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The biological activity was studied using biogenic reduced graphene oxide 
nanocomposites (RGO) that combine some unique properties such as 
high surface area, conductivity, with biocompatibility, making them ideal 
for many medical and biological applications. The RGO nanocomposite 
were prepared from Klebsiella oxytoca (K. oxytoca) against the commonly 
occurring pathogenic bacterium Staphylococcus aureus (S. aureus) 
isolated from diabetic foot infections. The antibacterial activity of reduced 
graphene oxide nanocomposites against S. aureus was investigated at 
different concentrations. The synthesized nanoparticles were examined for 
antibacterial activity with 125, 250, 500, and 1000 µg/ml concentrations 
against pathogenic S. aureus. Reduced graphene oxide nanocomposites 
with these concentrations showed antioxidant activity by scavenging 
2,2-diphenyl-1-picrylhydrazyl (DPPH) free radicals. The inhibition 
percentage in the DPPH-reduced graphene oxide mixture was 29.42% 
at 125 µg/ml, 37.27% at 250 µg/ml, 40.76% at 500 µg/ml, and 54.06% at 
1000 µg/ml. Reduced graphene oxide nanocomposites did not show any 
hemolysis for the tested blood. Additionally, biogenic reduced graphene 
oxide nanocomposites did not cause degradation of human DNA at the 
concentrations used in the current study.

INTRODUCTION
Klebsiella oxytoca, a Gram-negative bacterium, 

has gained substantial consideration in recent 
years for its role in the fabrication of nanoparticles. 
As a facultative anaerobe with varied metabolic 
competencies, K. oxytoca can reduce metal ions 
and yield nanoparticles using their enzymatic 
action and secreted biomolecules. This green 
fabrication method offers a sustainable and 
eco-friendly substitute for traditional chemical 
approaches [1]. Notably, molecular research has 

highlighted the genetic versatility of K. oxytoca, 
counting the recognition of resistance genes [2]. 
Graphene is a two-dimensional allotrope of carbon 
composed of layers formed by single carbon atoms. 
In graphene, these carbon atoms demonstrate sp² 
hybridization within a two-dimensional hexagonal 
crystal lattice, connected by σ and π bonds. 
Research into the theoretical aspects of graphene 
commenced well before the material itself was 
physically produced. In 1947, Wallace, a Canadian 
theoretical physicist, was the pioneer in exploring 
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graphene theory. Subsequently, in 2004, Jim, a 
Dutch-British physicist, and Novoselov, a Russian-
British physicist, successfully synthesized the first 
graphene samples, leading to their receipt of the 
Nobel Prize in 2010[3]. Graphene exhibits several 
outstanding characteristics, such as excellent 
conductivity, a vast surface area, and strong 
mechanical and thermal stability. These attributes 
render graphene a valuable material for numerous 
uses, including fuel cell catalysis, supercapacitors, 
photocatalysis, heterogeneous catalysis, water 
purification, and applications in pharmaceuticals 
and biosensing [4]. Graphene oxide (GO) is a 
material that holds significant potential for various 
graphene-based applications across fields such as 
electronics, optics, chemistry, energy storage, and 
biology [5]. 

 Nanotechnology studies the design of 
nanometer-sized materials with chemical and 
physical properties different from macroscopic 
materials [6]. Nanoparticles have been employed 
in many biological and medical applications, 
especially in addressing challenges of bacterial 
growth [7] and biofilm-related infections [8]. 
Developments in nanoparticle fabrication, driven 
by artificial intelligence (AI), have improved their 
properties and antimicrobial capabilities, allowing 
for precise targeting and minimized toxicity [9]. 
Magnetite (Fe3O4) is one of the most studied 
magnetic nanoparticles (NPs) due to its low cost, 
easy surface modification, and high magnetization 
levels that enable these particles to be used in 
many diverse applications [10,11]. Graphene and 
its derivatives, particularly graphene oxide (GO), 
have demonstrated significant effectiveness in 
stabilizing Fe3O4 nanoparticles (NPs) due to their 
layered structure, which provides a substantial 
surface area and enhances the reactivity of their 
functional groups. NPs that are immobilized by GO 
not only prevent aggregation but also preserve 
their inherent properties through a synergistic 
interaction between the two components. 
Furthermore, the creation of graphene-based 
antimicrobial nanocomposites has emerged as a key 
research focus, which can be classified into three 
categories: graphene–metal nanocomposites, 
graphene–metal oxide nanocomposites, and 
graphene–polymer nanocomposites. Recently, 
there has been increased interest in the 
development of graphene–metal nanocomposites 
because metal cations can bind directly to 
the oxygen groups on the surface of GO via 

