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The present study involved the synthesis of graphene oxide and 
polyanthranilic acid, along with the oxidation of multi-walled carbon 
nanotubes, to produce MWCNTs-COOH. The polyanthranilic acid 
solution was mixed with epoxy resin to prepare the mother solution. Then 
the polymeric nanocomposites (GO/Epoxy-PANA, MWCNTs/Epoxy-
PANA) were prepared. The prepared materials were characterized by 
XRD, EDX and SEM. Finally, polymeric coatings were prepared, which 
consist of adding the mother solution and hardener with graphene oxide 
and oxidized carbon nanotubes, which are corrosion resistant. It was also 
found that the inhibition efficiency increased in the case of MWCNTs / 
Epoxy-PANA more than GO / Epoxy-PANA. On the other hand, the 
coating samples were examined by (SEM) and the results were recorded. 
The effects on activation energy (Ea), enthalpy (∆H) and entropy (∆S) 
were also studied. 

INTRODUCTION
In numerous fields, corrosion poses a 

significant and potentially hazardous challenge. 
Presently, several scholars concentrate on the 
utilization of nanocomposite coatings as an 
efficacious approach to forestall steel corrosion. 
The current overview investigates the potential 
implementation of nanocomposite coatings 
for corrosion management. Recent studies on 
corrosion inhibition are scrutinized herein. Diverse 
factors, such as the nature of nanomaterials, their 
sizes, concentrations, blending, and additives, 
impact the effectiveness of nanocomposite 
coatings [1]. Nanocomposites have gained great 
popularity in their use for this purpose, due to 
the attractive structures they produce when 
mixed, and their ability to impede corrosion by 

forming a distinct layer between the corrosive 
solution and the target metal (specifically, low 
carbon steel). The importance of nanocomposite 
anti-corrosion coatings in a variety of fields. 
Many polymeric nanocomposites have been 
widely used in this field, such as (MWCNTs), 
which include nanotubes, for example (carbon 
nanosheets and sheets), graphene oxide and 
its derivatives, and various types of polymers, 
including (epoxy polymers).( polyaniline, and 
polymers), its derivatives (polyurethane) and for 
example (polyurethane) (polyanthranilic acid) . 
Materials, whether made or naturally produced, 
have the ability to exhibit essential properties 
of the starting material, including high strength, 
stiffness, and high modulus. The process of 
separating chemically distinct phases through a 
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specific interface is known as thermal expansion 
[2]. Polymeric components of composite materials 
comprise two fundamental constituents, namely 
the matrix phase and the dispersed phase. The 
former, which is a continuous component of 
the body (dispersion phase), encompasses the 
composite and imparts it with a volumetric shape 
and can be constituted of polymeric, metallic or 
ceramic materials. The latter, on the other hand, is 
the structural component (dispersed phase) that 
defines the internal structure of the composite 
and imparts it with a solid shape. Dispersed 
phases can assume the form of fibers, particles, 
flakes or whiskers [3]. Polymeric Nanotechnology 
represents the manipulation of matter at the 
atomic, molecular, or supra-molecular scale within 
the size range of 1 nm to 100 nm in at least one 
dimension of its shape. Nanochemistry involves 
the study of interactions amongst atoms or 
molecular materials ranging in size from 1 nm to 
100 nm [4]. Therefore, the adsorption of positively 
charged corrosion inhibitors is advantageous. 
The ligands consist of atoms that coordinate with 
the ions of the oxidized complexes, and their 
unpaired electrons occupy the empty orbitals 
of the said ions. Thus, the coordination bond 
formed becomes positively charged, which leads 
to the conversion of the bonding molecule into 
a positively charged corrosion inhibitor [5-14]. In 
the synthesis of metal-organic, organic ligands, 
such as (MWCNTs /Epoxy-PANA, GO /Epoxy-
PANA), are favored among the polymeric varieties, 
since they comprise heteroatoms, including 
O. These heteroatoms exhibit the capability to 
establish coordinate bonds with metal atoms 
located on the surface of low carbon steel, 
thereby facilitating their adsorption onto the 
said surface. Consequently, these heteroatoms 
often serve as active adsorption sites for organic 
matter materials, thereby playing a crucial role in 
corrosion inhibition. Addition, the high porosity of 
the organic material enables the active sites to be 
fully exposed, facilitating their effective adsorption 
onto the surface of carbon steel, thus achieving 
the ultimate goal of corrosion protection. 
Simultaneously, the polymeric materials play an 
essential role in this process.[15–17].

