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Resistance to most antibiotics by pathogenic microbes has become a major 
international problem, making it necessary to find effective treatments. 
These resistant diseases must be stopped by effective microorganisms. A 
strong isolate (N11) was chosen from 30 probiotic strains screened for 
antibacterial activity. Bacillus thermotolerans was identified by appearance, 
microscopic inspection, and DNA sequencing of isolate N11. This study 
examined B. thermotolerans’ iron oxide nanoparticle production. Their 
MDR action against Klebsiella pnemoniae from diabetic foot infections 
was examined. Morphological, biochemical, and VITEK2 systems 
revealed MDR Klebsiella pnemoniae isolates. UV-Vis spectrophotometry, 
FTIR, FSEM, AFM, and XRD confirmed IONP biosynthesis. IONPs 
from B. thermotolerans were effective against MDR Klebsiella pnemoniae. 
FSEM analysis showed particle sizes of 25.31–64.25 nm, averaging 42 
nm. AFM measured 7.677 nm particle size, and XRD measured 20 nm. 
Antibacterial tests revealed a maximum inhibition zone of 31 mm at 500 
µg/mL against Klebsiella pneumoniae. Additionally, the IONPs exhibited 
antibiofilm activity with the highest recorded biofilm inhibition of 97.50% 
at 1000 µg/mL, while no haemolysis activities in all concentrations. These 
findings confirm the effectiveness of biosynthesized IONPs as a potential 
therapeutic agent for treating antimicrobial resistance in MDR pathogens.

INTRODUCTION
Diabetic Foot Ulcer (DFU) is one of the most 

significant diabetic complications with serious 
consequences. Improper management of DFU can 
lead to osteoporosis, gangrene, and amputation. 
For amputees, the risk of mortality increases, 
and survivors are more susceptible to microbial 
resistance. There is an increasing struggle over 
selecting the most effective antibiotic(s) for DFU. 
Factors associated with mortality in patients with 
DFU, as well as antimicrobial resistance in affected 

individuals, remain critical research priorities [1,2]. 
Antimicrobial resistance (AMR) has existed since 
the discovery of the first antibiotic, “penicillin,” 
in 1940, as part of bacteria’s natural evolutionary 
process. Genes for resistance existed in healthy 
bacterial species millions of years ago. However, 
AMR has now become a significant global health 
concern, largely due to the irrational overuse and 
abuse of antibiotics, which leads to prolonged 
hospital stays, economic strain, and even fatal 
outcomes [3-6].
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Antibiotic resistance is one of the most critical 
public health threats worldwide. It is estimated 
to cause 700,000 deaths annually and may rise 
to 10 million deaths per year by 2050 [7,8]. In 
the United States alone, at least 2 million people 
annually become infected with antibiotic-resistant 
microorganisms, resulting in at least 23,000 deaths 
[9]. The impact of AMR is disproportionately 
higher in poorer countries with underdeveloped 
healthcare systems [10-12]. In recent years, 
antibiotic consumption has continued to rise in 
many low- and middle-income countries [13,14]. 
Even when antibiotics are used correctly, their 
overuse can still lead to resistance. This creates an 
urgent need to develop innovative strategies and 
technologies to combat microbial resistance [15-
22].

Nanotechnology offers promising solutions to 
global challenges, including AMR. Its advanced 
techniques can support many biomedical 
applications including drug and vaccine delivery 
[23,24], antibacterial activity [25-33], cancer 
treatment [34-37], development of nanoparticles 
with antioxidant properties [38-41], and even 
modifying nanostructures for specific applications 
[43-46]. Nanoparticles exhibit unique electrical, 
catalytic, magnetic, and optical properties that 
differ from bulk materials [47-49]. For example, 
metallic nanoparticles like gold, silver, platinum, 
and palladium, as well as inorganic oxides like 
zinc oxide and titanium oxide, are valued for their 
exceptional mechanical, chemical, and magnetic 
properties [50-53]. Recently, Artificial Intelligence 
(AI) has emerged as a transformative tool in 
advancing nanotechnology, enabling more precise 
design, synthesis, and analysis of nanomaterials 
[54]. Biological methods for synthesizing 
nanoparticles are increasingly favored due to 
their environmentally friendly, non-toxic nature 
and, in some cases, superior efficacy against 
microorganisms. Unlike physical and chemical 
methods, which are energy-intensive, costly, 
and potentially hazardous to the environment, 
biological synthesis offers a sustainable alternative 
[55-57]. 

