kinds of pollutants get discharged 
to water system, without any proper treatment, 
it resulted in contaminating water sources. This 
resulted in overall affecting environment and 
health of humans and all life forms [1]. Although 
other conventional methods of water purification 
are crucial, however, they find limitations for 
removal of variety of pollutants [2-6]. In this view, 
studies revealed that adsorption process is one of 
the widely used method as it is an efficient process 
to remove variety of water pollutants to improve 
the quality of water [7-10]. Easy processing, 
simple working and effective use of adsorbents 
make this process as one of the promising 
methods among all other traditional processes 
used [11-14] for removal of all contaminants from 
water [15-17]. In adsorption, variety of materials 
have been employed till yet however, use of 
activated nano-carbon (AC) (having highly porous 
and vast surface) is increasing day by day and is 
gaining more importance in modern society [18-
21]. However, more research needs to be carried 
out for exploring the use of novel adsorbent 
materials other than activated nano-carbon, as 
bio-based adsorbents and nanomaterials. AC 
works by removing contaminants by adsorption 
due to presence of numerous active sites on its 

surface [22-24]. It is available in variety of forms 
like granular activated nano-carbon (GAC) and 
powdered activated nano-carbon (PAC). Each type 
of AC is well-designed for precise uses for the 
purpose of treating polluted water [25-27]. As a 
result, recent research focusses on synthesis and 
application of AC derived from a wide variety of 
natural sources [27-29]. This increasing interest 
indicates a broader trend towards using renewable 
resources for water treatment (Fig. 1).  

This study will investigate the diverse array of 
natural starting materials that can be employed, 
the various preparation techniques utilized, and 
how these aspects impact the characteristics of 
the produced activated nano-carbon. Moreover, 
this review will analyze the efficacy of naturally 
sourced activated nano-carbon in eliminating a 
wide range of waterborne contaminants, contrast 
its benefits and drawbacks with alternative water 
treatment methods, and discuss its economic 
viability and ecological consequences. Lastly, it 
will emphasize recent progress in field and explore 
potential future directions for use of activated 
nano-carbon from natural sources in water 
treatment.

FUNDAMENTALS OF ACTIVATED NANO-CARBON 
Activated nano-carbon is a group of carbon-

based materials defined by their large surface 
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Fig. 1. Activated nano-carbon for treating polluted water.
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area, pore size distribution, and potential to 
adsorb substances [30, 31]. A key feature of 
activated nano-carbon is its extensive network 
of interconnected pores, typically classified 
into micropores (diameter < 2 nm), mesopores 
(diameter 2-50 nm), and macropores (diameter 
> 50 nm). This tri-disperse pore structure is 
crucial as it allows for the adsorption of a wide 
spectrum of molecules with varying sizes. The 
fundamental structural unit of activated nano-
carbon resembles that of graphite, with layers 
of carbon atoms arranged in a graphitic platelet 
structure¹. However, the activation process 
disrupts the regular arrangement of carbon bonds 
on the surface of these crystallites, yielding highly 
reactive free valences. This imperfect arrangement 
creates the extensive internal surface area, 
which can exceed 500 m²/g and in some cases 
reach up to 3000 m²/g¹. Several key properties of 
activated nano-carbon are particularly relevant 
to its application in water treatment. Surface 
area is directly proportional to the number of 
available adsorption sites and, consequently, the 
overall adsorption capacity of the material [32, 
33]. Generally, a higher surface area translates 
to a greater ability to remove contaminants from 
water. The pore size distribution is another critical 
factor, as it dictates the type and size of molecules 
that can be effectively adsorbed within the pore 
network. Micropores are most effective for 
adsorbing small molecules, while mesopores and 
macropores play a vital role in the adsorption of 

larger molecules and in facilitating the transport 
of adsorbates to the micropores. Adsorption 
capacity refers to the amount of contaminant 
that can be retained per unit mass of activated 
nano-carbon [34]. This property is influenced by 
the surface area, pore structure, and the specific 
nature of the contaminant being removed. The 
particle size of the activated nano-carbon affects 
both the filtration rate and the availability of 
the surface area for adsorption. Finer particles 
generally offer a larger surface area but may result 
in slower filtration rates, while larger particles 
might exhibit reduced adsorption efficiency due 
to lower external surface area. Ash content, 
which represents the non-carbonaceous material 
present in the activated nano-carbon, is an 
important indicator of purity. Lower ash content 
is typically desired as it signifies a purer form of 
activated nano-carbon and can lead to improved 
adsorption performance. For water treatment 
applications, pH neutrality is a beneficial property, 
as it ensures that the activated nano-carbon does 
not significantly alter the pH of the treated water 
[34-36] (Fig. 2).  