Fields.Among these polymeric materials, 
graphene oxide-polymer and carbon nanotube-
oxidized polymer nanocomposites have 
garnered considerable attention due to their 
unique blend of characteristics arising from 

graphene oxide and carbon nanotube-oxidized 
polymers. The corrosion of nanocomposite 
metal structures poses a significant challenge to 
virtually all industries.Graphene oxide-polymer 
nanocomposites have gained significant attention 
in recent years due to their unique combination 
of properties derived from graphene oxide 
and polymers. These nanocomposites metals 
structures’ corrosion poses a major hurdle to 
almost all industries. Given the multifarious 
objectives of augmenting corrosion resistance, 
minimizing financial expenditures, and enhancing 
occupational safety, guaranteeing the durability 
of these structures is of paramount importance. 
Organic coatings are regularly employed to shield 
metallic structures from corrosion. It is generally 
believed that these polymeric coatings function as 
a physical barricade between the metal substrate 
and the corrosive environment[18-21]. Graphene 
oxide, a 2D material consisting of graphene sheets 
functionalized with oxygen groups, has exceptional 
mechanical, thermal, and electrical properties. 
Despite this, solvent-based epoxy coatings are 
typically used in highly aggressive environments 
due to their superior adhesion to metals, chemical 
resistance, processability, and cost-effectiveness. 
However, the hydrophilic hydroxyl groups in epoxy 
coatings make them susceptible to hydrolytic 
degradation in humid conditions and the exposure 
to corrosive electrolytes may initiate and propagate 
cracks in the coating. As a result, agents such as 
water, oxygen, Cl−, and H+ can penetrate through 
the coating defects and access the metal/coating 
interface, leading to reduced coating adhesion and 
an increase in metallic substrate corrosion [22-24]. 
Coatings are widely used as commercial coatings 
in highly demanding applications. To surmount 
this challenge, scholars have concentrated on 
integrating graphene oxide and carbon nanotube-
oxidized into polymers, such as polyaniline (PANI), 
or one of its derivatives, such as poly (o-phenylene 
diamine), poly (p-phenylene diamine), poly 
(anthranilic acid), Poly (o-toluidine), and Poly(m-
toluidine), among others, to produce polymer 
nanocomposites [25-29]. Poly Anthranilic Acid 
(PANA) is an electrically conducting polymer that 
is recognized for its high electrical conductivity, 
environmental stability, and processability. It can 
be synthesized via the oxidative polymerization 
of anthranilic acid [30]. PANA offers a conductive 
pathway within the nanocomposite, facilitating 
charge transfer and increase resistance corrosion. 
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The incorporation of PANA enhances corrosion 
inhibition of the nanocomposite, leading to reduce 
of corrosive and improved charge storage and 
energy dissipation capabilities[30-32]. Graphene 
oxide (GO) oxide and carbon nanotube-oxidized 
(MWCNTs-COOH) possesses oxygen-containing 
groups, including hydroxyl, carboxyl, and epoxy 
groups. That are present on both its basal plane 
and edges. These groups serve as reactive sites 
for covalent functionalization, as established 
in previous studies [18-24]. Various covalent 
functionalization techniques have been evaluated 
for GO & MWCNTs-COOH dispersion within a 
polymer matrix. [18].

Additionally, when combined in a 
nanocomposite, graphene oxide and carbon 
nanotube-oxidized conducting polymers, they 
create a synergistic effect, which enhances the 
insulating properties of the resulting material. The 
unique combination of these ingredients provides 
several benefits: (i) improved resistance of the 
nanocomposite against corrosion, (ii) improved 
thermal stability. Bars used in many applications 
are discussed, such as petrochemical plants, oil 
and gas wells, reinforcing bars in concrete, and the 
mining industry. Overall, the synergistic effect of 
combining graphene oxide, into a nanocomposite 
results in a material with good use as corrosion 
inhibitors, oil pipeline protection, heat resistance, 
conductivity, and other areas of interest, Relevance 
[33-41].

