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Nitrogen-doped Graphene Quantum Dots (N-GQDs) are effective and 
the most recent expansion to carbon nanomatetials family and guarantee 
a wide range of novel applications that can be used especially in design 
of modern hybrid catalyst such as metal-organo catalyst. In this research 
paper, we report a concise and facile preparation of a series of the fu-
ro[3,2-c]coumarin compounds via multicomponent reaction of 2,4′-di-
bromoacetophenone, benzaldehyde, and 4-hydroxycoumarin under ultra-
sound irradiation conditions. Nanocomposite catalyst were characterized 
with powder X-ray diffraction (XRD), transmission electron microscope 
(TEM), Field emission scanning electronic microscopy (FE-SEM), Energy 
dispersive X-ray (EDX), and Fourier-transform infrared (FT-IR) spectros-
copy. The concise and facile protocol suggests momentous advancement by 
simple generation of metal-organo catalyst in respect to resolve the issue of 
utilizing harsh catalysts. This protocol provides several advantages includ-
ing facile workup, excellent yields, short reaction times, use of ultrasound 
source as a clean method, recoverability of the catalyst, and little catalyst 
loading.

INTRODUCTION
Furo[3,2-c]coumarines are classified as an 

important natural and heterocyclic compounds 
[1] due to  their biological activities, for instance, 
antibacterial [2], antifungal [3], vasorelaxant [4], 
nuclear factor kappa B (NF-κB) inhibitors [5, 6], 
HIV-1 integrate inhibitors [6]. Todays, the use of 
multicomponent reactions (MCRs) was developed 
by both medical and synthetic chemists. In 
fact, MCRs are known as a powerful protocol to 
preparation of bioactive heterocyclic compounds 
[7]. Thus, finding the concise and efficient methods 
for the preparation of the fure[3,2-c]coumarines 
via MCRs are a significant challenge. 

Some methods have been reported for 
the preparation of the fure[3,2-c]coumarine 
compounds using various catalysts such as 
pyridine or a mixture of AcONH4/AcOH [8], [BMIm]
OH ionic liquids [9], Pd (CF3CO2)2 [10], CuBr2 [10], 
Rh2(OAc)4 [11], triethylamine and PBu3 [12], and 
N-methyl imidazole [13]. However, a number of 
these reports have disadvantages: harsh reaction 
conditions, long reaction times, non-reusable 
catalysts, and use of toxic materials. Therefore, to 
overcome these limitations, the development of 
an efficient and facile available catalyst with high 
catalytic performance and short reaction time 
for the synthesis of furo[3,2-c]coumarines is still 
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favored. 
Using ultrasound irradiation (US) technique 

as a green and safe source in multicomponent 
reactions could be improved their effectiveness 
from operating cost and ecological points of 
views [14, 15]. US technique is applied for a 
variety of heterocyclic compounds synthesis 
owing to excellent yields, short reaction times, 
and facile workup. Ultrasound energy is the 
result of the cavitation phenomenon. This 
energy not only extreme heating but also high 
pressure by imploding of bubbles which can 
accelerate an organic transformation at the 
synthesis pathway. Recently, nanocatalysts 
have emerged as an alternating method for 
the improvement of many important organic 
reactions. However, when the size of active site 
is reduced to nanoscale dimensions, the surface 
free energy is increased significantly [16]. Among 
them, graphene quantum dots (GQDs), which are 
unique fragment of carbon nanomaterials [17] 
have been revealed splendid properties such as 
excellent biocompatibility [18],emission and low 
cytotoxicity [19, 20],extremely soluble in various 
solvents [21],and photoluminescence (PL) [22].
Interestingly, GQDs due to their high specific 
surface area and functionalized with –OH, -CO2H 
and etc. are capable to cover nanocomposites and 

carry different chiral small-molecules as a chemical 
catalysts [23-25]. 