Iron oxide nanoparticles (IONPs) have gained 
widespread recognition for their exceptional 
magnetic, chemical, and biocompatible 
characteristics, making them highly valuable in 
both biomedical and environmental applications. 
Their utility spans various fields, including targeted 
drug delivery, magnetic resonance imaging, and 

antimicrobial therapies [58-61]. The development 
of IONPs through biologically derived and 
environmentally sustainable methods presents 
a promising alternative to traditional chemical 
synthesis, offering enhanced safety and efficiency. 
This study aims to explore the biosynthesis of iron 
oxide nanoparticles using Bacillus thermotolerans 
and assess their potential as inhibitors of 
multidrug-resistant Klebsiella pneumoniae isolated 
from diabetic foot infections. Through advanced 
characterization methods, the research seeks 
to uncover the therapeutic potential of IONPs in 
addressing the global challenge of antimicrobial 
resistance.

MATERIALS AND METHODS
Isolated and Identification of bacteria from a 
diabetic foot infection

A total of 75 swab samples were collected 
from patients with multidrug-resistant (MDR) 
diabetic foot disease from three hospitals in Hilla 
province (Marjan Hospital and the diabetic foot 
center in Alsadeq Hospital) between October 
2023 and January 2024. Among these, Klebsiella 
pneumoniae was the predominant and most 
common Gram-negative bacilli, by 40 isolates 
(53%), followed by Staphylococcus aureus (15 
isolates, 20%), Pseudomonas aeruginosa (9 
isolates, 13%), Escherichia coli (5 isolates, 7%), 
Proteus mirabilis (3 isolates, 4%), and other 
species (3 isolates, 4%). Swabs from patients with 
diabetic foot infections were transported to the 
laboratory, where they were cultured by streaking 
on blood agar and MacConkey agar. In this study, 
the MDR isolates were identified based on their 
morphological properties, biochemical tests, and 
results obtained from the VITEK2 system [62].

Bacterial Isolates Used to Synthesize Nanoparticles
Different bacterial isolates from soil were tested 

(N1-N30); bacterial isolate no. N11 was selected 
based on color change and biological activity by 
growing on brain heart infusion  agar at 37°C for 
24-48 h. Colony morphology of differentiated-on 
medium and basic biochemical tests, molecular 
examination through gene expression through 
the extraction of genomic DNA, DNA sequencing 
assay, and agarose gel electrophoresis [63].

Synthesis of Iron Oxide Nanoparticles by N11 
(Bacillus thermotolerans) 

Isolate no. N11 were cultured in brain heart 
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infusion broth at 37°C for 24 hours. After 
incubation, iron (ferric chloride, FeCl₃, 0.0081 mg) 
was added, followed by incubation for another 24 
hours at 37°C in a shaking incubator at 150 rpm as 
shown in Fig. 1. The resulting colloidal suspension 
was centrifuged at 10,000 rpm for 15 minutes, 
and the supernatant was precipitated and used 
as a mechanical iron oxide nanoparticle (IONPs) 

suspension for separation [64,65].

Detection of Biosynthesis Iron Oxide Nanoparticles
The synthesis of IONPS of nanosize with a brown 

shade is proven in Fig. 1. The structural properties of 
the prepared nanoparticles were characterized by 
UV, FESEM, AFM, XRD, and FTIR evaluations [66], 
and analyses of these NPs were conducted at the 

 

  

 

  

Fig. 1. Iron Oxide Nanoparticle Biosynthesis. A) Supernatant of  Bacillus 
thermotolerans  before incubation with iron salt. B) Reaction mixture after 24-hour 

incubation with iron salt showing a color change.

