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Biosorbents are environmentally friendly, readily available, have high 
absorption efficiency, and are desirable for the treatment of contaminated 
water. Herein, a covalently cross-linked green macro particle hydrogel 
nanocomposite CMC(IA-coAm-Ca) as a bio-adsorbent was prepared 
through a polysaccharide carboxymethyl cellulose reaction with 
acrylamide (Am)-Itaconic acid (IA) modified carboxymethyl cellulose 
(CMC) and further Ca(II) crosslinking polymerization. To limit the 
structure and characteristics of the nanocomposite composite several 
techniques were used such as (HRTEM), (FESFM/EDX), (XRD), and 
(FTIR),. The practical experiments included the study of improving the 
preparation conditions produced by a nanocomposite with the maximum 
SR%: the effect concentration of CMC, the effect of Am, the effect of IA, 
the effect of Ca(II) ion crosslinking effect of pH, and effect of temperature. 
The results show that employing (1 g) CMC, (2 g) Am, 2 ml IA, and (2 
g) Ca(II) ion crosslinking. The hydrogel nanocomposites highest swelling 
ratio SR% in DW was 2100%. It was found that the mechanical water 
retention properties are strongly affected by monomer to CMC ratio and 
concentration of Ca(II) ion crosslinking. thus, the hydrogel displayed 
swelling behaviors that were monomers-dependent.

INTRODUCTION 
Hydrogels are described as having a three-

dimensional network. They are classified as 
polymers that can swell significantly and also 
maintain their shape and structure in water 
over long periods of time. Hydrogels maintain 
their structure and cross-linked nature of each 
polymer chain, which enables them to retain a 
large amount of water. [1] Hydrogels are prepared 

by cross-linking polymer chains chemically or 
physically to form a network three-dimensional. 
Hydrogels are characterized by their high-water 
absorption capacity due to their crystalline 
network and high swelling capacity; however, 
they are not able to dissolve in water. Therefore, 
bio-based hydrogels have gained biocompatibility, 
environmental friendliness, and biodegradability. 
It is not enough for hydrogels to consume large 
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amounts of water or biological fluids due to their 
high swelling capacity and remain insoluble in 
water. Biopolymer-based hydrogels have gained 
popularity due to their biocompatibility, swelling 
capacity, low-cost, high-water absorption, and 
biodegradability.[2]. Differences in the structure 
and composition of the polymer affect the 
crosslinking of the biopolymer and the different 
methods of crosslinking. For example, the great 
ability of biopolymers to swell and absorb water 
leads to Various applications such as in medicine 
and agriculture such as using them as wound 
dressings, personal care products, sanitary 
pads and diapers. [1, 3]. Poly-acrylamide is the 
primary network in several tough hydrogels. Poly 
acrylamide hydrogels containing salts are utilized 
as stretchable, transparent, ionic conductors in 
ionotropic. Polyacrylamide hydrogels have been 
utilized as a model material to study the growth of 
cracks in hydrogels under static cyclic and dynamic 
loads [4, 5]. Carboxy methyl cellulose (CMC) is a 
soluble in-water cellulose derivative that is bio-
compatible and can be further chemically modified 
to form gel through physical interactions [6-8]. 
CMC is a soluble in water, anionic polysaccharide 
and is one of the most commonly used industrial 
cellulose ether. CMC is applied in systems where 
hydrophilic colloids are involved and has some 
applications in some industrial areas, including 
cosmetics, detergents, pharmaceuticals, textiles, 
food, etc. CMC displays the capability to suspend 
solids in an aqueous solution, stabilize emulsions, 
absorb moisture from the atmosphere, and 
is mostly utilized as a thickener, suspending 

aid, binder, gelling agent, stabilizer, and water 
retention agent, etc [9-12].

MATERIALS AND METHODS
Synthesis of CMC(IA-co-Am-Ca) gel 

A CMC(IA-co-Am-Ca) gel was synthesized by 
applying polymerization. different quantities of 
Am (0.1–2 g/ 10 ml. After that, several quantities 
of CMC (0.15–4 g/ 20 ml) to 40 °C and IA (0.15–3 
g/ 10 ml) the reaction mixture was stirred at 150 
rpm for 90 min at 25 °C. The CMC(IA-co-Am-Ca) 
gel solution was dropped into a 100 mL CaCl2.2H2O 
solution of 10–40 g/L. After the reaction was 
completed, the gel spheres continued to be cured 
in solution for 3 h, then they were removed, 
washed in distilled water, and dried. CMC(IA-co-
Am-Ca) gel spheres were then prepared. Fig. 1 
shows the image of gels.