Based on above results, we used nano-sized 
NiO/Co3O4@N-doped GQDs composite for 
the preparation of the furo[3,2-c]coumarine 
compounds. In this work, we report the successful 
preparation of NiO/Co3O4@N-doped GQDs 
nanocomposites as a robust and green catalyst. 
The NiO/Co3O4@N-GQDs nanostructure have 
been interested because of their unique properties 
and applications in diverse fields. Herein, we 
wish to report the use of NiO/Co3O4@N-GQDs 
nanocomposites as a robust catalyst for the 
synthesis of the furo[3,2-c]coumarine compounds 
via MCRs of 2,4’-dibromoacetophenon, 
various substituted benzaldehydes, and 
4-hydroxycoumarine under US conditions (Fig.  1).  

 
MATERIALS AND METHODS
Synthesis of NiO/Co3O4 nanocomposites (NiO/
Co3O4 NCs)

The mixture of nickel(II) hexahydrate (1 g) and 
cobalt(II) acetate tetrahydrate (3 g) were dissolved 
completely in deionized water (40 mL). Next, the 
aqueous ammonia solution was droply added to 
set the pH to 9.0. After 5 min, the mixture was 
moved to autoclave at 160 °C for 6 h. After that, the 
obtained solid was filtered, washed with distilled 

 

  

Fig. 1. Ultrasound assisted-synthesis of furo[3,2-c]coumarins using NiO/Co3O4@N-GQDs nanocomposites
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water (2×20 mL), and dried at 50 °C for 5. To give 
NiO/Co3O4 NCs, the dried solid was calcined for 2 
h at 550 °C [26].

Synthesis of NiO/Co3O4@N-GQDs NCs
0.3 mL of ethylenediamine was droply added to 

citric acid solution (0.25 M). The clear solution was 
stirred for 30 s. The prepared NiO/Co3O4 NCs (1 g) 
was then added to above solution and stirred for 5 
min at room temperature. The mixture was moved 
to autoclave and heated for overnight at 180 °C. 
At completion, the as-prepared NiO/Co3O4/GQDs 
NCs was collected, washed with distilled water 
(2×15 mL), and dried in a vacuum oven until a 
constant weight was achieved [26]. 

General method for the synthesis of furo[3,2-c]
coumarine

In 25 mL round bottom flask and in the presence 
of NiO/Co3O4@N-GQDs NCs as a catalyst, pyridine, 
4-bromophenacyl bromide, various aromatic 
aldehydes, and 4-hydroxycoumarine were mixed 
in a 1:1:1:1 ratio in ethanol medium (10 mL). 
The mixture was refluxed for appropriate time. 
The completion of the reaction was controlled 
by TLC. At completion, the resulting solid was 
collected and recrystallized from ethanol to give 
pure product. The characteristics of products were 
determined by FT-IR and 1H NMR spectroscopy.

Spectral Data
t r an s - 2 - 4 ’ -bro mo -ben zoy l -3 -ph eny l -2H-
furo[3,2-c]chromen-4(3H)-one (4a): White 
powder, m.p 243-244 ºC, IR (KBr) cm-1: 2931, 2853, 
1718, 1644, 1452, 1404, 1025, 753, 576; 1H NMR 
(400 MHz, CDCl3): δ (ppm) 4.82 (CH, 1H, d, J= 5.2 
Hz), 6.11 (CH, 1H, d, J= 5.2 Hz), 6.88-7.03 (m, 7H), 
7.34 (m, 1H), 7.55 (m, 2H), 7.84 (m, 3H); 13C NMR 
(100 MHz, CDCl3): δ (ppm) 48.32, 92.19, 105.22, 
112.22, 117.32, 121.25, 122.38, 123.98, 127.24, 
128.62, 129.22, 130.50, 131.96, 133.20, 134.42, 
138.88, 155.62, 159.41, 166.34, 192.03; Anal. 
Calcd for C24H15BrO4:C, 64.45; H, 3.38; Found: C, 
64.33; H, 3.27.

trans-2-4’-bromo-benzoyl-3-(3-methylphenyl)-
2H-furo[3,2-c]chromen-4(3H)-one (4b): White 
powder, m.p 222-224ºC, IR (KBr) cm-1: 2927, 2854, 
1720, 1648, 1455, 1405, 1026, 753, 576; 1H NMR 
(400 MHz, CDCl3): δ (ppm) 2.50 (CH3, 3H), 4.80 (CH, 
1H, d, J= 4.4 Hz), 6.09 (CH, 1H, d, J= 4.4 Hz), 7.04 
(m, 6H), 7.34 (m, 1H), 7.60 (m, 2H), 7.99 (m, 3H);13C 

