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Bacterial resistance to antibiotics is a growing global challenge. This study 
investigates the antimicrobial effects of zinc oxide nanoparticles (ZnO-NPs) 
on clinical strains of Acinetobacter baumannii and Staphylococcus aureus, 
focusing on their synergy with the antibiotic ciprofloxacin. ZnO-NPs were 
synthesized and characterized using XRD, FT-IR, and SEM techniques. 
Their antimicrobial activity was evaluated against both bacteria, and the 
minimum inhibitory concentration (MIC) was determined. The results 
demonstrated that ZnO-NPs effectively inhibited bacterial growth, with 
enhanced effects when combined with ciprofloxacin, particularly against A. 
baumannii. These findings suggest that ZnO-NPs could reduce antibiotic 
resistance and offer a promising approach to combating multidrug-
resistant bacteria.

INTRODUCTION
Hospital-acquired infections, also known as 

nosocomial infections, represent a significant 
challenge to healthcare systems worldwide. These 
infections, which typically arise 48 hours after 
hospital admission or within three days post-
discharge, are associated with high morbidity, 
mortality, and economic burden. Intensive 
care units (ICUs) are particularly prone to such 
infections, with Gram-negative and Gram-positive 
pathogens emerging as predominant culprits [1, 
2]. Among Gram-negative bacteria, Acinetobacter 
baumannii has become a critical concern due to 
its remarkable resistance to almost all known 
antibiotics and its ability to persist in hospital 
environments [3, 4]. Similarly, methicillin-resistant 

Staphylococcus aureus (MRSA) has long been 
recognized as a leading Gram-positive pathogen, 
responsible for severe infections and high 
mortality rates [5].

Antibiotic resistance, driven by the overuse 
and misuse of antibiotics, has escalated into a 
global public health crisis. Pathogens such as A. 
baumannii and MRSA not only exhibit resistance 
to multiple drugs but also possess virulence factors 
that enhance their pathogenicity. Traditional 
antibiotics have become increasingly ineffective, 
emphasizing the urgent need for alternative 
strategies to combat these multidrug-resistant 
pathogens [6].

Recent advancements in nanotechnology 
have introduced innovative approaches to 
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antimicrobial therapy. Metal oxide nanoparticles, 
particularly zinc oxide nanoparticles (ZnO-NPs), 
have garnered significant attention for their 
potent antimicrobial properties. ZnO-NPs exhibit 
unique physicochemical characteristics, including 
a high surface-to-volume ratio, tunable shape and 
size, and the ability to generate reactive oxygen 
species (ROS). These features enable ZnO-NPs 
to disrupt bacterial membranes, increase cell 
permeability, and inhibit intracellular functions 
[7, 8]. Moreover, ZnO-NPs have shown promise in 
enhancing the efficacy of conventional antibiotics 
through synergistic effects, thereby addressing the 
limitations of monotherapy [9].

This study focuses on the antimicrobial activity 
of ZnO-NPs, both as standalone agents and in 
combination with ciprofloxacin, against clinical 
strains of A. baumannii and S. aureus. The research 
aims to investigate the synergistic effects of ZnO-
NPs and ciprofloxacin, determine the mechanisms 
underlying their combined antimicrobial activity, 
and explore the potential of ZnO-NPs to counteract 
antibiotic resistance [10, 11]. By elucidating these 
mechanisms, the study seeks to contribute to 
the development of novel therapeutic strategies 
that can effectively manage multidrug-resistant 
infections in healthcare settings.

The results of this investigation could pave 
the way for the integration of nanotechnology in 
combating hospital-acquired infections, offering 
hope for addressing the pressing challenge of 
antibiotic resistance [7].

MATERIALS AND METHODS
Biological Studies
Sterilization of Materials and Laboratory 
Equipment

To maintain sterility during experiments, all 
tools, media, and buffers were sterilized using 
thermal methods and UV irradiation. Autoclaving 
was performed at 121°C and 103 kPa for 15–20 
minutes to sterilize culture media, buffers, and 
other heat-resistant materials [12]. UV irradiation 
and 70% ethanol were employed to sterilize the 
working environment, including laminar flow 
hoods, ensuring a contamination-free setup.