The aim of this investigation is to synthesize 
graphene oxide and oxidized carbon nanotubes 
independently, followed by the preparation of 
polyanthranilic acid and its combination with 
epoxy resin to form the mother liquor, with the 
final production of MWCNTs-COOH /Epoxy-PANA 
and GO- /Epoxy-PANA composites to study their 
effectiveness in inhibiting corrosion of low carbon 
steels in highly corrosive environments.

Finally, Anti-corrosion coatings are employed in 
various offshore platforms such as ships, offshore 
structures, steel bridges exposed to the seawater 
environment, and loads aboard oil tankers and 
bulk carriers. The reason for this is that corrosion 
can potentially degrade structural materials, 
facilitate fatigue cracks, brittle fracture, and 
unstable failure, which can then greatly impact 
the structural integrity of the entire structure. 
In light of this, our research utilized a polymeric 
nanocomposite as a corrosion inhibitor for low 
carbon steels, yielding favorable outcomes [42].

MATERIALS AND METHODS
Chemicals and Instrumentations

All the chemicals and solvents were acquired 
directly from the companies Sigma-Aldrich, SDH, or 
Riedel-de haёn and were used in their original form 
without undergoing any purification or alteration. 
In order to analyze the materials prepared. Infrared 
spectroscopy was conducted using a Perkin Elmer 
FT-IR 65 instrument. X-ray diffraction analysis was 
performed using a Shimadzu XRD-6000 instrument 
with Cu Kα radiation (wavelength of 1.5406 Å). 
The surface of the samples was examined using a 
TESCAN MAIA3 scanning electron microscope. For 
TEM examination of the synthesized compounds, 
a Zeiss EM 10C-100 KV device from Germany, 
provided by Day-Petronic Co., was utilized. Lastly, 
the dielectric properties were investigated using 
a GW INSTEK LCR-8105G instrument with a 
frequency range spanning from 100 kHz to 5 MHz.

Synthesis of graphene oxide (GO) nanosheets
Graphene oxide was synthesized from graphite 

using a modified Hummer method. In a 250 ml 
reaction flask placed in an ice bath at 0°C, 0.50 
g of graphite powder and 1.0 g of NaNO3 were 
combined with 23 ml of concentrated H2SO4 and 
stirred vigorously for 20 minutes. Subsequently, 
3.0 g of KMnO4 was slowly added to the mixture 
with rapid stirring, while maintaining the 
temperature between 0-5°C. The mixture was 
then moderately stirred for one hour. Following 
this, 50.0 ml of water was cautiously added to 
the suspension under strong stirring. To dilute 
the prepared suspension, 150.0 ml of warm 
distilled water was added, and the concentration 
of remaining permanganate was reduced by 
dissolving manganese ions through the addition 
of 5.0 ml of hydrogen peroxide (30%). Finally, the 
resulting suspension was filtered, washed multiple 
times with warm distilled water, and subjected 
to ultrasonic treatment to exfoliate the GO into 
nanosheets. The nanosheets were subsequently 
dried in an oven at 90°C for 24 hours to obtain the 
GO powder. GO was synthesized using graphite 
as a starting material by the modified Hummer 
method [27,42]. 

Synthesis of Carbon nanotube oxidized (MWCNTs-
COOH)

Carbon nanotube its oxidized by weight 
(1g) of carbon Nanotube by mixing it with two 
acids Sulfuric ( H2SO4) and Nitric (HNO3 )in a ratio 
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of (4:1) (10 ml) of nitric acid with (40 ml) of sulfuric 
acid. It is stirred for (15 min), and the carbon 
Nanotube is gradually added to the mixture while 
maintaining the temperature between (60-70) °C. 
It is left to stir for (24 h), then the solution is taken 
and filtered by a centrifuge at a speed of (5000 
RPM) for a period of (15 min, then the precipitate 
is washed and dried at a temperature of 80 °C. and 
examines its components [159-160].

