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This work reports sol-gel synthesis of ternary mixed metal oxide 
nanoparticles comprising TiO2, ZnO, and Bi2O3. The structure and 
morphology of the nanoparticles were studied using XRD and FESEM. The 
Studying of optical properties of the nanoparticles showed the potential 
of the synthesized nanoparticles serving as an efficient photocatalyst for 
degradation of pollutant. It was found that the incorporation of Bi2O3 and 
ZnO has considerable impact on reducing of the TiO2 band gap to 2.64 
eV.  The photocatalytic activity of the nanoparticles was investigated by 
visible light degradation of aqueous solution of methylene blue (MB). After 
180 min illumination under visible light, the synthesized mixed metal 
oxide nanoparticles degraded the MB solution by 87%. Effect of different 
determinants, such as amount of photocatalyst, concentration of H2O2, and 
pH of MB solution, on the photocatalytic degradation of MB was studied.   

INTRODUCTION
Over the few decades, development of 

industrial and agricultural activities has resulted 
to vast environmental crisis in all over the world 
[1-3]. Oceans, lakes and rivers have been polluted 
by variety of toxic chemicals used in factories 
and farms. Surfactants, oils, organic chemicals, 
dyes, pesticides, insecticides, and fertilizers are 
the pollutants that are profusely discharged into 
water resources [1, 4]. These pollutants have 

accumulated in plants, fish and other aquatic 
beings that figured most of human diets in the 
some parts of the world. As a consequence, 
dangerous and chronic diseases have been 
developed in the human communities. Due to 
non-biodegradability of these compounds, the 
common treatment methods, such as biological, 
chemical and physical methods, do not provide 
satisfying results in removal of the pollutants from 
water [5, 6]. 
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Fortunately, photocatalytic process has 
inspired scientists to eventually overcome this life 
threatening crisis [7]. The photocatalytic process 
utilizes a light-sensitive photocatalyst materials—a 
semiconductor— to produce highly activated 
radicals which are able to mineralize pollutants in 
aqueous media [8, 9]. The photocatalyst materials 
absorb the light beams with appropriate energy to 
excite the electrons from the valence band to the 
conduction band and leave behind the positively 
charged holes [10, 11]. 

Despite of the attractive performance of the 
photocatalytic process, there are some drawbacks 
that limit its use in the effective removal of the 
toxic pollutants [12, 13]. For instance, common 
photocatalyst materials such as TiO2 (3.0-3.2 eV) 
and ZnO (3.2 eV) have a wide band gap which 
implies they can be activated by the shorter 
wavelength of the light spectrum; only UV 
light have the sufficient energy corresponded 
to such a wide band gap [14, 15]. Besides, fast 
recombination of the electrons and holes is the 
another limitation which are needed to improve 
before utilizing the photocatalyst process for 
treatment of the polluted water [16, 17]. 

Some strategies have been suggested to 
sensitize the photocatalyst materials for the 
visible light and reduce recombination rate of 
charge carriers (e−/h+) [18, 19]. In this regard, the 
photocatalyst materials comprising of different 
semiconductors have provided considerable 
efficiency for the degradation of organic pollutant 
in water media [20-24]. Different energy levels of 
the different photocatalysts ensure the electrons 
migration from one component to another [25, 
26]. Moreover, the use of the lower band gap 
photocatalyst (such as WO3 (2.8 eV), Bi2O3 (2.6 
eV), etc.) can act as the visible light sensitizer 
and inject the electrons into the conduction 
band of another photocatalyst (TiO2) [27-29]. For 
example, the enhanced photocatalytic activity 
for hydrogen evolution was reported for the 
binary nanocomposite comprising NiO/Bi2O3 [30]. 
Venkatwsh et. Al. synthesized Z-scheme ZnO/g-
C3N4/V2O5 nanocomposite for the photocatalytic 
degradation of a mixed solution of dye and 
pharmaceutical compound under visible light 
irradiation [31]. Also, Naeinian et. al. studied the 
photocatalytic activity of CoFe2O4/Bi2MoO6 [32].