electrostatic forces. Nanocomposites of stable 
metal-decorated graphene, such as GO-Ag, with 
antibacterial characteristics are formed when 
this interaction causes surface deoxygenation 
of the GO nanosheets. In order to achieve pure, 
biocompatible materials with antibacterial activity, 
a large financial investment is necessary for the 
extra processing of GO, which includes reduction, 
surface activation, and composite synthesis. If we 
compare GO to reduced graphene oxide (RGO), we 
see that GO is more stable in water and has better 
bactericidal action [12-17]. Different approaches 
were available for the synthesis of graphene oxide 
nanoparticles. Graphene is generally produced by 
Chemical Vapor Deposition (CVD) [18], chemical 
reduction of graphene oxide or thermal treatment 
of graphene oxide [19], and mechanical exfoliation 
of graphite with sonication in the presence of 
solvent or chemical /biological surfactant [20]. 

The current study emphasizes the biosynthesis 
of reduced graphene oxide (RGO) nanoparticles via 
the bacterium Klebsiella oxytoca. The fabricated 
RGO nanoparticle properties were characterized 
by employing advanced analytical techniques such 
as Field Emission Scanning Electron Microscopy 
(FESEM), Energy Dispersive X-ray Spectroscopy 
(EDX), Atomic Force Microscopy (AFM), X-ray 
Diffraction (XRD), and Fourier Transform Infrared 
Spectroscopy (FT-IR) to approve their structural 
and chemical properties. The antibacterial 
activity of RGO nanoparticles was assessed in 
contradiction of Staphylococcus aureus isolates 
from diabetic foot infections using the agar well 
diffusion method. Additionally, the antioxidant 
potential of RGO nanoparticles was assessed 
using the DPPH radical scavenging assay, and their 
biocompatibility was tested through hemolysis 
analysis. This method not only highlights the 
potential of K. oxytoca as a sustainable and eco-
friendly alternative for nanoparticle synthesis but 
also explores the multifunctional applications of 
RGO nanoparticles in antimicrobial and biomedical 
fields.

MATERIALS AND METHODS
Isolation and Identification of pathogenic bacteria 
from diabetic foot

Isolation and diagnosis of Staphylococcus 
aureus bacteria were performed by collecting 
100 samples from diabetic patients for this study. 
The identification of the bacteria was performed 
using their morphological features, specific 
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characteristics, biochemical assays, and the 
VITEK2 system. 

Preparation of Reduced graphene oxide 
nanoparticle by K. oxytoca 

Different types of bacteria were screened to test 
their ability to synthesize reduced graphene oxide 
nanoparticles. The efficient bacterium, Klebsiella 
oxytoca, was chosen for nanoparticle synthesis. 
K. oxytoca was cultivated in brain heart infusion 
broth for 24 hours at 37°C in a shaking incubator at 
150 rpm. The colloidal suspension was centrifuged 
for 15 minutes at 10,000 rpm to separate the 
precipitate. Graphene oxide was then added to 
the supernatant in a ratio of 1:1 of K. oxytoca at a 
concentration of 2.4 mg/ml to prepare graphene 
oxide nanoparticles. The mixture was incubated at 
37°C for 48 hours at 150 rpm and centrifuged for 
15 minutes at 10,000 rpm.

Characterization of reduced graphene oxide 
The RGO NPs were characterized using several 

analyses, including FESEM, EDX, AFM, XRD, and FT-
IR.

Antibacterial activity of RGO against S.aureus 
isolated from diabetic foot 

The antibacterial activities of RGO NPs were 
tested using Agar well diffusion method against 
S aureus bacteria isolated from diabetic foot. A 
dipping cotton swab was used to streak the entire 
surface of a Mueller Hinton agar tray. Then, using 
a sterile cork borer, pores (7 mm diameter) were 
created and filled with RGO NPs (100ul) in four 
concentrations (1000, 500, 250 and 125 μg/ ml), 
and the four wells were filled with distal water as 

a control. The Petri dishes were then incubated 
at 37°C for 24 hours. The diameter of the growth 
inhibition zones in millimeters was measured to 
determine antimicrobial activity [21,31].

The antioxidant activity of RGO against S. aureus 
isolated from diabetic foot

Antioxidant activity evaluation used an 
offline (DPPH) assay. The DPPH (1,1-diphenyl-
2-picrylhydrazyl) radical cation technique was 
adapted to assess the ability of one hundred pure 
chemical compounds to scavenge free radicals. 
The DPPH reagent was DPPH 200 μl as a control 
in the first well of the microplate. In a 96-well 
microplate, 100 μL DPPH reagent was mixed 
with 100 μL of the sample (RGO NPs at different 
concentrations of 1000, 500, 250, and 125 μg/ml) 
and incubated in the dark at room temperature 
for 30 min to measure scavenging activity. The 
absorbance was determined at 514 nm using an 
ELISA reader (TECAN, Grading, Austria). After 
incubation, 100 percent methanol was used as 
a blank [22]. The following formula was used to 
calculate the DPPH scavenging effect: 

Radical scavenging (%) = [(𝐴)control − (𝐴)
sample/ (𝐴)control] × 100.