Synthesis of poly (anthranilic acid) (PANA)
Poly anthranilic acid (2.05 g) was synthesized 

by polymerizing anthranilic acid with ammonium 
persulfate (APS) (6 g) in an aqueous solution of 
acetic acid at room temperature. Initially, 2.05 g 
of anthranilic acid was added to 50 ml of acetic 
acid (1 M) while stirring. The oxidizing agent APS, 
dissolved in 50 mL of distilled water, was then 
added drop by drop to the monomer solution. 
Once the addition was complete, the mixture was 
left to stir for 24 hours at room temperature. The 
resulting product was filtered, washed multiple 
times with 1 M acetic acid, and then rinsed with 
deionized water to remove any remaining acetic 
acid residue. The precipitate obtained was allowed 
to dry at room temperature for 48 hours [30,43].

Preparation of Epoxy-Poly (Anthranilic Acid) 
(PANA) Polymer composite (Mother Solution)

The mother solution, Epoxy-PANA, was 
prepared by directly mixing a poly (anthranilic 
acid) solution with epoxy resin. Firstly, 0.5 g of 
poly (anthranilic acid) (PANA) was dissolved in 
30 ml of absolute ethanol and left stirring for 30 
minutes until complete dissolution. Then, 30 ml of 
epoxy resin was gradually added to the polymeric 
solution while vigorously stirring until thorough 
mixing was achieved. The mixture was further 
stirred for one hour to ensure the formation of 
a homogeneous polymeric solution consisting of 
epoxy and poly (anthranilic acid) (Epoxy-PANA).

Preparation of Polymeric coating 
Polymeric were coating prepared to examine 

their Corrosion rate and inhibition efficiency. The 
following procedure was followed for preparing 
the various polymeric coating described in 
Additionally, separate polymeric were coating 
prepared from nanostructures. A 0.05 gm of one 
of the nanostructure was added to a 10 ml of the 
mother solution (Epoxy- PANA), which was then 
suspended by ultrasound until a homogeneous 

solution was obtained. Next, a 5 ml of hardener 
was added to the mixture, and it was further 
suspended by ultrasonic waves for 30 min. Finally, 
the resulting products were the polymeric coating, 
MWCNTs-CCOOH/Epoxy-PANA GO /Epoxy-PANA.

Measurement of Weight Loss
The corrosion rate values were determined by 

employing Eq. 1 utilizing the weight-loss approach. 
This non-electrochemical technique is extensively 
utilized to evaluate the corrosion rate and inhibitor 
efficiency, and it produces more dependable 
results than electrochemical procedures since 
it realistically accommodates experimental 
circumstances [44].

To ascertain the extent of weight loss endured 
by steel test samples that had been pre-cleaned 
and completely dried, said samples were initially 
weighed and then submerged into a beaker 
that contained 100 ml of 1 M HCl for a duration 
of 3 hours. The samples were subjected to both 
inhibited and uninhibited conditions, with the 
inhibitor GO/(PANA - Epoxy) and MWCNTs-COOH/
(PANA - Epoxy) being tested for their corrosion 
rates and inhibition efficiency under varying 
temperatures in 1 M HCl. Meanwhile, the effects of 
different temperatures (namely 10, 20, 30, 40, and 
50 degrees Celsius) on the aforementioned factors 
were also explored. The results were subsequently 
compiled into Tables 1 and 2. Corrosion rates (CR) 
in relation to low carbon steel were determined 
via weight reduction using the Eq. 1 [45].

       CR =  ∆W
A × t × 240000 

  

                                         (1)

Where: The weight loss (g) is represented by 
ΔW, while surface area (m2) is denoted as A. The, 
and the time of exposure (day) is indicated as t. 
Where erosion rates are given in units of /𝑚2.day, 
which is denoted by ( gmd) [124].

Where: To ascertain the inhibition efficiency (IE), 
the subsequent formula, which may be articulated 
in the form of Eq. 2, was employed [46].

                                                                                     (2)IE% = Wuninh− Winh
Wuninh

∗ 100 

  

 
Including temperature and concentration, the 

experimental results were recorded in Table 3. It 
was observed that the corrosion rate increased 
with temperature but decreased with increasing 
inhibitor concentration. Furthermore, the 
inhibition efficiency increased with increasing 
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inhibitor concentration polymeric Nano composite 
and temperature.