Preparation of Culture Media
Bacterial cultures were grown using nutrient 

agar (NA) and nutrient broth (NB). These media 
are commonly used for cultivating bacteria with 
minimal selectivity:

Nutrient Agar (NA): To prepare the NA medium, 
13 g of powdered medium was dissolved in 1 L 
of deionized water, followed by autoclaving for 
15 minutes. After cooling to 50°C, the medium 
was poured into sterile petri dishes under aseptic 
conditions and stored at 4°C [13].

Nutrient Broth (NB): For NB preparation, 2.8 g 
of powdered medium was dissolved in 100 mL of 
deionized water. The solution was autoclaved at 
121°C, allowed to cool, and stored under sterile 
conditions until use [13].

Preparation of 0.02 M NaOH Solution
A 0.02 M sodium hydroxide solution was 

prepared by dissolving 1 g of NaOH in 2 mL of 
deionized water. A 2 mL aliquot of this solution was 
diluted to 100 mL with deionized water, ensuring 
precise molarity for subsequent synthesis steps 
[18].

Synthesis of Zinc Oxide Nanoparticles (ZnO-NPs)
The synthesis of ZnO-NPs was performed 

using a co-precipitation method with zinc acetate 
(C₄H₁₀O₆Zn) as the precursor and sodium hydroxide 
(NaOH) as the precipitating agent [3,7,14].

Step 1: A 0.21195 g sample of zinc acetate was 
dissolved in 90 mL of deionized water and cooled 
to 4°C [3,16].

Step 2: While maintaining the temperature 
between 0–4°C, 80 mL of 0.02 M NaOH solution 
was added dropwise using a burette under 
constant stirring [3,16].

Step 3: The reaction mixture was heated in a 
water bath at 65°C for 2 hours, forming a white 
precipitate [3,17].

Step 4: The precipitate was allowed to age 
at room temperature (25°C) for 3 days, then 
centrifuged at 12,000 rpm for 20 minutes [3,14].

Step 5: The precipitate was washed four times 
with a 1:1 mixture of deionized water and ethanol 
to remove impurities [3,15].

Step 6: Finally, the washed precipitate was 
dried in a vacuum oven at 10–40°C for 10 hours, 
yielding a fine white ZnO-NP powder [3,17].

Preparation of ZnO Nanofluid
To prepare a nanofluid, 4 mg of ZnO-NPs 

was autoclaved for 15 minutes. One milliliter of 
autoclaved deionized water was added, and the 
mixture was sonicated for 15 minutes [15,18]. 
This stock solution was stirred magnetically for 48 
hours to ensure uniform dispersion, resulting in a 
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4 mg/mL nanofluid concentration [14] [19].

Characterization of ZnO-NPs
X-ray Diffraction (XRD)

XRD analysis was performed to 
determine the crystalline structure of 
the ZnO-NPs. The nanoparticle size was 
calculated using the Scherrer equation: 
D=βcosθkλ 

Where D = nanoparticle size, k = Scherrer 
constant (0.9), λ= X-ray wavelength (1.54 Å), β\
betaβ = peak width, and θ\thetaθ = Bragg angle 
[20,21].

Fourier Transform Infrared Spectroscopy (FT-IR)
FT-IR analysis identified functional groups in 

the synthesized nanoparticles. The spectra were 
recorded in the range of 4000–400 cm−1^{-
1}−1 using a Thermo Nicolet AVATAR-370-FT-IR 
spectrometer [20,22].

Dynamic Light Scattering (DLS) 
DLS measurements were conducted to determine 
the hydrodynamic size and zeta potential of ZnO-
NPs in suspension. A VASCO3 DLS device was used 
for precise measurements [23,24].