NMR (100 MHz, CDCl3): δ (ppm) 21.2, 48.78, 92.11, 
104.54, 112.02, 117.22, 120.93, 122.31, 124.25, 
127.23, 127.99, 128.32, 128.45, 129.11, 130.51, 
132.46, 133.25, 134.40, 139.12, 155.61, 159.42, 
166.36, 192.02; Anal. calcd forC25H17BrO4: C, 65.09; 
H, 3.71; Found: C, 65.16; H, 3.88; 

trans-2-4’-bromo-benzoyl-3-(2-methylphenyl)-
2H-furo[3,2-c]chromen-4(3H)-one (4c): White 
powder,m.p 171-173 ºC, IR (KBr) cm-1:2923, 2851, 
1721, 1645, 1453, 1407, 1029, 575; 1H NMR (400 
MHz, CDCl3): δ (ppm) 2.43 (CH3, 3H), 5.20 (CH, 1H, 
d, J = 5.6 Hz), 6.02 (CH, 1H, d, J = 5.6 Hz), 6.89 (m, 
1H), 7.27 (m, 7H), 7.60 (d, J= 8.8 Hz, 2H), 7.83 (d, J 
= 8.8 Hz, 2H); 13C NMR (100 MHz, CDCl3): δ (ppm) 
22.3, 48.79, 92.14, 104.63, 112.05,117.25, 120.95, 
122.33, 124.26, 127.25, 128.08, 128.48, 129.14, 
130.57, 130.59, 132.46, 133.27, 134.44, 139.15, 
155.64, 159.44, 166.37, 192.10; Anal. calcd 
forC25H17BrO4: C, 65.09; H, 3.71; Found: C,65.12; 
H, 3.82; 

trans-2-4’-bromo-benzoyl-3-(4-chlorophenyl)-
2H-furo[3,2-c]chromen-4(3H)-one (4d): White 
powder, m.p 250-252 ºC, IR (KBr) cm-1: 2924, 2824, 
1722, 1646, 1412, 1024, 752, 534; 1H NMR (400 
MHz, DMSO-d6): δ (ppm) 4.77 (CH, 1H, J= 5.0 Hz), 
6.63 (CH, 1H, J= 5.0 Hz), 7.22-7.26 (m, 2H), 7.29-
7.32 (m, 2H), 7.32 (m, 3H), 7.50-8.03 (m, 5H); 13C 
NMR (100 MHz, DMSO-d6): δ (ppm) 49.66, 93.51, 
105.22, 112.20, 117.35, 121.28, 122.45, 124.32, 
127.25, 128.63, 129.19, 130.59, 133.04, 133.21, 
135.14, 139.15, 155.60, 159.42, 166.42, 192.24;  
Anal. calcd for C24H14BrClO4: C, 59.84; H, 2.93; 
Found: C, 59.75; H, 2.82; 

trans-2-4’-bromo-benzoyl-3-(2-chlorophenyl)-
2H-furo[3,2-c]chromen-4(3H)-one (4e): White 
powder, m.p 219-221º C, IR (KBr) cm-1:2922, 2853, 
1718, 1644, 1453, 1402, 1024, 755, 574; 1H NMR 
(400 MHz, CDCl3): δ (ppm) 5.58 (CH, 1H, J= 5.2 Hz), 
6.08 (CH, 1H, J= 5.2 Hz), 7.17-7.31 (m, 6H), 7.37 (m, 
3H), 7.43 (d, J= 8 Hz, 1H), 7.96 (m, 2H);  13C NMR 
(100 MHz, CDCl3): δ (ppm) 48.82, 92.19, 105.12, 
112.14, 117.28, 121.08, 122.36, 124.28, 127.28, 
128.17, 128.57, 129.24, 130.58, 130.69, 132.54, 
133.27, 134.41, 139.14, 155.62, 159.42, 166.38, 
192.18; Anal. calcd forC24H14BrClO4:C, 59.84; H, 
2.93; Found: C, 59.72; H, 2.79; 