Fig. 2. UV Assay of biosynthesized IONPS.
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Antibacterial Activity of Iron Oxide NPs

The antibacterial activity of IONPs was 
examined using an agar diffusion methods [67,68] 
against multi-drug-resistant (MDR) Klebsiella 
pneumoniae bacteria isolated from diabetic foot 
infections. Four pure isolated colonies of fresh 
culture were suspended in five milliliters of brain 
heart infusion broth and incubated at 37°C for 
four to eight hours. The turbidity produced by the 

growth culture was calibrated with sterile broth to 
achieve an optical density comparable to the 0.5 
McFarland requirements (equivalent to 1.5 x 10⁸ 
cells/mL). A sterile cotton swab was dipped into the 
suspension, and used to streak the entire surface 
of a Mueller Hinton agar (MHA) dishes. The wells 
in MHA are prepared using a sterile cork borer (7 
mm diameter of pores), and filled with 100 µl of 
IONPs of 1000 µg/ml, 500 µg/ml, 250 µg/ml, and 
125 µg/ml compared with well filled by Distilled 

 

  

 

  

Fig. 3. FESEM Assay of biosynthesized IONPS.

Fig. 4. AFM Assay of biosynthesized IONPS.
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water as control. The dishes are incubated at 37°C 
for twenty- four hours after the incubation period, 
the diameter of the inhibition zones in millimetres 
was measured to determine antimicrobial activity.

RESULTS AND DISCUSSION
Formation of iron oxide nanoparticles by 

color change as shown in Fig. 1, and their size 
estimation within the composite suspension 
that was confirmed by UV-visible spectroscopy 
as shown in Fig. 2. The absorption spectrum of 
nanoparticles produced in the reaction mixture 
peaks at 280 nm, possibly due to the oxidation of 
zero-valent iron to iron oxide nanoparticles. The 
spectra clearly show maximum absorption peaks, 

indicating the formation of an increased number 
of iron oxide nanoparticles in the solution. The 
absorption peaks at wavelengths of 204 nm and 
320 nm further indicate the formation of iron 
oxide nanoparticles [69,70].

The field emission scanning electron 
microscopy (FESEM) was used to determine the 
surface morphology and scale of nanoparticles in 
composite films [ 71]. The specimen was prepared 
by grinding iron oxide nanoparticles, preparing 
a colloidal suspension of the nanoparticles, and 
attaching a droplet of the suspension to the 
fixing matrix. Before FESEM characterization 
and after FESEM characterization, the samples 
were again air-dried and stored in a drying 

 

  

 

  Fig. 6. FTIR Assay of biosynthesized IONPS.

Fig. 5. XRD Assay of biosynthesized IONPS.
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chamber. Images were carried out in low 
vacuum mode at an accelerating voltage of 10-
12 kV, at different magnification forces.  Bacillus 
thermotolerans particles with sizes in the range of 
25.31–64.25 nm, with an average size of 42 nm, 
were observed, as shown in Fig. 3. FESEM analysis 
showed the average particle size and detected 
their structure. However, large nanoparticles were 
seen due to aggregation, which may be due to 
the presence of cell components on the surface 
of nanoparticles acting as a capping agent [72]. 
The nanoparticles were not in direct contact, even 
within the aggregates, indicating the stabilization 
of the nanoparticles by a capping agent [73].

Fig. 4 shows that the atomic force microscope 
was used to investigate the dispersion and 
aggregation of nanomaterials, as well as their 
shape and size. (AFM; XE100 Park systems) at a 
scanning range of 10 x 10 µm finally formed an 
agglomeration with a large size of IONPS particle 
about 7.677 nm from  B. thermotolerans. Atomic 

Force Microscopy’s extraordinary resolution 
allows for precise three-dimensional visualization 
of molecular structures, as well as atomic-scale 
strategies. The procedure for preparing samples 
for AFM is straightforward. Because samples can be 
viewed under near-physiological conditions, AFM 
can record the critical procedures of molecules, 
organelles, and other structures in living cells in 
real-time [74,75].