RESULT AND DISCUSSION
FTIR

The FTIR spectrum of GO was presented in Fig. 
1, revealing characteristic peaks at 3426, 1720, 
1628, and 1058 cm-1, which can be assigned to 
ν(O-H), ν(C=O), ν(C=C) in unoxidized graphite, and 
ν(C-O), respectively [46]. As presented in Fig. 1, 
the FTIR spectrum of PANA exhibits distinct bands 
at 3370, 3210, 1690, 1607, 1517, and 1244 cm–1, 

which can be attributed to ν(O-H), ν(N-H), ν(C=O), 
ν(C=C quinoid), ν(C=C benzenoid), and ν(C-H), 
respectively. It is noteworthy that these bands 
have been previously reported [30,47].

The FTIR spectra of MWCNTs-COOH ( Prepared 
in an acidic medium) as shown in Fig. 2, where 
a broad and clear peak appears at (3428 ) cm-1, 
indicating the presence of carboxylic groups, and 
a bending frequency for (C-O) at (1397.5) cm-1 
, and the presence of successive peaks at The 
frequency at (1672.5 cm−1) is associated with the 
stretching vibrations of carbonyl groups’( -C=O) , 

T (℃) Corrosion 
Without inhibitor (g/ h . m) 

10 102.7716 

20 187.5916 

30 732.2837 

40 3444.6 

50 7586.636 
 
  

T (℃) MWCNTs-COOH /PANA-
Epoxy (g/ h . m2) GO/ (PANA-Epoxy) (g/ h . m2) 

10 91.04957 73.44723 

20 151.4897 125.5455 

30 130.719 171.757 

40 138.1499 146.1481 

50 175.2714 178.1289 
 
  

T (℃) MWCNTs-COOH /PANA-Epoxy 
(IE%) (PANA-Epoxy) / GO (IE%) 

10 11.40592 28.53355 

20 19.24494 33.07508 

30 82.14914 76.54502 

40 95.98938 95.75718 

50 97.68973 97.65207 
 
  

Table 1. Shows the impact of temperature on the corrosion rate of low 
carbon steels in 1M HCl without a corrosion inhibitor.

Table 2. Effect of temperature on the corrosion rate (CR) and inhibition efficiency (IE %) of 
corrosion of low carbon steels in 1M HCl in the presence of MWCNTs-COOH / (PANA-Epoxy) & 
GO/ (PANA-Epoxy) as acorrosion inhibitor.

Table 3. Effect of temperature on the inhibition efficiency (IE %) of corrosion of low 
carbon steels in 1M HCl in the presence of MWCNTs-COOH / (PANA-Epoxy) & GO/ 
(PANA-Epoxy) as acorrosion inhibitor.
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while the frequency (2914.5 cm-1) is evidence The 
presence of The vibrations of ( C-H) stretching in 
alkyl groups, As for the out-of the level bending (in 
the fingerprint area) at a frequency of (774.5 cm-
1), it indicates that there is no (O-H) interference 
at the tip, and the frequency at (1624.5   cm-1 ) 
corresponds to the double bond (C=C)’s bending 
vibration of deformation. and the absorption 
peaks found at (1049 cm-1 ) correspond to (C-
O) group deformation vibrations. These (FTIR) 

readings indicate that the reaction was successful 
[48]. 

XRD
In Fig. 3, the XRD spectra of graphite (Gt) 

and graphene oxide (GO) are presented. The 
XRD analysis of graphite (Fig. 3a) is crucial for 
discerning structural changes in the prepared 
graphitic materials. The XRD pattern of graphite 
reveals two distinct peaks at 2θ angles of 26.5° 

 

  

 

  
Fig. 2. FTIR of MWCNTs-COOH.

Fig. 1. FTIR of GO.
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and 54.6°, corresponding to interlayer distances of 
3.36 Å and 1.68 Å, respectively [49].