Scanning Electron Microscopy (SEM) 
The morphology and size of ZnO-NPs were 
analyzed using an LEO 1450 VP SEM. Samples 
were prepared by dispersing 10 mg of ZnO-NPs in 
20 mL ethanol, followed by ultrasonication for 1 
hour [23,25].

Bacterial Strains
Clinical isolates of Acinetobacter baumannii 

and Staphylococcus aureus were obtained from a 
Baghdad hospital. Bacteria were cultured on NA 
and NB media for experimental purposes.

Determination of Bacterial Concentration
Bacterial suspensions were standardized 

using McFarland 1 (equivalent to 3×1083 \times 
10^83×108 CFU/mL), prepared by mixing barium 
chloride and sulfuric acid to produce a turbid 
solution with known absorbance [24,25].

Bacterial Identification
Gram Staining

Gram staining was performed to classify 
bacteria based on cell wall properties. Gram-
positive bacteria retained the violet crystal stain, 

while Gram-negative bacteria appeared red after 
counterstaining with fuchsine [26,27].

Antibiotic Sensitivity Testing
Disc diffusion tests were conducted using 

tobramycin (30 µg), tetracycline (30 µg), and 
ciprofloxacin (5 µg) to evaluate bacterial 
susceptibility. Zones of inhibition were measured 
after incubation at 37°C for 18 hours [28,29].

Determination of Minimum Inhibitory 
Concentration (MIC)

MIC values were determined by exposing 
bacteria to ZnO-NPs in concentrations ranging 
from 0.015–5.0 mg/mL. Growth inhibition was 
monitored using an ELISA reader at 630 nm, and 
bacterial survival percentages were calculated 
[30,31].

Synergistic Effect of ZnO-NPs and Ciprofloxacin
The combined antimicrobial effects of ZnO-NPs 

and ciprofloxacin (16 µg/mL) were tested at 1/2 
MIC of ZnO-NPs. Bacterial growth inhibition was 
assessed using optical density measurements 
[32,33].

Biofilm Inhibition Assay
Antioxidant activity of ZnO-NPs was evaluated 

by their ability to scavenge DPPH free radicals. 
Nanoparticles were incubated with DPPH solution, 
and absorbance at 490 nm was recorded [36,37].

Antioxidant Activity (DPPH Assay)
Antioxidant activity of ZnO-NPs was evaluated 

by their ability to scavenge DPPH free radicals. 
Nanoparticles were incubated with DPPH solution, 
and absorbance at 490 nm was recorded [36,37].

Statistical Analysis
Data were analyzed using SPSS software. 

Experiments were repeated three times, and 
statistical significance was determined using 
ANOVA and Tukey’s post hoc test for multiple 
comparisons [38,39].

RESULTS AND DISCUSSION
Characterization of Synthesized Nanoparticles
X-ray Diffraction (XRD) Spectrum

The structural characteristics, material 
composition, and crystalline properties of the 
synthesized zinc oxide (ZnO) nanoparticles were 
evaluated using X-ray diffraction (XRD). As shown 
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in the XRD spectrum (Fig. 1), diffraction peaks were 
observed at angles 32.9°, 34.2°, 36.1°, 47.3°, 56.4°, 
62.6°, 67.9°, and 68.8°, corresponding to the crystal 
planes (112), (200), (103), (110), (102), (101), 

(002), and (100), respectively. These peaks align 
with the Joint Committee on Powder Diffraction 
Standards (JCPDS), confirming the hexagonal 
wurtzite crystal structure of ZnO nanoparticles. 
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Fig. 1. XRD spectrum of zinc oxide nanoparticles, confirming their hexagonal wurtzite crystal structure and 
nanoscale size.

Fig. 2. FT-IR spectrum of zinc oxide nanoparticles, showing distinct peaks for O-H, C-H, and Zn-O functional groups.
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No additional peaks were detected, indicating the 
high purity of the nanoparticles. Using the Debye-
Scherrer equation, the average crystalline size was 
calculated to be approximately 87 nm.