Studies of Swelling of CMC(IA-co-Am-Ca) gel 
The pre-weighted CMC(IA-co-Am-Ca) gel was 

placed in DW and kept at 25 o C for 120 min without 
any disturbance. The swollen CMC(ITA/AM-Ca) 
gel was blotted with filter paper to eliminate 
the additional DW, and after that weighed. The 
extreme RS% was calculated by Eq. 1:

                                                                                    (1)% SR = M1 − M2
M2  × 100 

W1 denotes the mass of the swelled CMC(IA-
co-Am-Ca) gel, and W2 mass of the dried CMC(ITA/
AM-Ca) gel.

 

  

a) Swelling after 3 h a) Swelling after 12 h 

Fig. 1. Real image of preparation of CMC(IA-co-Am-Ca) gel.
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RESULTS AND DISCUSSION
In the FTIR spectrum of the CMC(IA-co-Am-Ca) 

gel Fig. 2, The bands at 3400–3500 cm–1 arising from 
stretching group −OH converted to broader and 
fewer shifted at 3200–3400 cm–1, The broadband 
from 3100 to 3300 cm−1 indicates stretching −OH 
in the polysaccharide. Peaks at 980, and 1000 cm−1 
were assigned to C–O–C, and C–O–H stretching, 
of glucose stretching, respectively [13-15]. This 
can be interpreted as follows: A broad band from 
3500−2750 cm−1 indicates −NH, −OH, and over-
lapping bands from asymmetric cyclic CH, −CH2, 
and −CH3. Moreover, shifted peaks from 1500 − 
1330 cm−1 represent aromatic rings C=C group, 
indicative of interactions [16, 17].

 
X-ray Diffraction (XRD)

Fig. 3 shows the XRD patterns of CMC(IA-co-
Am-Ca) gel nanocomposite, that appeared broad 
peak in CMC(ITA/AM-Ca) gel nanocomposite, 
non-crystalline structure in the nanocomposite 
diffraction pattern, A peak looked at 2θ = 
21.122°, and 2θ = 32.141° suggesting conversion 
from amorphous to semi-crystalline nature. 
The amorphous nature was also reported for 
the polymer of CMC with either IA or Am in the 
literature [18, 19]. This confirms the contribution 
of the grafting CMC. The broadness of XRD 
patterns for hydrogel shows the dispersal of CMC 
in gel [20, 21].

The FESEM morphology technique was used to 
determine the surface morphology of CMC(IA-co-
Am-Ca) gel nanocomposite at different weights of 
carboxymethyl cellulose. The FESEM microscopic 
image revealed in the form Fig. 4a, the gel with 
weight 2 g of (CMC). The surface has structures 
resembling thin threads with random, unordered 
aggregates as a result of the lack of overlap of (CMC) 
within the gel matrix due to the lack of cohesion of 
the gel and its collapse at high temperatures. As 
for the Fig. 4b weight (3 g) the CMC of the gel has 
a rough surface without any crosslinking between 
the CMC molecules. Some small white balls in 
the form of small aggregates were also observed. 
The CMC(IA-co-Am-Ca) gel nanocomposite form 
also showed a porous, sheet-like surface due to 
gel formation and cross-linking by Ca+2 between 
the polymeric chains. At the same time, CMC(IA-
co-Am-Ca) gel nanocomposite face resulting from 
the introduction of CMC contains rough particles 
within the polymeric chains. The prepared surface 
is characterized as a heterogeneous spongy porous 
surface containing voids and numerous active 
sites. Hence it can swelling [22, 23]. EDX analysis 
of the samples (Fig. 4c), that the Ca(II) ions in 
solution underwent a cross-linking polymerization 
reaction with CMC to form a CMC(IA-co-Am-Ca) gel 
nanocomposite with a three-dimensional network 
structure. The surface scan analysis of CMC(IA-
co-Am-Ca) gel nanocomposite Ca, elements are 
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Fig. 2. FTIR spectrum of the a) CMC(IA-co-Am-Ca) gel.
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Fig. 3. XRD patterns of CMC(IA-co-Am-Ca) gel nanocomposite.
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Fig. 4. FESEM a) 2 g of CMC in nanocomposite, b3 g CMC in nanocomposite c) 4 g CMC in nanocomposite, 
e) EDX of CMC(IA-co-Am-Ca) gel nanocomposite.
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evenly distributed in the composite, indicating the 
successful preparation of the nanocomposite [24-
26].