The antihemolytic activity of RGO against S. aureus 
isolated from diabetic foot

On the blood of one healthy donor, haemolysis 
experiments were performed. The haemolysis 
was identified using Triton X-100 as a positive 
control indicator. A sterilized phosphate-buffered 
saline solution was employed as a negative 
control, allowing the stock solution to be stored 
at room temperature on a shaking plate for 2-4 

 
 

Table 1. Bacteria isolated types from diabetic foot.
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hours. After the incubation period, the sample 
was centrifuged at 10,000 rpm. In a 96-well plate, 
the supernatant was read using a microplate 
scanning spectrophotometer at 550 nm. RGO NPs 
throughout all the concentrations (1000, 500, 250, 
and 125 μg/ ml) did not cause haemolysis in the 
entire examined blood samples [33]. 

RESULTS AND DISCUSSION
Isolation and Identification of bacterial pathogen 
from diabetic foot

Several pathogenic bacterial species were 
isolated and diagnosed from the feet of diabetic 
patients, and the diagnosis results were as shown 
in Table 1. The isolation findings specify that S. 
aureus is the most commonly isolated bacterium 
from the infections of diabetic foot, accounting 

for 21% of the isolates. This prevalence indicates 
the necessity for targeted antibacterial strategies, 
particularly in diabetic patients who are extremely 
vulnerable to infections due to weakened 
immunity [24].

Biosynthesis of RGO NPs by K. oxytoca
K. oxytoca demonstrated the capacity for the 

extracellular production of GO nanosheets. The 
change in color of the reaction mixture from a 
transparent brown to black, accompanied by the 
formation of a precipitate, serves as an indicator 
of successful GO biosynthesis [23], as illustrated 
in the Fig. 1. This visual validation, joint with 
characterization findings, proves the ability of K. 
oxytoca to perform as a green and eco-friendly 
biosynthesis agent for RGO.

  Fig. 2. FESEM analysis of RGO NPs biosynthesis by K. oxytoca.

Fig. 1. Change color of supernatant.
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Characterization of RGO nanoparticles 
The characteristics of reduced Graphene Oxide 

(RGO) nanosheets produced by K. oxytoca were 
assessed using FESEM, EDS, AFM, FTIR, and XRD 
techniques. The RGO derived from K. oxytoca 
is regarded as exceptional and environmentally 
friendly. The employed analytical methods confirm 
the successful reduction of graphene oxide to 
RGO. A noticeable decrease in oxygen functional 
groups was observed (FTIR), and the nanosheets 
exhibited a thin, wrinkled appearance (FESEM), 
aligning with findings from earlier research [19, 
25]. These findings confirm the eco-friendly 
method of using K. oxytoca for nanoparticle 
synthesis. In RGO NPs the nanomaterial displayed 
a thin and wrinkled texture which was caused 
by the stacking of individual sheets by various 
self-assembly techniques. Nanoscale surface 
modification allows accurate engineering of 
materials through tailored properties, enhancing 
biomedical applications such as drug delivery and 
tissue engineering [26]. The images revealed that 

the RGO material consists of individual sheets 
closely associated with each other, with the RGO 
size range between (35-85 nm) and 49.31 nm as 
the average diameter as shown in Fig. 2. The RGO 
sample’s chemical composition was examined 
through energy dispersive X-ray spectroscopy 
(EDX). The analysis involved evaluating the optical 
absorption peaks related to carbon and oxygen 
to determine their concentrations on the surface 
of the sample. The reduction of graphene oxide 
(GO) was indicated by the weight percentages of 
carbon and oxygen, as illustrated in Fig. 3. Analysis 
using atomic force microscopy (AFM) revealed 
information about the exterior morphology, 
surface roughness, and average diameter of RGO 
nanosheets synthesized by K. oxytoca. So, the size 
and form of the final structures can be affected 
by the engraving duration and current density. 
The average diameter of the GO nanosheets 
synthesized by K. oxytoca was found to be 45.26 
nm. Additionally, three-dimensional images and 
distribution charts of the granularity accumulation 

 

Fig. 3. EDX analysis of RGO NPs biosynthesis by K. oxytoca.