On the other hand, the XRD measurement of 
GO (Fig. 3b) exhibits a prominent peak at 2θ = 
10.01°, indicating an interlayer distance of 8.75 Å. 
This peak is attributed to the presence of oxygen 
functional groups that form on the sheet surfaces 

during the oxidation process. Additionally, 
graphene oxide displays a peak at 2θ = 26.41°, 
resulting from partial exfoliation of the graphite 
[50]. Another peak observed at 2θ = 16.86° 
corresponds to graphite oxide, which is formed 
during the oxidation process [51,52].

Fig. 4 displays the XRD spectrum of the 
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Fig. 4. XRD of MWCNTs-COOH nanostructures.

Fig. 3. XRD of graphite and graphene oxide.
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synthesized MWCNTs-COOH nanoparticles. The 
diffractogram of MWCNTs-COOH nanoparticles 
exhibits distinct Cu Kα rays (λ = 1.5406Å) were 
utilized within the angle domain 2θ = 0.50°÷ 800° 
yen. Structural properties of MWCNTs-COOH were 
obtained by means of the hammer method using 
X-ray phase analysis, and the corresponding carbon 
peaks were observed in the spectrum. Two distinct 
peaks were observed in the spectrum, and the 
broadening of these peaks can be attributed to the 
presence of smaller particles. The X-ray diffraction 
peak of MWCNTs-COOH is distinctly discernible at 
(25.49 °). Consequently, the interlayer separation 
distance (d) is equivalent to (0.335898nm), and 

this peak was characterized by the (001) index. 
Additionally, another peak is visible in the figure at 
(47.64°), representing the interlayer spacing ratio. 
This peak measures (0.192877nm), and it was 
identified by the (002) index. Fig. 4.

EDX
Fig. 5a-c displays the EDX spectra of Gt 

(graphite), GO (graphene oxide), and MWCNTs-
COOH, respectively. The EDX analysis of graphite 
(Fig. 5a) indicates a 100% weight ratio of carbon 
signal at Kα = 0.27 keV [53-54]. On the other 
hand, the EDX analysis of GO (Fig. 5b) reveals a 
composition of GO nanosheets with a 52.21% 

 
 

 

 

 

 

 

  

  

(c) 

Fig. 5. EDX of (a) Gt, (b) GO, (c) MWCNTs.
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weight ratio of carbon signal at Kα = 0.27 keV and 
a 47.79% weight ratio of oxygen signal at Kα = 
0.50 keV. The higher oxygen content in graphene 
oxide compared to graphite is attributed to the 
oxidation processes involving strong oxidants such 
as KMnO4, NaNO3, and H2SO4 [55-60].

In the case of the spectra obtained through EDX 
analysis at spectrum 71 (as shown in (Fig. 5c) yield 
data comprising peaks that correspond to the 
diverse elements present in the sample. Each of 
these elements exhibits characteristic peaks with 
distinct energies, which have been extensively 

 

 
  

(e) (f) 

Fig. 6. FE-SEM of (a) Gt, (b-d) GO, (e, f) MWCNTs-COOH.
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documented .The chemical composition of the 
compound under investigation is primarily carbon, 
comprising (96% of its mass), followed by oxygen, 
which constitutes( 4% of its mass) . The presence 
of multi-walled carbon nanotubes functionalized 
with carboxylic acid (MWCNTs-COOH) has been 
successfully established through rigorous analysis. 
Additionally, our EDX analysis has revealed the 

presence of gold (Au). This observation can be 
attributed to the fact that prior to conducting the 
elemental analysis, a scanning process was carried 
out . This is evidence of the presence of carboxyl 
groups -COOH.

FE-SEM
The scanning electron microscope (FE-SEM) 
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Fig. 7.A(1-8)) Shown the study utilized Scanning Electron Microscopy (SEM) for corrosion of low carbon steel, after coating 
it with (MWCNTs-COOH/PANA-Epoxy), B(1-8)) Shown the study utilized Scanning Electron Microscopy (SEM) for corrosion 

of low carbon steel, after coating it with ( GO/PANA-Epoxy).
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is a sophisticated imaging tool extensively 
employed for examining the surface topography 
and dimensions of various samples at a nanoscale 
resolution. This technology finds widespread 
application in diverse scientific fields, including 
materials science, nanotechnology, biology, 
geology, and more, aiding in comprehensive 

material analysis and research [61-66].
Fig. 6a-f shows the FE-SEM examination of 

graphite (Gt), graphene oxide (GO) nanosheets 
and nanoparticles (MWCNTs-COOH).The FE-SEM 
examination of the graphite shown in the figure 
(6.a) shows that it appears as a large block of 
graphite in the form of stacked sheets. Also, this 