A higher resolution transmission electron 
microscope (HRTEM) image is shown in Fig. 5. This 
figure shows a carboxymethyl cellulose CMC(IA-
co-Am-Ca) gel nanocomposite) embedded within 
a polymer matrix. It can be seen that the CMC(ITA/
AM-Ca) gel nanocomposite appears in the form of 
small irregular random balls spread on the polymer 
surface with some patchy black aggregates and 
tends to form aggregates at 200 nm and 500 nm. 
Moreover, the surface of the CMC(IA-co-Am-Ca) 
gel nanocomposite is covered with a thin layer, 
in which carboxymethyl cellulose was observed 
incorporated within the CMC(IA-co-Am-Ca) gel 
and plays a pivotal part in enhancement stability 

and raising the surface area as an essential 
component. To synthesize ecologically friendly 
hydrogel[27-30].

Optimization Swelling of the CMC(IA-co-Am-Ca) 
gel nanocomposite) 

The swelling behavior of the polymer is shown 
in Fig. 6a as a function of the IA. Different weights 
of IA from (0.5-2.5 ml), which shows the effect of 
several concentrations of IA. The magnitude of 
the effect of IA on swelling is similar to the Ca(II) 
crosslinking ratio because the incorporation of 
IA also increases the mechanical strength of the 
polymer and reduces the swelling behavior in 
the water of the resulting polymer, which occurs 
through the ability of IA to cross-link [31].

Fig. 6b displays the swelling capability of 

  

         

  Fig. 5. Higher resolution transmission electron microscopy (HRTEM) image of CMC(IA-co-Am-Ca) gel nanocom-
posite)
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nanocomposite with several concentrations of 
CMC (0.1–2g/20 ml). The RS% is firstly very low 
due to the repulsion between the negative charge 
caused via pairs of electrons on O2 and N2 charge 
on –OH in CMC. However, the rising concentration 
of CMC, increases cross-linking and difficulty 
absorbing water As a result, the RS% rises with 
increasing concentration of CMC. thus, greater 
quantities of CMC created extra active sites, 
leading in cross-linking optimal to best adsorbate 
loading on the adsorbent [32, 33]. 

The effect of acrylamide (Am) concentration on 
the bio-composite was examined by measuring 
the swelling ratio. Different amounts of Am (0.1-
2.5 g) were dissolved in 5 ml of DW and added 

while stirring Fig. 6b, a maximum RS% of 1200% 
was achieved with 0.5 g. Similar to how insufficient 
monomer caused decreased swelling when the AM 
dose was less than 2.0 g, a decrease in the amount 
of monomer present resulted in a decrease in 
swelling by more than 2.0 g. Concentrations of Am 
above the recommended level. Absorbance may 
decrease with Am concentration above 1.0 g[34, 
35] 

To prevent the polymer chains from dissolving 
in water, Ca(II) was used as a cross-linker during 
polymer preparation. Use different amount of 
Ca(II) (0.1-2 g/L) via dissolving it in 100 ml of H2O 
to increase the amount of cross-linker dimer. To 
reduce the water absorption of water absorbed 

 

 

 
Fig. 6. Optimization Swelling of the CMC(IA-co-Am-Ca) gel nanocomposite, a) weight of IA, b) weight of CMC, c) weight of Am, 

and d) weight of Ca(II).
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into the polymer network, which reduces the 
swelling ratio. Fig. 6d shows that less space among 
the copolymer chains resulted in more rigid 3D 
networks and even less surface area. The optimal 
mesh size for cross-linking affects the amount 
of contaminants trapped in the polymer due to 
the concentration of Ca(II) as a cross-linker. At 
little concentrations, the degree of crosslinking 
cannot adequately trap contaminant particles. 
Cross-linked Ca(II) was added during polymer 
preparation to form network crosslinks that 
prevent dissolution of the polymer chains in water. 
Increasing the concentration of calcium (II) led to 
a decrease in water absorption within the polymer 
network, which reduces the swelling behavior [33, 
36].

CONCLUSION 
A semi-natural, non-toxic CMC(IA-co-Am-

Ca) gel nanocomposite was synthesized by 
polymerization of carboxymethyl cellulose 
(CMC). The optimization study revealed that 
the CMC(IA-co-Am-Ca) gel nanocomposite had 
a greater swelling ratio at the concentration of 
monomer (AM, 2 g), polysaccharide (CMC,1g), 
and crosslinking Ca(II) (2 g). It has been found 
that the mechanical properties of water retention 
are strongly influenced by the monomer-to-
monomer ratio and the crosslinking concentration 
of calcium(II) ions. The best course of swelling was 
presented in deionized water by approximately 
1200.3 %. the RS% rises with increasing 
concentration of CMC. thus, greater quantities of 
CMC created extra active sites, leading to cross-
linking optimal to best adsorbate loading on the 
adsorbent, Cross-linked Ca(II) was added during 
polymer preparation to form network crosslinks 
that prevent dissolution of the polymer chains 
in water. Increasing the concentration of calcium 
(II) led to a decrease in water absorption within 
the polymer network, which reduced the swelling 
behavior.
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