Contaminant removal by activated nano-
carbon occurs via several adsorption mechanisms. 
Physisorption involves weak van der Waals 
forces or London forces between adsorbate and 
surface of activated nano-carbon. In contrast, 
chemisorption involves the formation of chemical 
bonds between the adsorbate and the activated 
nano-carbon surface [37-41]. Chemisorption can 
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Fig. 2. Key features of activated nano-carbon.
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be more selective than physisorption and may 
involve chemical reactions occurring on the surface 
of the activated nano-carbon. London forces, 
arising from temporary fluctuations in electron 
distribution around carbon atoms, lead to the 
formation of instantaneous dipoles that can induce 
dipoles in other molecules, resulting in attraction, 
particularly for non-polar molecules. Hydrophobic 
interactions also play a significant role, as the 
surface of activated nano-carbon often exhibits 
a preference for non-polar organic compounds 
in aqueous solutions, driving their adsorption. 
Electrostatic interactions can contribute to 
the adsorption of charged contaminants if 
the activated nano-carbon surface possesses 
oppositely charged sites, which can be particularly 
relevant for activated nano-carbons that have been 
modified. The dominant adsorption mechanism in 
a specific water treatment application depends 
on the characteristics of both the activated nano-
carbon material and the specific pollutant being 
targeted for removal. While physisorption is a 
primary mechanism, activated nano-carbon does 
not readily bind to alcohols, diols, strong acids 
and bases, metals, and most inorganic compounds 
through this process alone. This limitation 
underscores the importance of considering the 
types of contaminants present in the water and 
potentially employing surface modifications or 
relying on chemisorption mechanisms for effective 

removal of these specific pollutants [42-45] (Table 
1). 

NATURAL SOURCES FOR ACTIVATED NANO-
CARBON PRODUCTION 

A diverse range of carbon-containing materials 
derived from renewable resources can be used 
as starting materials for making activated nano-
carbon. Among these, coconut shells are often 
preferred due to their strong ability to adsorb 
substances, low amount of impurities, and high 
level of hardness. Their structure, which is mainly 
composed of very small pores, makes them 
particularly effective at removing tiny molecules 
found in drinking water. It’s interesting to note that 
activated nano-carbon made from coconut shells 
was used in gas masks during World War I. Wood, 
including various types and sawdust, is another 
important natural source. Activated nano-carbon 
made from wood often has medium-sized and 
large pores, making it suitable for removing color 
from liquids and capturing bigger molecules. Pine 
wood is a commonly used type for this purpose. 
Agricultural waste offers a large and inexpensive 
supply of starting materials for activated nano-
carbon production. This category includes a 
wide array of materials such as the shells of nuts 
(walnut, almond, pecan), the hard parts of fruits 
(olive, peach, cherry), corn plant material (leaves, 
stalks silk, kernels), rice husks, rice straw, soybean 
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Property/Parameter Relevance to Water Treatment Typical Measurement 
Units/Range 

Surface Area Directly related to adsorption capacity; higher surface area generally 
leads to better contaminant removal. m²/g; 500 - 3000 

Pore Size Distribution Determines the size and type of molecules that can be adsorbed 
(micropores for small, mesopores/macropores for large). Å or nm 

Adsorption Capacity Amount of contaminant that can be retained per unit mass of activated 
nano-carbon. mg/g, g/g 

Particle Size Affects filtration rate and surface area availability. mm, US mesh size 

Ash Content Indicator of purity; lower ash content generally desirable for better 
adsorption. % 

pH Neutrality Important for water treatment to avoid altering the pH of the treated 
water. pH units 

Iodine Number Indicates micropore content and activity level, often used as a measure 
of overall performance. mg/g; 500 - 1200 

Molasses Number Measures mesopore content and adsorption of large molecules. 95 - 600 