 

 

 
Fig. 8. A) Transition state diagram of corrosion of low carbon steel in (1M HCl), B) Transition state diagram of corrosion of 
low carbon steel in (1M HCl) in the presence of GO / PANA-Epoxy, C)  Transition state diagram of corrosion of low carbon 

steel in (1M HCl) in the presence of MWCNTs-COOH / PANA-Epoxy.
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large composition contains some deformations 
and small parts above the plates, and these results 
from the graphite grinding process.

Fig. 6.b-d presents the FE-SEM examination of 
graphene oxide nanosheets. It is noted from the 
figure that thin, smooth sheets appear that do not 
contain distortions and defects on the surface of 
the sheet, and this indicates the success of the 
used preparation method. It is also noted that 
there are some folds on the surface of the plate, 
and this is a result of the twisting of the plate itself 
or the accumulation of one part of the plate on 
another part of it, to be in this structure.

Figs. 6.e,f An FE-SEM scan of the MWCNTs-
COOH nanoparticles is shown. The figure shows 
that the nanoparticles appear as filaments.It is 
also noted that there are some clusters of these 
particles, which leads to their appearance in the 
form of nanotubes.

Study (SEM) for corrosion of low carbon steel after 
coating with
GO /PANA-Epoxy, MWCNTs-COOH/PANA-Epoxy

The morphology of MWCNTs-COOH/PANA-
Epoxy represents after immersion in (1M) HCL acid 
for (3 hours) and at (50 °C ) in Fig. 7A (1-8 ). Due to 
the polymer’s resistance to acid and its interaction 
with the acid and the formation of a protective 
layer that prevents corrosion of low-carbon steel. 
Figures show the non-dissolution of the polymer 

and the strength of its bonding. It is noted from 
the figure that there is little corrosion despite the 
acid, temperature and time, and this is proven by 
the corrosion results in our current study, where 
the corrosion percentage was (175.2714) and the 
inhibition efficiency was (97.68973%).

The morphology of GO/ PANA-Epoxy for the 
nano composite after immersion in HCL (1M) acid 
for (3 hours) and at (50 °C). From the figure, we 
notice that the percentage of distortions on the 
surface of the alloy coated with this material is 
large compared to the case before adding tungsten 
oxide, due to the coating being affected by acid 
and heat, as the corrosion results showed that 
the corrosion rate is (178.1289) and the corrosion 
prevention efficiency is (97.65207%). Althoug 
in doing so, the coating thus prevents corrosion 
of low carbon steels. Figs. 7B (1-8)) show that, 
despite the acidity and high temperatures, the 
coating resisted corrosion [67-76]. 

Thermodynamic analysis
The transition state equation was used to 

evaluate the creation process of the polymeric 
nanocomposite.

                                                                                     (3)ln(CR) = lnA − Ea
RT 

 Whereas A, Ea, R, and T are defined as the 
frequency factor, activation energy, gas constant, 

Inhibitor ∆S *(J / mol . K) ∆ H *(kJ / mol ) 

GO/ PANA-Epoxy -163.4384556 12.3911856 

MWCNTs-COOH/ PANA-Epoxy -181.742558 6.82862076 

Low carbon steel without inhibitor -71.33180655 84.752916 

 
  

Inhibitor Ea (kJ / mol ) 

GO/ PANA-Epoxy 14.90201 

MWCNTs-COOH/ PANA-Epoxy 9.339948 

Low carbon steel without inhibitor 29.97197 
 

Table 5. Corrosion activation energy values ​​for low carbon steels in (1 M) of hydrochloric acid for GO/PANA-Epoxy & MWCNTs-
COOH/PANA-Epoxy  

Table 4. Enthalpy and entropy of the corrosion process of low carbon steels with GO/PANA-Epoxy & MWCNTs-COOH/PANA-Epoxy in 
(1 M) of hydrochloric acid
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and absolute temperature, respectively. The 
activation energy was determined by utilizing 
the Arrhenius plot of ln (CR) versus 1/T, wherein 
a slope of (-Ea/R) and an intercept of ln (A) were 
observed.