The biogenic iron oxide nanoparticles were 
analyzed using X-ray diffraction (XRD) [76]. XRD 
is a common analytical technique. The 2θ peak 
position was correctly marked using JCPDS NO: 
01-076-1363 to analyze the molecular crystal 
structure and identify qualitatively different 
molecules. Quantitative chemical analysis was 
used to calculate crystallinity, symmetrical 
substitution, and particle size. The crystal size was 
estimated using the Debye-Scherrer formula: D = 
0.94γ/β cosθ. The diameter of the nanoparticles 
was determined to be 20 nm for  Bacillus 

 

  
Fig. 7. Effect of IONPS on Klebsiella pnemoniae (1-4) and Klebsiella oxytoca (5).
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thermotolerans, as shown in Figure 5.
Fourier Transform Infrared Spectroscopy (FTIR) 

was used to evaluate the iron oxide powder 
supplied from Sigma Aldrich (USA) for the sample 
in the  Bacillus thermotolerans  group, as shown 
in Fig. 6. The FTIR spectrum of the oxide chain 
ranged between 500 and 4000 cm⁻¹, and the 
absorption peak was observed at 165557 cm⁻¹ 
in  Bacillus thermotolerans. This was defined by 
group frequencies, the alcoholic (alcohol) ligand 
of the carbonyl C=O in the asymmetric stretching 
of the carbonate ion (CO₃²⁻ species). OH group 
stretching and bending vibrations were assigned 
to the stages of the (CO₃²⁻)-water interaction. 
The FT-IR spectrum of IONPS synthesized by 
bacteria showed a band between 500 and 800 
cm⁻¹, associated with the chain oxide. The peak at 
165557 cm⁻¹ was assigned to the O-H stretch [77, 
78].

Genomic DNA of Bacillus thermotolerans 
was isolated and then electrophoresed on an 
agarose gel, and documented visually. The DNA 
samples were used as templates for the PCR 
reaction aimed at amplifying the 16S rDNA gene 
(universal primers), 27F: AGAGTTTGATCCTGGCTCA 
and 1492R: GGTTACCTTGTTACGACTT [79]. 
Electrophoresis was performed with the PCR 
product 1470bp in agarose gel, which was then 
visualized. 

Sequences of B. thermotolerans were obtained 
online and aligned to the NCBI database using 
BLAST software. Matching numbers were 
identified using BioEdit software, and the 
sequences were submitted to NCBI in FASTA 
format using Sequin software. Pairwise alignment 
and distance phylogeny were investigated for 
the  Bacillus thermotolerans  16S rRNA gene 
sequences. The online NCBI BLAST software 
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Zone inhibition (mm) 
Pathogenic bacteria 

125 µg /ml 250 µg /ml 500 µg /ml 1000 µg /ml 

24.5 29 31 29.5 Klebsiella pneumonia 1 

20.5 24 25 26 Klebsiella pneumonia 2 

17.6 20.5 21 22 Klebsiella pneumonia 3 

17.7 17.5 18 18 Klebsiella pneumonia  4 

14 16 20 22 Klebsiella oxytoca 

 
  

Table 1. Antibacterial activity of iron oxide nanoparticles synthesis by B. thermotolerans against MDR Klebsiella pnemoniae 
and Klebsiella Oxytoca.

Fig. 8. Anti-biofilm effect of iron oxide NPs synthesized by Bacillus. thermotolerans against pathogenic bacteria (MDR Klebsiella 
pneumonia).
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compared the resulting sequences.
The antibacterial activities of iron oxide NPs 

as shown in Fig. 7 and Table 1 against multi-
drug-resistant (MDR)  Klebsiella bacteria isolated 
from diabetic foot infections. The effect of the 
nanoparticles on  Klebsiella pnemoniae  (1-4) and 
Klebsiella oxytoca (5) appears great effect in all 
concentrations.

Klebsiella pnemoniae exposed to nanoparticles 
at a concentration of 1000 µg/mL. Gram-negative 

bacteria were more sensitive to biogenic iron 
NPs and this align with [70]. The antibacterial 
action against many bacteria, including Gram-
negative, aerobic, and anaerobic organisms, has 
been demonstrated. Because these materials 
have no harmful impact on humans, they are 
considered excellent antibiotic substitutes [80-
82]. Many studies showed antibacterial activity 
of different nanoparticles against microorganisms 
such as titanium nanoparticles[83] and silver 

 

56.000

58.000

60.000

62.000

64.000

66.000

68.000

70.000

125 mg/ml 250 mg/ml 500 mg/ml 1000 mg/ml

scavenging %

scavenging %

concentration (mg/ml) test result hemolysis % 

1 0.7759 0 

0.5 0.7344 0 

0.25 0.4998 0 

0.12 0.4573 0 

POSITIVE 2.6052 100 

NEGATIVE 0.4354 0 

 

Table 2. Iron oxide NPs synthesized by Bacillus thermotolerans effect on hemolysis.