FT-IR Spectroscopy of ZnO Nanoparticles
Fourier transform infrared (FT-IR) spectroscopy 

was used to identify the functional groups 
and chemical structure of the synthesized 
nanoparticles. The FT-IR spectrum (Fig. 2) exhibited 
characteristic absorption bands:

1. A strong absorption band at 3342 cm−1 
corresponds to O-H stretching vibrations.

2. Peaks at 3155 and 2963 cm−1 are 
associated with C-H stretching vibrations.

3. A significant peak at 487 cm−1 is attributed 

to Zn-O stretching vibrations.
4. Additional peaks at 835 cm−1 and 1055 

cm−1 correspond to C-N and C-O stretching 
vibrations, respectively.

These results confirm the presence of functional 
groups associated with the ZnO nanoparticles, 
indicating their successful synthesis.

Size and Zeta Potential of ZnO Nanoparticles
Dynamic Light Scattering (DLS)

Dynamic light scattering (DLS) was used 
to determine the size distribution of ZnO 
nanoparticles. The hydrodynamic diameter of the 
synthesized nanoparticles was measured to be 
174 nm (Fig. 3), larger than the crystalline size due 
to hydration in aqueous suspension.

Nanoparticles Particle size (nm) PDI Zeta potential 
(mV) 

ZnO 174 ≤0.3 -19 ± 1 

 
  

Bacteria Tobromycin (mm) Ciprofloxacin (mm) Tetracycline (mm) 
Acinetobacter baumannii 19 7 15 

Staphylococcus aureus 21 18 17 
 

  

Table 2. Resistance and sensitivity of bacteria to antibiotics based on CLSI standards.

Table 1. Size distribution and zeta potential of ZnO nanoparticles.

 

  Fig. 3. Size distribution of zinc oxide nanoparticles.
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Zeta Potential
The zeta potential of the nanoparticles, 

measured using the Malvern Zeta Nano ZS, was 
determined to be -19 mV. This negative charge 
indicates that the nanoparticles possess a 
moderate colloidal stability. For optimal physical 
stability, the zeta potential should range between 
-30 mV and +30 mV.

Morphology of ZnO Nanoparticles
The morphology of ZnO nanoparticles was 

analyzed using scanning electron microscopy 
(SEM). As shown in the SEM images (Fig. 5), the 
nanoparticles exhibit a predominantly spherical 
shape with some faceted structures. The average 
particle size was consistent with that obtained 
from the Debye- 

Gram Staining
Gram staining of the bacterial samples 

showed that Staphylococcus aureus is Gram-
positive, appearing in cluster or chain forms, 

 

 

 

 

 

 

 

 

 

 

 

 

  

  

 

 

  

  

Fig. 5. SEM images of zinc oxide nanoparticles, illustrating their spherical morphology and nanoscale dimensions.

 Fig. 4. Zeta potential of zinc oxide nanoparticles, showing a net negative charge.
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while Acinetobacter baumannii is Gram-negative, 
primarily appearing in coccobacillus forms but 
occasionally as rods or spheres.

Antibiotic Sensitivity Test Results
The antibiotic sensitivity tests revealed varying 

resistance patterns for the bacterial strains.
1. Staphylococcus aureus exhibited 

resistance to tetracycline, ciprofloxacin, and 

tobramycin, with inhibition zones of 17 mm, 18 
mm, and 21 mm, respectively.

2. Acinetobacter baumannii showed the 
highest resistance to ciprofloxacin, with an 
inhibition zone of only 7 mm. Tobramycin and 
tetracycline inhibition zones were 19 mm and 15 
mm, respectively.

These findings highlight the need for alternative 
strategies to combat Acinetobacter baumannii due 

AnRbacterial Factor Growth InhibiRon (%) 

92±4 ZnO NPs (0. 25 mg/ml) 

3±0 CP (8 µg/ml) 

100 ZnO NPs + CP 

 
  

 

 

  

  

AnRbacterial Factor Growth InhibiRon (%) 

92±4 ZnO NPs (0. 25 mg/ml) 

3±0 CP (8 µg/ml) 

100 ZnO NPs + CP 

 
  

Table 4. Growth inhibition of A. baumannii in the presence of 
ZnO nanoparticles and ciprofloxacin.