Fig. 4. AFM analysis of RGO NPs biosynthesis by K. oxytoca.
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of RGO nanosheets are presented in Fig. 4.
To investigate the crystalline structure and 

interlayer spacing of reduced graphene oxide 
(RGO), X-ray diffraction (XRD) was used, confirming 
the conversion from graphene oxide (GO) to 
RGO by K. oxytoca. The analysis showed a broad 
diffraction peak for RGO at 2θ = 24.5°, indicating 
interlayer distances of 0.30 nm. This peak signifies 
RGO’s well-ordered crystalline structure and 
suggests effective removal of oxygen functional 
groups and water molecules during the reduction 
of GO nanosheets, illustrated in Fig. 5.

FTIR is a method employed to analyze the 
bonding characteristics of various types of oxygen. 
The FTIR spectroscopy examination of RGO 
synthesized using K. oxytoca isolates, conducted 
within a wavelength range of 400 to 3800 cm-1, 
revealed a significant reduction in the distinctive 
peaks related to oxygen functional groups. Notably, 
the peaks corresponding to hydroxyl and alkoxy 

groups were entirely absent, as illustrated in Fig. 
6. The absorption peaks detected were 2918.30 
cm−1; C–H , 1627.92 cm−1; C=O, 1469.76 cm−1; 
C=C, 1053.13 cm−1; C–O, These results indicate a 
significant reduction of oxygen functional groups 
from GO nanosheets [17].

Antibacterial of ORG NPs
RGO exhibited clear inhibitory activity against S. 

aureus isolated from the feet of diabetic patients 
at all studied concentrations. The inhibition 
increased with increasing concentration as shown 
in Fig. 7. The high-diameter inhibition zone was 
36 mm at a concentration of 1000 µg/ml, while 
the low-diameter inhibition zone was 15 mm at 
a concentration of 125 µg/ml as shown in Table 
2. The antibacterial activity findings reveal that 
RGO inhibits S. aureus growth successfully, with 
inhibition growing proportionally to concentration. 
This proposes that RGO is probably an effective 

Fig. 6. FTIR analysis of RGO NPs biosynthesis by K. oxytoca.

Fig. 5. XRD analysis of RGO NPs biosynthesis by K. oxytoca.



1156

H. Wali et al. / Antibacterial Activity of RGO Nanoparticles 

J Nanostruct 13(4): 1158150-1158, Autumn 2023

antibacterial agent [27], predominantly for 
treating infections related to diabetic foot ulcers.

Antioxidant of ORG NPs 
RGO showed the removal of free radicals (DPPH) 

at all concentrations studied, and the inhibition 
increased with increasing concentration (Table 3). 
The inhibition titer in the mixture of DPPH with 
reduced graphene oxide was 29.42% at 125 µg/ml, 
37.27% at 250 µg/ml, 40.76% at 500 µg/ml, and 
54.06% at 1000 µg/ml. RGO showed the removal 
of free radicals (DPPH) at all concentrations 
studied, and the inhibition increased with the 
increasing concentration. The antioxidant assay 
revealed a substantial growth in scavenging 

activity with higher RGO concentrations. This is 
credited to the plentiful functional groups capable 
of neutralizing free radicals [28, 29]. These results 
highlight the potential application of RGO in 
mitigating oxidative stress-related conditions. 
Nanotechnology integration amplifies their 
functionality, driving innovation in biomedical 
research, including studying bacterial and cell 
antioxidants and chemotaxis. [34, 35]. 

Antihemolytic of ORG NPs
The ability of RGO to degrade blood was tested, 

and no hemolysis appeared at all concentrations 
studied (Table 4). The antihemolytic activity 
findings reveal that RGO is biocompatible at all 

RGO nano S.aureus 
Con.1000 36mm
Con.500 25 mm
Con.250 18 mm
Con.125 15 mm

 
  

 

Table 2. Antibacterial Efficacy of RGO NPs Against S. aureus bacteria.

Table 3. Antioxidant of ORG NPs.

Fig. 7. Antibacterial of RGO NPs biosynthesis by K. oxytoca.
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verified concentrations, and display no hemolysis. 
This result is critical for biomedical applications, 
demonstrating that RGO can be securely used 
in therapeutic contexts without causing hostile 
effects on red blood cells [30, 31].

CONCLUSION
This report effectively validates the biosynthesis 

of reduced graphene oxide nanoparticles (RGO) 
using Klebsiella oxytoca, showcasing an eco-
friendly and sustainable method. The RGO 
nanoparticles displayed effective antibacterial 
activity against S. aureus isolates from diabetic 
foot infections, ROG nanocomposites showed 
strong and clear activity against S. aureus in 
different concentrations (125, 250, 500, 1000 µg/ 
ml). In addition to their potential role, they have 
substantial antioxidant properties and outstanding 
biocompatibility. These results highlight the 
potential applications of RGO in antimicrobial 
and biomedical fields, paving the way for further 
investigation in clinical and therapeutic settings. 
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