Herein, we have synthesized a ternary mixed 
metal oxide containing TiO2, ZnO, and Bi2O3 using 
straightforward sol-gel reaction. The optical 

properties of the nanoparticles was studied using 
DRS and PL analysis. The photocatalytic behavior 
of the prepared nanoparticles was evaluated using 
methylene blue (MB) aqueous solution under the 
visible light irradiation.

MATERIALS AND METHODS
Sol-gel synthesis of TiO2/ZnO/Bi2O3 nanoparticles

One-pot synthesis of the ternary mixed metal 
oxide of TiO2/ZnO/Bi2O3 nanoparticles (TZB) was 
accomplished using simple and facile sol-gel 
method, as follows: First, 0.5 mmol of citric acid 
as complexing agent was dissolved in 50 mL of 
absolute ethanol. Then, 1 mmol of tetrabutyl 
orthotitanate (TBOT) and certain amount of 
Zn(NO3)2.6H2O (0.25, 0.5, and 0.75 mmol) were 
added slowly and stirred for 15 min. Bismuth 
precursor (Bi(NO3)3.5H2O) (0.25, 0.5, and 0.75 
mmol) was dissolved into 5 mL of deionized 
acidified by addition of certain amount of HNO3, 
and then dropwise added into the above solution. 
The mixture was stirred for 1 hour and then kept 
in darkness for 12 hours to complete the reaction. 
After that, the solution was dried in an oven for 
24 hours at 60 °C. The dried gel was pulverized in 
a mortar and then calcined at 700 °C for 5 hours. 
The parallel reaction method was followed to 
synthesized pure TiO2 sample without addition of 
zinc and bismuth precursors. 

Characterization
The phase structure of the synthesized 

nanoparticles was studied by the X-ray diffraction 
(XRD) patterns (Philips X’pert Pro MPD, Cu Kα 
radiation λ = 1.54 Å). The composition and 
morphology of the synthesized nanoparticles were 
characterized using energy dispersive X-ray (EDX) 
and field emission scanning electron microscope 
(FESEM) by TESCAN Mira3. The optical properties 
of the TZB nanoparticles was studied using UV-
Vis diffuse reflectance (DRS) spectroscopy using 
JASCO UV-Vis/NIR spectrophotometer. Also, the 
photoluminescence (PL) spectroscopy was used 
for studying the efficiency of the photo-generated 
charge carriers of the TZB nanoparticles by Perkin 
Elmer LS 55 spectrofluorometer.

Photocatalytic investigations
The photocatalytic activity of the synthesized 

TZB photocatalyst was evaluated for degradation 
of methylene blue (MB) under the visible light 
irradiation. A 100 W white color LED lamp was 
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used as the visible light source, and distance 
between the lamp and dye solution container 
was kept constant of 30 cm. Different amounts 
of the synthesized photocatalyst were dispersed 
into 50 mL of MB solution (50 ppm) in order to 
find optimum amount of the photocatalyst. In 
addition, the degradation reaction was carried 
out in different pH of MB solution, and the effect 
of oxidant agent (H2O2) was also investigated on 
the photocatalytic efficiency of the prepared 
photocatalyst.

Before illuminating by the visible light, the 
dispersion of TZB photocatalyst and MB solution 
was kept in darkness for 30 min under vigorous 
stirring to reach the adsorption/desorption 
equilibrium. After that, the photocatalytic reaction 
was initiated by turning on the LED lamp. The 
photocatalytic degradation of MB solution was 
studied in span of 180 min. Every 30 min, 5 mL of 
dye solution was collected and then centrifuged at 
6000 rpm for 15 min to separate the photocatalyst 
particles. The level of degradation was evaluated 
using UV-Vis spectrophotometer at maximum 
absorption wavelength of MB (λmax = 668 nm).