trans-2-4’-bromo-benzoyl-3-(4-nitrophenyl)-
2H-furo[3,2-c]chromen-4(3H)-one (4f): White 
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powder, m.p 250-252 ºC, IR (KBr) cm-1: 2932, 2834, 
1734, 1636, 1432, 1025, 762, 535; 1H NMR (400 
MHz, DMSO-d6): δ (ppm) 5.15 (CH, 1H, J= 4.8 Hz), 
6.04 (CH, 1H, J= 4.8 Hz), 7.28 (m, 2H), 7.32 (t, J 
= 7.2 Hz, 1 H), 7.40 (m, 1H), 7.45 (d, J = 7.6 Hz, 
2H), 7.49 (d, J = 7.6 Hz, 2H)  7.92- 8.12 (m, 4H); 
13C NMR (100 MHz, CDCl3): δ (ppm) 48.05, 91.97, 
104.35, 111.73, 117.28, 123.17, 124.48, 124.60, 
128.75, 130.33, 130.65, 132.01, 132.57, 133.54, 
146.47, 147.76, 155.48, 159.01, 166.38, 190.61; 
Anal. calcd forC24H14BrNO6: C, 58.56; H, 2.87; N, 
2.85;Found: C, 58.47; H, 2.79; N, 2.80;

t r a n s - 2 - 4 ’ - b r o m o - b e n z o y l - 3 - ( 4 -
methylthiophenyl)-2H-furo[3,2-c]chromen-4(3H)-
one (4g): White powder, m.p 206-208 ºC, IR (KBr) 
cm-1: 2925, 2829, 1724, 1647, 1406, 1027, 754, 
538;1H NMR (400 MHz, CDCl3): δ (ppm) 2.66 (s, 
CH3, 3H), 4.77 (CH, 1H, d, J= 4.8 Hz), 6.07 (CH, 1H, 
d, J= 4.8 Hz), 7.16 (m, 4H), 7.30 (m, 1H), 7.41-7.87 
(m, 7H);  13C NMR (100 MHz, CDCl3): δ (ppm) 15.68, 
48.80, 92.04, 104.52, 112.03, 117.21, 120.94, 
122.31, 124.24, 127.22, 127.99, 128.32, 130.53, 
132.46, 133.25, 134.40, 139.17, 155.61, 159.42, 
166.38, 192.03. Anal.calcd for C25H17BrO4S: C, 
60.86; H, 3.47; Found: C, 60.74; H, 3.54.

trans-2-4’-bromo-benzoyl-3-(4-bromophenyl)-
2H-furo[3,2-c]chromen-4(3H)-one (4h): White 
powder, m.p 256-258 ºC, IR (KBr) cm-1:2919, 2821, 
1718, 1644, 1402, 1024, 751, 535; 1H NMR (400 
MHz, CDCl3): δ (ppm) 4.86 (CH, 1H, J =5.2 Hz), 
6.05 (CH, 1H, J = 5.2 Hz), 7.18 (m, 2H), 7.23 (m, 
2H), 7.34 (m, 1H), 7.50-7.93 (m, 7H); 13C NMR 
(100 MHz, CDCl3): δ (ppm) 48.51, 92.28, 105.24, 
112.24, 117.31, 121.25, 122.38, 124.21, 127.22, 
128.51, 129.17, 130.57, 132.53, 133.21, 134.42, 
139.14, 155.62, 159.43, 166.44, 192.16;  Anal. 
calcd for C24H14Br2O4: C, 54.78; H, 2.68; Found: C, 
54.61; H, 2.55.