Tannin Adsorption Indicates the ability to adsorb a mixture of large and medium-sized 
molecules. ppm; 200 - 362 

Methylene Blue Adsorption Measures the adsorption of medium-sized molecules in mesopores. g/100g; 11 - 28 
Dechlorination Half-life Length Measures the efficiency of chlorine removal. Minutes 

Apparent Density Relates to volume activity and overall quality of the activated nano-
carbon. g/cc 

Hardness/Abrasion Number Indicates the resistance of the activated nano-carbon to physical 
attrition and breakdown. % 

Carbon Tetrachloride Activity Measures the overall porosity of the activated nano-carbon. % 
 
  

Table 1. Key Properties and Characterization Parameters of Activated nano-Carbon [46-48]. 
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coverings, sugarcane residue, groundnut shells, 
the fibrous residue after processing sugarcane, 
jute stalks, coffee waste, pineapple waste, outer 
layer of camellia oleifera seeds, bamboo, used tea 
leaves, paulownia flowers, strawberry seeds, and 
pistachio shells. Using these agricultural leftovers 
not only provides a sustainable alternative to 
traditional sources but can also result in unique 
surface properties depending on specific material 
used. Other natural sources that can be used to 
produce activated nano-carbon include peat, 
lignite coal, bituminous coal, and animal bones 
[49-55] (Fig. 3).   

The choice of a specific natural source 
significantly affects the pore structure and how 
well the resulting activated nano-carbon can 
adsorb substances. This highlights the importance 
of carefully selecting the source based on how 
the activated nano-carbon will be used. When 
comparing different natural sources, several 
factors are important. The amount of carbon in 
the raw material varies, which directly affects how 
much activated nano-carbon can be produced 
[28, 56, 57]. Generally, plant-based sources tend 
to have less carbon compared to fossil fuels. How 

easily available and how cheap the source is are 
also major considerations, and agricultural waste 
and other plentiful plant-based sources offer 
significant advantages in this regard. How well a 
source can be used to create specific pore sizes is 
also crucial; for example, coconut shells are well-
suited for making activated nano-carbon with 
very small pores, while wood is often better for 
medium-sized and large pores. The amount of ash 
and other impurities present can differ depending 
on the source, which might require different pre-
treatment steps to ensure the final product is of 
good quality. Furthermore, the environmental 
impact of obtaining the raw material, considering 
factors like whether it can be regrown, is an 
increasingly important factor. Plant-based sources 
are generally considered more environmentally 
friendly than non-renewable sources like coal 
[58]. A thorough assessment of natural sources 
(Table 2) should therefore consider not only their 
carbon content but also their environmental 
impact and their potential for turning waste into 
valuable materials. This comprehensive approach 
is essential because the move towards using 
natural sources is largely driven by concerns about 
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Fig. 3. Natural sources of activated nano-carbon.
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sustainability (Table 2). 

METHODS FOR PREPARING ACTIVATED NANO-
CARBON FROM NATURAL SOURCES 

The production of activated nano-carbon from 
natural sources typically involves an activation 
process, which can be broadly categorized into 
physical activation and chemical activation [31]. 
Emerging techniques also include microwave-
assisted activation. Physical activation is generally 
a two-step process involving carbonization 
followed by activation/oxidation. The first step, 
carbonization (also known as pyrolysis), involves 
heating the natural source material at high 
temperatures, typically ranging from 600 to 900 °C, 
in an inert atmosphere such as nitrogen or argon. 
This process removes volatile organic compounds 
and moisture, leading to an increase in the fixed 
carbon content and the production of charcoal 

[31]. The second step, activation/oxidation, 
involves exposing the carbonized material to an 
oxidizing atmosphere, such as steam, carbon 
dioxide (CO2), air, or oxygen, at high temperatures, 
usually between 600 and 1200 °C, although lower 
temperatures (above 250 °C) can be used with air. 
Hot gases are employed to develop the porous 
structure of the activated nano-carbon. Physical 
activation relies on controlled oxidation reactions 
that selectively remove carbon atoms, thereby 
creating and enlarging pores within the material. 
The choice of the activating agent and the 
temperature at which the activation is carried out 
significantly influence the resulting pore structure 
of the activated nano-carbon. Carbonization is a 

critical preparatory step as it increases the fixed 
carbon content of the material, making it more 
amenable to effective activation in the subsequent 
stage [64-66].  