RESULTS AND DISCUSSION
Structure, morphology, and optical properties 

The XRD patterns for the pure TiO2 and TiO2/
ZnO/Bi2O3 nanoparticles are provided in Fig. 1. 
The diffraction planes for the TZB nanoparticles 
are corresponded to the three components of the 
sample. The diffraction planes for the TiO2 phase 
(marked with ⨂) are observed at 2ϴ of 25.3°, 
37.7°, 47.9°, 53.7°, 55.1°, 62.8°, 68.1°, 70.4°, and 

74.9°. The Bragg positions corresponded to the 
ZnO phase (marked with ) are centered at 2ϴ 
of 31.9°, 34.7°, 36.2°, and 56.8. In addition, the 
Bi2O3 (marked with ♣) reflections are occurred at 
angles of 27.7°, 32.8°, and 53.7°. The peaks related 
to the ZnO and Bi2O3 phases are intensified with 
increasing the concentration of the ZnO and Bi2O3 
in the sample. The XRD pattern for the pure TiO2 
reveals the formation of anatase phase (JCPDS file 
no. 04-0477). 

Using the Scherrer equation [15], the average 
size of crystallite was calculated for the prepared 
samples. By considering the TiO2 diffraction plane 
at 25.3°, the average crystallite size for the pure 
TiO2, 0.25-TZB, 0.5-TZB, and 0.75-TZB are as 
18.23 nm, 23.11 nm, 25.48, 27. 14, and 29.01 nm, 
respectively. The increase in the crystallite size 
values is explained by the expansion of the unit 
cell of TiO2 with increasing concentration of the 
ZnO and Bi2O3 phases into the TiO2 matrix. 

The morphology of the prepared TZB 
nanoparticles was studied using FESEM image, 
shown in Fig. 2. FESEM image (Fig. 2a) represents 
the semi-spherical nanoparticles in the size 
range of 50-200 nm. Moreover, EDX spectrum, 
shown in Fig. 2b, shows the composition of the 
TZB nanoparticles and confirms the presence of 
ingredients with relative amounts as follows: Ti 
(21.31 wt%), Zn (9.34 wt%), Bi (28.46 wt%), and O 
(40.89 wt%). 

In order to validate the potential of TZB 
nanoparticles acting as the efficient photocatalyst, 
the optical behavior of the nanoparticles was 
studied using DRS and PL analysis. The Fig. 

 

  
Fig. 1. XRD patterns for the synthesized nanoparticles.
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3a shows the UV-Vis spectra for the different 
synthesized nanoparticles including: pure TiO2, 
0.75-TBZ, 0.5TZB, and 0.25-TZB. As can be seen 
from the Fig. 3a, increasing the concentration of 
ZnO and Bi2O3 as visible light sensitizer leads to 
the enhancement of the absorption of light in 
the visible light region. However, further amount 
of the ZnO and Bi2O3 (0.75 mmol) has adverse 
effect on the visible light absorption ability of 
the TZB nanoparticles. The band gap values were 
calculated using plots of (αhν)2 vs. hν, which 

confirm the 0.5-TZB nanoparticles (2.64 eV) have 
the lowest value of the band gap, shown in Fig. 
3b. The calculated band gap for other samples 
are 2.85 eV, 2.92 eV, and 3.39 eV for the 0.25TZB, 
0.75-TZB, and pure TiO2. 

More consideration was taken into account 
to comprehend the optical properties of the 
synthesized TZB nanoparticles using PL analysis. 
Fig. 4 indicates that the 0.5-TZB nanoparticles 
have the lowest PL intensity compared to the 
other samples. This observation explains that 

   

  

 

  Fig. 3. DRS spectra (a) and plots of (αhν)2 vs. hν (b) for the different synthesized nanoparticles.

Fig. 2. FESEM image (a) and EDX spectrum (b) for the 0.5-TZB nanoparticles.
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the recombination of charge carriers takes place 
in the lower rate for the 0.5-TZB nanoparticle, 
which is the direct result of incorporation of 
Bi2O3 and ZnO phases into TiO2 matrix. The 
transitions of the photo-generated electrons 
between the conduction bands of the well-mixed 
three semiconductors significantly reduce the 
recombination rate of the electrons and holes [5]. 