trans-2-4’-bromo-benzoyl-3-(3-nitrophenyl)-
2H-furo[3,2-c]chromen-4(3H)-one (4i): White 
powder, m.p 250-252 ºC, IR (KBr) cm-1: 2934, 2853, 
1727, 1647, 1522, 1410, 747, 575;1H NMR (400 
MHz, CDCl3): δ (ppm) 5.17 (CH, 1H, J= 4.8 Hz), 6.07 
(CH, 1H, J= 4.8 Hz), 7.34-7.39 (m, 2H), 7.42-7.47 
(m, 4H),  7.92- 8.12 (m, 5H); 8.17 (m, 1H); 13C NMR 
(100 MHz, CDCl3): δ (ppm) 49.04, 93.50, 105.24, 
112.28, 117.38, 121.29, 122.43, 124.33, 124.54, 
127.37, 128.33, 128.39, 129.44, 131.73, 132.54, 
133.35, 134.65, 139.16, 155.71, 159.48, 166.52, 

193.10; Anal. calcd forC24H14BrNO6: C, 58.56; H, 
2.87; N, 2.85;Found: C, 58.47; H, 2.79; N, 2.80;

trans-2-4’-bromo-benzoyl-3-(4-methylphenyl)-
2H-furo[3,2-c]chromen-4(3H)-one (4j): White 
powder, m.p 204-206ºC, IR (KBr) cm-1: 2932, 2862, 
1721, 1646, 1458, 1403, 1025, 756, 1H NMR (400 
MHz, CDCl3): δ (ppm) 2.45 (CH3, 3H), 5.58 (CH, 
1H, d, J= 5.4 Hz), 6.08 (CH, 1H, d, J= 5.4 Hz), 7.02-
7.12 (m, 4H), 7.16-7.20 (m, 2H), 7.36-7.55 (m, 3H), 
7.77-7.95 (m, 3H);13C NMR (100 MHz, CDCl3): δ 
(ppm) 21.5, 48.65, 92.05, 104.52, 111.95, 117.18, 
120.82, 124.22, 127.83, 128. 45,128.65, 129.14, 
130.32, 132.42, 133.18, 134.32, 139.02, 155.55, 
159.44, 166.30, 192.14; Anal.calcd for C25H17BrO4: 
C, 65.09; H, 3.71; Found: C, 65.21; H, 3.85. 

trans-2-4’-bromo-benzoyl-3-(2-fluorophenyl)-
2H-furo[3,2-c]chromen-4(3H)-one (4k): White 
powder, m.p 186-188º C, IR (KBr) cm-1: 2922, 2853, 
1718, 1644, 1453, 1402, 1024, 755, 574; 1H NMR 
(400 MHz, CDCl3): δ (ppm) 5.50 (CH, 1H, J = 5.2 
Hz), 6.18 (CH, 1H, J = 5.2 Hz), 7.27-7.51 (m, 6H), 
7.47 (m, 3H), 7.53 (d, J= 7.6 Hz, 1H), 7.96 (m, 2H);  
13C NMR (100 MHz, CDCl3): δ (ppm) 48.93, 92.31, 
105.22, 113.02, 117.22, 121.18, 122.45, 124.20, 
127.28, 128.17, 128.61, 129.31, 130.65, 131.72, 
133.54, 133.71, 135.52, 139.21, 155.81, 159.52, 
166.56, 192.30; Anal. calcd for C24H14BrFO4: C, 
61.96; H, 3.03; Found: C, 61.82; H, 2.92; 

2 - B e n z o y l - 3 - p - c h l o r o p h e n y l - 2 , 3 -
dihydrofuro[3,2-c]chromen-4-one (4l): White 
powder, m.p 170-172º C, IR (KBr) cm-1: 2924, 2855, 
1717, 1643, 1454, 1406, 1024, 756, 572; 1H NMR 
(400 MHz, CDCl3): δ (ppm) 4.85 (d, J = 5.2 Hz, 1H, 
CH), 6.06 (d, J = 5.2 Hz, 1H, CH), 7.20-7.89 (m, 
13 H); 13C NMR (100 MHz, CDCl3): δ (ppm) 48.72, 
92.44, 104.92, 112.12, 117.14, 123.22, 124.23, 
129.04, 129.10, 129.52, 133.12, 133.22, 134.15, 
134.17, 134.60, 138.12, 155.43, 159.27, 166.58, 
191.84; Anal. calcd for C24H15ClO4: C, 71.56; H, 
3.75; Found: C, 71.45; H, 3.69;