In chemical activation, carbonization and 
activation occur in a single step. This method 
involves the impregnation of the natural carbon 
material with chemical activating agents. Common 
agents include acids like phosphoric acid, sulfuric 
acid, and acetic acid; strong bases like potassium 
hydroxide, sodium hydroxide, and potassium 
carbonate; or salts like zinc chloride and calcium 
chloride. The impregnation ratio, which is the ratio 
of the activating agent to the precursor material, 
is an important parameter that affects the 
properties of the final activated nano-carbon [67]. 
Following impregnation, the material is subjected 
to relatively lower high temperatures, typically 
ranging from 250 to 600 °C (although some 
processes may go up to 800-900 °C), to induce 
activation and the development of microscopic 
pores. A crucial step in chemical activation is 
the subsequent washing of the activated nano-
carbon to remove any residual chemicals used in 
the process. Chemical activation generally offers 
advantages such as higher carbon yields, better 
consistency in quality, and shorter activation times 
compared to physical activation [68].  

Microwave-assisted activation (Fig. 4) is an 
emerging technique that utilizes microwave 
energy to provide rapid, selective, and volumetric 
heating for the activation process. This method 
can be combined with either chemical or physical 
activation [69]. Microwave-assisted activation 
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Natural 
Source 

Typical Carbon 
Content 

Predominant Pore 
Size Availability and Cost Suitability for Water Treatment Applications 

Coconut Shell High Micropores Abundant, Moderate 
Excellent for drinking water purification, 

removal of small organic molecules, taste and 
odor control. 

Wood 
(Pine/Hardwo

od) 
Moderate to High Meso- and 

Macropores 
Abundant, Low to 

Moderate 

Good for decolorization of liquids, removal of 
larger organic molecules, taste and odor 

control. 

Corn Cobs Moderate Variable Abundant, Low 
Potential for removal of heavy metals and 
organic pollutants; properties depend on 

activation method. 

Rice Husks Moderate Micropores Abundant, Very Low 
Shows promise for removal of various 

pollutants; often requires chemical activation 
for high surface area. 

Sugarcane 
Bagasse Moderate Variable Abundant, Very Low 

Potential for removal of dyes and heavy 
metals; activation method significantly affects 

properties. 
Fruit Pits 

(Olive, Peach, 
Cherry) 

Moderate to High Variable Abundant, Low 
Can be effective for removing heavy metals 

and organic pollutants; properties depend on 
the type of pit and activation method. 

 

Table 2. Comparison of Common Natural Sources for Activated nano-carbon Production [59-63].
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offers several potential benefits, including shorter 
activation times, lower energy consumption, and 
high yields of activated nano-carbon [70, 71]. It 
is generally considered more environmentally 
friendly due to the use of inert gases and the 
absence of harsh chemicals, although it typically 
requires higher operating temperatures. While 
chemical activation is characterized by less energy 
costs and less activation temperatures but with 
high efficiency, high quality consistency and less 
times [72, 73]. However, chemical activation can 
potentially introduce mineral impurities into the 
activated nano-carbon if the washing step is not 
performed adequately [74]. The choice between 
these two methods depends on the desired 
characteristics of the activated nano-carbon, the 
type of precursor material being used, and various 
economic and environmental considerations. Each 
method presents its own set of advantages and 
disadvantages that need to be carefully evaluated 
for a specific application [75].  

Both physical and chemical activation processes 
may involve pre-treatment and post-treatment 

steps. Pre-treatment of the natural source 
material can include washing, drying, crushing, 
and sieving to remove initial impurities and 
achieve the desired particle size for subsequent 
processing [28]. In some cases, specific pre-
treatments like heat and acid treatments can be 
employed to enhance the surface area of spent 
activated nano-carbon before regeneration [76]. 
For certain precursors like pine sawdust, a period 
of storage might be beneficial to allow for the 
natural volatilization of rosin components [77]. 
Post-treatment of AC involves cooling as well as 
washing to remove residual chemicals, followed by 
drying as well as quality control tests to investigate 
its characteristics. Regeneration of used AC is 
important for sustainability, and impregnation 
with specific chemicals improve its pollutant 
removal capabilities [78]. 