Photocatalytic properties
Fig. 5 shows the photocatalytic degradation 

of MB solution over the different synthesized 
photocatalysts. Owing to the enhanced visible 
light absorption and separation of charge 
carriers, the 0.5-TZB nanoparticles possess higher 
photoactivity. Therefore, more than 87% of the 
MB solution was degraded using the 0.5-TZB 
photocatalyst. Other exploited photocatalyst 
including 0.25-TZB, 0.75-TZB, and pure TiO2 
provided the photocatalytic efficiency of 71%, 
60%, and 32%, respectively. Also, Fig. 5 shows the 
self-degradation of MB solution under 180 min 

 

  

 

  
Fig. 5. Photocatalytic degradation of MB using the different TBZ 

nanoparticles.

Fig. 4. PL spectra of the different synthesized nanoparticles.
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visible light illumination, which reveals without 
addition of the TZB photocatalyst the degradation 
of MB solution is negligible.

Fig. 6 describes the effect of different amount of 
the photocatalyst on the degradation efficiency of 
MB solution was studied using different amount of 
0.5-TZB nanoparticles (0.02, 0.04, and 0.06 g). As 
shown, the optimal amount of the photocatalyst 
for achieving the highest degradation efficiency is 
0.04 g. Further amount leads to dramatic decline 
in the photocatalytic degradation of MB solution. 

This observation can be explained by the fact that 
the penetration of the light beam is restricted 
within the turbid dye solution, so the TZB 
nanoparticles have not access to sufficient light to 
produce the oxidative radicals [33, 34].

The photocatalytic degradation of MB solution 
was investigated in the presence of the different 
concentration of H2O2 (0.2, 0.4, and 0.6, mM) as 
the oxidant agent. Fig. 7 shows the enhancement 
of the photocatalytic degradation of MB 
solution upon addition of H2O2 over the 0.5-TZB 

 

  

 

  
Fig. 7. Photocatalytic degradation of MB using 0.5-TZB nanoparticles in 

presence of different concentration of H2O2.

Fig. 6. Effect of different used of 0.5-TZB nanoparticles on degradation 
level of MB.
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photocatalyst. The photocatalytic degradation 
increased by addition of H2O2 up to 0.4 mM, which 
is attributed to the release of more oxidative 
radicals for degradation of MB molecules. 
However, deactivation of radicals is caused by 
further amount of H2O2 giving rise to the decrease 
of the degradation level [35, 36]. 

Another important determinant on the 
photocatalytic performance is the pH of the dye 
solution. Due to the fact that the photocatalytic 
reaction takes place on the surface of the 
photocatalyst, the increased adsorbed dye 
molecules on the surface of the photocatalyst 
results to the increase of the degradation 
level [37]. Therefore, when the photocatalyst 
surface has opposite charge with respect to 
the dye molecules, the enhanced adsorption of 
the dye molecules leads to the increase in the 
photocatalytic efficiency. On the other hand, there 
is a repulsion force between the dye molecules 
and photocatalyst surface with the same charge, 
pushing the dye molecules away of the active 
sites on the photocatalyst, and in turn leads to 
decrement of the photoactivity [38, 39]. Fig. 
8 shows the elevation of degradation level in 
alkaline MB solution. In alkaline condition, the 
negatively charged surface of the photocatalyst 
favors the adsorption of a cationic dye like MB [38, 
40]. However, there is a significant reduction in 
photocatalytic degradation under acidic condition. 

CONCLUSION
We have demonstrated the TiO2/ZnO/Bi2O3 

ternary mixed metal oxide nanoparticles using 
the simple sol-gel method. The nanoparticles 
showed the great potential as the visible light 
photocatalyst confirming by the DRS and PL 
analysis. An aqueous solution of MB was used 
to evaluate the photoactivity of the synthesized 
nanoparticles. The photocatalytic degradation 
of MB solution approached to more than 87% 
after 180 min illumination under visible light. 
To find optimum condition for achieving the 
highest degradation level of MB solution, various 
parameters including pH of the dye solution, 
effect of H2O2, and addition of different amount 
of the synthesized nanoparticles were carefully 
investigated. 
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