2 - B e n z o y l - 3 - 3 - f l u o r o p h e n y l - 2 , 3 -
dihydrofuro[3,2-c]chromen-4-one (4m): White 
powder, m.p 210-212º C, IR (KBr) cm-1: 3052, 1704, 
1648, 1605, 1500, 1449, 1410, 1326, 887, 756; 1H 
NMR (400 MHz, CDCl3): δ (ppm) 4.90 (d, J = 5.2 Hz, 
1H, CH), 6.07 (d, J = 5.2 Hz, 1H, CH), 7.12-7.87 (m, 
13 H); 13C NMR (100 MHz, CDCl3): δ (ppm) 48.30, 
92.21, 104.32, 111.83, 117.22, 122.52, 123.34, 
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124.44, 129.28, 129.32, 130.34, 133.21, 133.39, 
133.45, 134.24, 134.75, 141.64, 148.96, 155.54, 
159.18, 166.76, 191.48; Anal. calcd for C24H15FO4: 
C, 74.61; H, 3.91; Found: : C, 74.55; H, 3.87;

trans-2-4’-bromo-benzoyl-3-phenyl-8-methoxy-
2H-furo[3,2-c]chromen-4(3H)-one (4o): White 
powder, m.p 218-220º C, IR (KBr) cm-1: 3045, 

1701, 1645, 1603, 1503, 1448, 1412, 1325, 882, 
754; 1H NMR (400 MHz, CDCl3): δ (ppm) 3.61 (s, 
3H, OCH3), 5.20 (d, J = 5.6 Hz, 1H, CH), 6.03 (d, J = 
5.6 Hz, 1H, CH), 6.88-7.83 (m, 12 H); 13C NMR (100 
MHz, CDCl3): δ (ppm)  48.62, 55.25, 92.36, 105.27, 
112.29, 115.09, 121.29, 122.48, 123.99, 127.35, 
128.76, 129.37, 131.15, 131.97, 133.34, 134.55, 
138.78, 155.59, 159.48, 166.51, 192.08; Anal. 

 

 

 

 

 

   

 

 

  

Fig. 3. XRD patterns of NiO/Co3O4 (a) and NiO/Co3O4@N-GQDs nanocomposites (b).

Fig. 2. FT-IR spectrums of NiO/Co3O4 (a) and NiO/Co3O4@N-GQDs nanocomposites 
(b).
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Calcd for C25H17BrO5: C, 62.91; H, 3.59; Found: C, 
62.89; H, 3.61.

RESULTS AND DISCUSSION
Initially, we fabricated NiO/Co3O4 and NiO/

Co3O4@N-GQDs NCs via hydrothermal method 
[25]. The FT-IR graphs of NiO/Co3O4 and NiO/
Co3O4@N-GQDs NCs are revealed in Fig. 1. The 
peaks at 3330 and 1635 cm-1 correspond to the 
stretching and bending absorptions of hydroxyl 
group, respectively. The absorption peaks at 460, 
570, and 655 cm-1 are related to Ni-O, Co(II)-O, 
and Co(III)-O, respectively (Fig. 2a). In addition, the 
characteristics bands at 1703, 1125, and 1475-
1590 cm-1 are belong to C=O, C-O-C, and C=C 
functional groups in N-GQDs structure (Fig. 2b). 

The XRD patterns of each step displayed if Fig. 
2. The first pattern confirms the presence of NiO 
(Code. No. 22-1189) and Co3O4 (Code. No. 65-

3103) (Fig. 3a). Besides, the new peak located at 
2θ= 24.3° is assigned reflection of [002] plane of 
N-GQDs (Fig. 3b).

Besides of FT-IR and XRD results, the Energy-
dispersive X-ray graph (EDS) confirms the presence 
of Ni, Co, O, C, and N elements in the structure 
of NiO/Co3O4@N-GQDs nanocomposites (Fig. 
4). Also, to study of the morphology and particle 
size of as-prepared nanocomposites, the FE-SEM 
technique and Digimizer software were applied, 
respectively. The FE-SEM images of NiO/Co3O4 
and NiO/Co3O4@N-GQDs NCs are shown in Fig. 
5a-c. Moreover, the average particles size of final 
structure was measured about nm (Fig. 4d).