APPLICATIONS OF NATURALLY SOURCED 
ACTIVATED NANO-CARBON IN WATER 
TREATMENT 

Activated nano-carbon derived from natural 
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Fig. 4. Synthesis of activated nano-carbon.
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sources has exhibited notable efficacy across a 
diverse range of water treatment applications, 
primarily attributable to its superior adsorption 
capabilities. A particularly significant application 
lies in the elimination of organic contaminants 
from water. This encompasses the adsorption of 
volatile organic compounds (VOCs), pesticides, 
herbicides, pharmaceuticals, endocrine disrupting 
compounds, solvents, fuel oil, polychlorinated 
biphenyls (PCBs), dioxins, and disinfection 
byproducts (DBPs) [79, 80]. Coconut shell activated 
nano-carbon, recognized for its finely porous 
structure, proves especially effective in capturing 
small organic molecules [81]. Conversely, wood-
based activated nano-carbon, characterized by 
its larger meso- and macropores, is well-suited 
for the removal of larger molecular structures 
such as 2-Methylisoborneol (MIB) and Geosmin 
[82], which are common sources of undesirable 
taste and odor in water [83]. Moreover, activated 
nano-carbons originating from agricultural waste 
have demonstrated promising outcomes in the 
sequestration of various organic dyes, including 
methylene blue, methyl orange, and Orange 
G [84]. The broad-spectrum effectiveness of 
naturally sourced activated nano-carbon against a 
wide variety of organic pollutants underscores its 
significance in addressing water quality challenges. 

Furthermore, naturally sourced activated nano-
carbon can be employed for the sequestration 
of inorganic pollutants, including specific heavy 
metals and arsenic (Fig. 5) [69]. 

While naturally sourced activated nano-
carbon can be effective for certain heavy metals, 
modifications may be necessary to achieve high 
removal efficiencies for a broader array of inorganic 
contaminants. This highlights the ongoing research 
efforts to tailor activated nano-carbon properties 
for specific inorganic pollutant removal. In the 
context of drinking water treatment, activated 
nano-carbon assumes a pivotal role in disinfection 
byproduct (DBP) control. Granular activated nano-
carbon is commonly implemented in drinking 
water treatment facilities for this precise purpose 
[85]. The ability of naturally sourced activated 
nano-carbon to enhance the aesthetic quality of 
water by eliminating unpleasant tastes and smells 
represents a significant benefit for consumer 
satisfaction and overall water quality. Beyond 
these primary applications, naturally sourced 
activated nano-carbon finds extensive utilization 
in the treatment of industrial wastewater streams 
[31]. Additionally, activated nano-carbon can 
be utilized to remove toxic and even radioactive 
substances from industrial wastewater streams 
[86]. This versatility renders it a cost-effective and 
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Fig. 5. Applications of activated charcoal.
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environmentally conscious solution for treating 
a wide spectrum of industrial discharges, aiding 
in regulatory compliance and environmental 
protection. Extending beyond these major uses, 
naturally sourced activated nano-carbon is also 
integrated into small-scale and point-of-use 
(POU) water filters commonly found in residential 
settings. It finds application within the bottled 
water and beverage industry to ensure the 
consistent quality of their products, and in the 
filtration systems of swimming pools and spas 
to remove chloramines and other undesirable 
contaminants [87]. Furthermore, activated nano-
carbon has established medical applications, 
including detoxification procedures and as an 
antidote for specific types of poisoning [88]. 

ADVANTAGES AND DISADVANTAGES OF 
NATURALLY SOURCED ACTIVATED NANO-CARBON 

The application of activated nano-carbon 
derived from renewable origins presents a 
compelling and increasingly appealing strategy 
for purifying water. Notably, the wide availability 
of natural precursors, particularly agricultural 
byproducts, offers considerable economic 
advantages. These materials, frequently regarded 
as waste, can substantially decrease the production 
expenses associated with activated nano-carbon 