Fig. 9. Antioxidant effect of Iron oxide NPs synthesized by (B. thermotolerans) in the DPPH test.



1402

N. Kadhim, and N. Aldujaili / Biosynthesis of Iron Oxide Nanoparticles

J Nanostruct 15(3): 1394-1405, Summer 2025

nanoparticles [84].
Fig. 8 illustrates the development of synthetic 

IONPS with ant biofilm activity against  Klebsiella 
pnemoniae. The antibiofilm effect is proportional 
to nanoparticle size [85]. The highest recorded 
anti-biofilm activity was observed with 97.50%. 
at 1000 µg/mL of IONPS against  Klebsiella 
pnemoniae, although the lowest activity observed 
with 48.90% at 125 µg/mL of IONPS. These 
finding align with those studies demonstrating 
that the toxicity and bactericidal effects depends 
on concentration, species, and particle size [86]. 
These results match those of research showing 
that particle size, species, and concentration define 
the toxicity and bactericidal properties [86]. These 
can be explained by the size of the nanoparticles 
since they can reach into the biofilm matrix really 
deeply. Furthermore, these nano-agents have a 
high surface area to volume ratio, which facilitates 
efficient interaction with bacteria [87].

The radical scavenging assay was modified to 
determine the antioxidant effect of iron oxide 
NPs metabolites by reducing DPPH free radicals 
as shown in Fig. 9. The absorbance at 517 nm 
was measured 30 minutes after incubation 
of the nanoparticles in the DPPH solution at 
concentrations of 1000, 500, 250, and 125 μg/
mL. The ability of nanoparticles to scavenge DPPH 
free radicals was validated by the color change 
measure-up [88,89]. 

The NPs synthesized by  Bacillus 
thermotolerans  showed scavenging percentages 
of 86.665% at 1000 µg/mL, 64.428% at 500 µg/mL, 
61.840% at 250 µg/mL, and 60.505% at 125 µg/mL. 
Traditionally, the antioxidant radical scavenging 
potential of 1-diphenyl-2-picrylhydrazyl in vitro 
(DPPH) was considered to be a stable free radical, 
acting as a donor of hydrogen or an agent of 
electron absorption reduction. The antioxidant 
radical scavenging capacities of 1-diphenyl-2-
picrylhydrazyl were also calculated in vitro, as it 
is a strong and well-known free radical, reliant on 
decreasing donor hydrogen or electron absorption 
[90]. Moreover, the antioxidant qualities of these 
nanoparticles help to explain their efficiency 
since oxidative stress is fundamental in immune 
resistance systems and bacterial pathogenicity 
[91]. 

Table 2 presents information on hemolysis, a 
condition in which red blood cells (RBCs) rupture 
and release their components, causing anemia, 
jaundice, and renal disease [92]. Because all 

substances entering the bloodstream interact 
with RBCs upon contact, it is important to evaluate 
the hemolytic properties of the materials. These 
finding highlights the biological applicability of 
nontoxic iron oxide NPs and these align with [93].

CONCLUSION 
This study successfully demonstrated the 

biosynthesis of iron oxide nanoparticles (IONPs) 
using Bacillus thermotolerans and evaluated their 
antimicrobial potential against multidrug-resistant 
(MDR) Klebsiella pneumonia. Characterization 
techniques confirmed the formation of IONPs 
with nanoscale morphology, exhibiting significant 
antibacterial activity and biofilm inhibition. Unlike 
conventional antibiotics, these nanoparticles 
employ a dual-action mechanism by disrupting 
both planktonic bacterial growth and biofilm 
integrity, making them a promising alternative 
for combating antibiotic resistance. IONPs’ non-
hemolytic character suggests their possible safety 
for biological uses. Future research should explore 
their in vivo applications, long-term stability, and 
interactions with biological systems to advance 
their clinical and biomedical use.
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