Where: Enthalpy activation (∆H*) and entropy 
(∆S*) were ascertained through the use of Figs. 
8A and 8 B. The plotting of ln(CR/T) versus (1/T) 
facilitated the derivation of straight lines with 
slopes equivalent to (-∆H*/R) and intercepts 
equivalent to (∆S*/R)+ln(R/Nh). These values 
were subsequently tabulated in Tables 5 and 6. 
Notably, the dissolution process was found to be 
endothermic when positive enthalpies (∆H*) were 
observed [77]. According to literature, it has been 
suggested that a physisorption or chemisorption 
reaction would result in exothermicity, whereas 
a chemisorption reaction would lead to 
endothermicity [75-76].When the value of ΔS* 
is negative, it may be attributed to the inhibitor 
molecules remaining unhydrolyzed in solution 
and instead forming a cross-linked network on the 
surface of low carbon steel. This, in turn, leads to 
a decrease in randomness as the reactants fail to 
move towards the low carbon steel. However, in 
graphene oxide, the addition of tungsten oxide in a 
certain percentage leads to the inhibitor tungsten 
oxide molecules becoming more regularly 
arranged on the surface of the sample. This 
eventually results in a decrease in entropy value 
as the percentage of tungsten oxide in graphene 
oxide increases. This observation is consistent with 
scientific experiments that have demonstrated 
the efficacy of increasing concentration [77-78]. 
Nevertheless, positive values of ΔS* indicate a 
higher corrosion rate. [6,77-78].

In addition, the presence of GO/PANA-Epoxy 
and MWCNTs-COOH/PANA-Epoxy in (Table 6) 
causes the energy to decrease to (9.339948kJ/
mol) in the case of MWCNTs-COOH/PANA-Epoxy.
These data show that the activation energy (Ea) 
decreases, indicating a lower energy barrier for 
the inhibition reaction.A higher activation energy 
in the presence of this means that the activation 
energy decreases with increasing inhibition 
(corrosion inhibition).

CONCLUSION
Based on the results obtained from the analysis 

carried out, the following conclusions can be 
drawn:

1- It can be inferred that the rate of corrosion 

experienced by low carbon steel in a 1M HCl 
solution is directly proportional to the increase in 
temperature.

2- The coating prepared from the polymeric 
nanocomposite (PANA-Epoxy) with (graphene 
oxide ) effectively inhibits the corrosion of low 
carbon steels in Corrosive solution 1𝑀 𝐻𝐶𝑙 and 
with different temperatures.

3- The coating prepared from the polymeric 
nanocomposite (PANA-Epoxy) with (carbon nano 
tube oxidized) effectively inhibits the corrosion of 
low carbon steels in Corrosive solution 1𝑀 𝐻𝐶𝑙 
and with different temperatures.

4- The inhibition efficiency of the prepared 
coatings was observed to reach between 97.65207-

97.68973)%. Increases with the difference of 
the nanocomposites and with the increase in 
temperature. On the other hand, the inhibition 
efficiency of the combined effect increases 
significantly when adding tungsten oxide, and also 
increases with the increase in temperature, effect 
.It results from an increase in the percentage of 
the base component of the paint, which actually 
interacts with the surface of the paint and not the 
steel, because the paint protects the steel from 
corrosion.

 4- The results from this study show a good 
agreement with the Linkmuir adsorption 
temperature. This is confirmed by the presented 
thermodynamic values, where negative standard 
free energy values ​​indicate that the adsorption 
process is spontaneous and endothermic. 
Moreover, the entropy of the system undergoes a 
decrease during the process.

5-This particular study yields valuable insights 
into the inhibitory properties of polymeric 
nanocoatings under specific conditions. The use 
of polymeric nanocomposites is preferred due 
to their thermal hardening capabilities, which 
prevent decomposition at high temperatures and 
are thus more favorable than alternative inhibitor.
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