when contrasted with conventional sources such 
as coal, as emphasized in several investigations 
[89]. Beyond financial savings, the inherent 
sustainability of biomass and agricultural waste 
guarantees a renewable and dependable supply 
of raw materials for long-term utilization [90]. 
The sheer quantity of agricultural and forestry 
residues generated globally furnishes a substantial 
and easily accessible feedstock for activated nano-
carbon manufacturing. Furthermore, activated 
nano-carbon originating from biomass generally 
exhibits a diminished ecological footprint 
compared to its fossil fuel-derived counterparts, 
such as coal [91]. Crucially, the characteristics 
of the resulting activated nano-carbon can be 
precisely tailored to fulfill the requirements of 
specific water treatment applications through 
careful selection of natural source and optimization 
of the activation process. This adaptability, 
coupled with the aforementioned ecological and 
economic benefits, positions naturally sourced 
activated nano-carbon as an increasingly favored 
substitute for traditional materials. Nevertheless, 
it is important to acknowledge certain limitations 
linked to natural precursors. The intrinsic variability 
in their chemical and physical attributes, influenced 
by factors such as origin, species, and harvesting 
methods, can result in inconsistencies in the final 
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Fig. 6. Advantages and disadvantages of activated charcoal.
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product’s quality and performance. Consequently, 
meticulous optimization of activation procedures, 
encompassing parameters like temperature, 
duration, and the concentration of the activating 
agent, becomes essential for each specific natural 
source to attain the desired characteristics and 
performance attributes. Certain biomass sources 
may possess a lower carbon content compared to 
fossil fuels, potentially leading to diminished yields 
of activated nano-carbon [92] (Fig. 6). Moreover, 
some natural sources may have a higher ash 
content, which can negatively affect the adsorption 
efficiency of the activated nano-carbon and may 
necessitate supplementary pre-treatment steps 
to minimize ash content. Addressing the inherent 
variability in raw materials and refining production 
processes are critical steps toward ensuring the 
consistent quality and dependable performance of 
naturally sourced activated nano-carbon for water 
treatment applications [93].   

COST-EFFECTIVENESS AND ENVIRONMENTAL 
IMPACT ASSESSMENT

The adoption of activated nano-carbon from 
natural sources strongly supports the principles 
of economic efficiency in water treatment. 
The diminished cost of raw materials, such 
as agricultural waste and abundant biomass, 
can substantially lower overall production 
expenditures in comparison to activated nano-
carbon derived from coal [94]. Furthermore, 
the feasibility of local production, particularly in 
regions with readily available agricultural waste, 
can lead to reduced transportation costs, further 
bolstering its economic viability. The capacity for 
granular activated nano-carbon produced from 
natural sources to be reactivated and reused 
multiple times offers considerable long-term 
cost savings. This economic advantage renders 
naturally sourced activated nano-carbon a 
particularly suitable solution for water treatment, 
especially in developing nations and rural areas 
where affordability is a key consideration [79]. 
From an ecological perspective, biomass-based 
activated nano-carbon generally demonstrates 
a reduced environmental impact throughout its 
life cycle compared to coal-based activated nano-
carbon [58]. However, it’s crucial to recognize that 
the specific environmental impact of producing 
activated nano-carbon from natural sources can 
fluctuate depending on the specific precursor used, 
the activation method employed, and the energy 

sources utilized during the process [95]. Conversely, 
physical activation methods are often considered 
more environmentally sound. Techniques as 
microwave-assisted activation offer the potential 
to reduce energy consumption in the production 
process [70]. Therefore, a comprehensive life 
cycle assessment (LCA) is essential for a thorough 
evaluation of the environmental sustainability 
of different production pathways for naturally 
sourced activated nano-carbon. Such assessments 
are vital for identifying the most environmentally 
responsible methods for producing these 
materials. The utilization of agricultural and 
forestry waste as precursors for activated nano-
carbon aligns strongly with the principles of 
waste valorization and the circular economy [96]. 
This approach lessens our dependence on non-
renewable fossil fuel resources and supports 
sustainable development goals related to clean 
water and sanitation, as well as responsible 
consumption and production. Even specific 
sources like coconut shells, often a byproduct 
of coconut industry, represent a sustainable and 
readily available feedstock. Overall, naturally 
sourced activated nano-carbon contributes to a 
more sustainable and resource-efficient approach 
to water treatment [28]. 