Table 3. Growth inhibition of S. aureus and A. baumannii in the 
presence of ZnO nanoparticles.

Fig. 6. (A) Gram-positive bacteria (Staphylococcus aureus). (B) Gram-negative bacteria 
(Acinetobacter baumannii).
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to its high antibiotic resistance.

Antimicrobial Activity of ZnO Nanoparticles
The antimicrobial activity of ZnO nanoparticles 

was evaluated using the minimum inhibitory 
concentration (MIC) method. Results showed a 
concentration-dependent inhibition of bacterial 
growth. At 0.5 mg/mL, ZnO nanoparticles 
completely inhibited the growth of Acinetobacter 

baumannii and achieved a 91% growth inhibition 
of Staphylococcus aureus.

Combined Effect of ZnO Nanoparticles and 
Ciprofloxacin

The combined antimicrobial effect of ZnO 
nanoparticles (0.25 mg/mL) and ciprofloxacin 
(8 µg/mL) was significantly greater than either 
agent alone. The combination achieved a 100% 

 

 

 

 

 

 

 

 

 

 

 

  

  

0
10
20
30
40
50
60
70
80
90

100

32.25 62.5 125 250 500

dpph assay

ZnO NPs Vitamin C

 

0
10
20
30
40
50
60
70
80
90
100

500 250 125

S.aureus A.baumanni

Fig. 8. Biofilm inhibition percentage of ZnO nanoparticles.

Fig. 7. Antioxidant activity of ZnO nanoparticles in DPPH radical removal.
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inhibition of Acinetobacter baumannii, compared 
to 92% with ZnO nanoparticles alone and 3% with 
ciprofloxacin alone.

Antioxidant Activity of ZnO Nanoparticles
The antioxidant activity of ZnO nanoparticles 

was assessed using the DPPH radical scavenging 
assay. The highest activity (48%) was observed at a 
concentration of 500 µg/mL.

Anti-Biofilm Activity of ZnO Nanoparticles
ZnO nanoparticles inhibited biofilm formation 

in both Staphylococcus aureus and Acinetobacter 
baumannii. At 500 µg/mL, biofilm inhibition was 
78% for S. aureus and 90% for A. baumannii.

CONCLUSION
This study highlights the potential of zinc 

oxide nanoparticles (ZnO-NPs) as a promising 
antimicrobial agent against drug-resistant 
pathogens, particularly Acinetobacter baumannii 
and Staphylococcus aureus. The synthesized ZnO-
NPs exhibited significant antibacterial activity, 
with their efficacy being enhanced in combination 
with ciprofloxacin, demonstrating a synergistic 
effect that could mitigate bacterial resistance. The 
nanoparticles also displayed potent anti-biofilm 
and antioxidant properties, further underlining 
their multifunctional utility in combating bacterial 
infections.

The characterization of ZnO-NPs revealed a 
hexagonal wurtzite structure with nanoscale 
dimensions and favorable colloidal stability. 
The antimicrobial activity of ZnO-NPs was dose-
dependent, with complete inhibition of A. 

baumannii observed at a concentration of 0.5 
mg/mL. Moreover, their ability to inhibit biofilm 
formation and scavenge free radicals suggests 
their potential application in various biomedical 
fields, including infection control and wound 
healing.

This work underscores the importance of 
integrating nanotechnology with conventional 
antimicrobial strategies to address the growing 
challenge of antibiotic resistance. Future research 
should focus on exploring the mechanisms of 
action of ZnO-NPs in greater depth, assessing 
their biocompatibility in clinical settings, and 
investigating their efficacy in vivo to facilitate 
their translation into therapeutic applications. The 
promising findings of this study pave the way for 
the development of nanoparticle-based therapies 
as a complementary approach to traditional 
antibiotics.
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