RECENT RESEARCH AND FUTURE TRENDS 
Recent research in the field of activated nano-

carbon derived from natural sources for water 
treatment has focused on several key areas. There 
has been a continuous exploration of novel natural 
sources, including a wide variety of agricultural 
wastes such as coffee waste, pineapple waste, 
and other unconventional biomass materials 
[28]. Researchers are also actively working on 
optimizing activation techniques, with a particular 
emphasis on microwave-assisted methods, to 
achieve enhanced surface area, porosity, and 
ultimately, improved adsorption capacity [69]. 
Another significant trend is the development of 
modified activated nano-carbons from natural 
sources. These modifications, often achieved 
through impregnation or surface functionalization, 
aim to enhance the selectivity of the activated 
nano-carbon for specific pollutants, such as heavy 
metals or pharmaceuticals. Furthermore, there is 
ongoing research into the use of more sustainable 
activating agents, such as acidic pyrolysis liquids 
like bio-oil and wood vinegar [97]. Studies on 
the regeneration of spent activated nano-carbon 
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derived from natural sources are also crucial, with 
researchers exploring various methods to improve 
the efficiency and reduce the costs associated 
with regeneration. These recent advancements 
highlight a dynamic and continuously evolving 
field focused on expanding the range of usable 
natural precursors, improving the efficiency of 
production methods, and tailoring the properties 
of activated nano-carbon for increasingly specific 
water treatment challenges [98]. 

Looking towards the future, several potential 
research directions are emerging. There is a need 
for the development of highly porous activated 
nano-carbons from abundant yet underutilized 
natural resources. Further optimization of 
microwave-assisted activation techniques for a 
wider range of biomass precursors holds significant 
promise. The design and synthesis of hierarchical 
porous activated nano-carbons, with precisely 
controlled pore size distributions, could lead to 
enhanced adsorption kinetics and overall capacity. 
Investigating novel activating agents that are not 
only effective but also environmentally benign 
is another crucial area of research. Developing 
cost-effective and sustainable methods for the 
regeneration and eventual disposal of spent 
activated nano-carbon from natural sources 
remains a key challenge. The integration of 
naturally sourced activated nano-carbon with 
other water treatment technologies, such as 
membrane filtration or biological treatment, to 
create hybrid systems with synergistic effects 
warrants further exploration. The development 
of predictive models that can accurately 
correlate the properties of natural precursors and 
activation conditions with the final properties 
and performance of the resulting activated nano-
carbon would be invaluable. Scale-up studies 
and pilot-scale demonstrations of promising 
production and application technologies are 
necessary to translate laboratory findings into 
real-world solutions. Comprehensive life cycle 
assessment studies comparing the environmental 
and economic sustainability of different natural 
sources and activation methods will be essential 
for guiding future development. Finally, exploring 
the catalytic properties of activated nano-carbon 
derived from natural sources in water treatment 
processes could open up new and innovative 
applications. Future research efforts should focus 
on addressing the current limitations and further 
enhancing the performance and sustainability 

of naturally sourced activated nano-carbon to 
fully realize its potential in water treatment 
technologies [99]. 

CONCLUSION
This paper has thoroughly examined the 

present understanding of employing activated 
nano-carbon originating from natural materials for 
purifying water. It delved into the definition and 
basic characteristics of activated nano-carbon, 
the wide array of natural starting materials that 
can be used, and the various methods utilized 
for its creation, encompassing physical, chemical, 
and innovative microwave-assisted activation 
approaches. The numerous uses of naturally 
derived activated nano-carbon in eliminating a 
broad spectrum of contaminants, ranging from 
organic substances and heavy metals to precursors 
of disinfection by-products and substances causing 
unpleasant taste and smell, have been discussed. 
Moreover, the benefits of utilizing activated 
nano-carbon from natural sources, such as its 
affordability, renewability, plentifulness, capacity 
for converting waste into valuable products, and 
generally reduced ecological footprint compared 
to traditional sources, have been emphasized 
alongside its drawbacks, including inconsistencies 
in the composition of raw materials and the 
necessity for refining production methods. Lastly, 
recent progress in research and encouraging 
future directions in the field have been outlined. 
The evidence presented strongly indicates that 
activated nano-carbon obtained from natural 
sources shows considerable potential as an 
economical, renewable, and environmentally 
sound substitute for conventional activated 
nano-carbon in a multitude of water treatment 
applications.
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