We investigated the systematic evaluation of 
various catalysts for the reaction of benzaldehyde, 
4-hydroxycoumarine, 2,4’-dibromoacetophenone, 
and pyridine as a model reaction. The slected 
reaction was done in the presence of various 

No. Solvent Conditions Catalyst (amount) Time (min) Yield (%)a 
1 Acetonitrile Reflux Morpholine (6 mol%) 180 35 
2 Water Reflux NiO/Co3O4 NCs (10 mol%) 150 62 
3 Dimethylformamide Reflux NiO/Co3O4 NCs (10 mol%) 150 48 
4 Ethanol Reflux NiO/Co3O4 NCs (10 mol%) 150 70 
5 Ethanol US (40 W) NiO/Co3O4 NCs (10 mol%) 8 78 
6 Ethanol US (40 W) NiO/Co3O4@N-GQDs NCs (10 mol%) 8 89 
7 Ethanol US (50 W) NiO/Co3O4@N-GQDs NCs (10 mol%) 8 94 
8 Ethanol US (60 W) NiO/Co3O4@N-GQDs NCs (10 mol%) 8 94 
9 Ethanol US (50 W) NiO/Co3O4@N-GQDs NCs (8 mol%) 8 91 

10 Ethanol US (50 W) NiO/Co3O4@N-GQDs NCs (12 mol%) 8 94 
Benzaldehyde, 4-hydroxycoumarine, and 2,4’-dibromoacetophenone. 
US: Ultrasound irradiations. 
a Isolated Yield. 

  

Table 1. Optimization of the model reaction using various catalysts

 

  
Fig. 4. EDS patterns of NiO/Co3O4 (a) and NiO/Co3O4@N-GQDs nanocomosites (b).
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4a, 8 min, 94% 

 
4b, 9 min, 91% 

 
4c, 10 min, 88% 

 
4d, 10 min, 87% 

 
4e, 9 min, 89% 

 
4f, 8 min, 93% 

 
4g, 8 min, 94% 

 
4h, 8 min, 93% 

 
4i, 9 min, 92% 

 
4j, 10 min, 90% 

 
4k, 8 min, 93% 

 
4l, 9 min, 92% 

 

Table 2. Preparation of furo[3,2-c]coumarins using NiO/Co3O4@N-GQDs (10 mol%) under US conditions (50 W)

Fig. 5. FE-SEM images of NiO/Co3O4 (a-b), NiO/Co3O4@N-GQDs (c), and calculated average particle 
size (d).
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catalysts, which are tabulated in Table 1. When 
the reaction was done using NiO/Co3O4@N-GQDs 
nanoomposites, the product could be obtained 
in a good to excellent yield. The NiO/Co3O4 
nanostructure covered by N-GQDs shows good 
catalytic activity due to their large number of 
active sites which are mainly responsible for their 
catalytic activity. The most ideal results were seen 
under ultrasound irradiations (50 W) in ethanol 

medium and the reaction gave satisfy results in 
the presence of the NiO/Co3O4@N-GQDs as a 
new catalyst. When the amount of catalyst was 
raised, the yield of the reaction was increased. 
Consequently, 10 mol% of NiO/Co3O4@N-GQDs 
were an expedient and an excessive amount of 
NiO/Co3O4@N-GQDs did not change the yield, 
remarkably (Table 1). When the reaction was done 
under ultrasound irradiations (US) conditions, the 

 

  

 

 
Fig. 7. Proposed mechanism

Fig. 6. Recycling of Catalyst
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rate of the reaction increased considerably. In this 
research, US is applied as a green method for the 
synthesis of the furo[3,2-c]coumarines. 

With these helpful data in hand, we turned 
to study the scope of the reaction by different 
aryl aldehydes, 4-hudroxycoumarine, and 
2,4’-dibromoacetophenone as starting chemicals 
under optimized conditions (Table 2). It was 
observed that the electron-withdrawing groups 
reacted faster than electron-donation groups. 
In the interim, it is shown that the best yield are 
obtained with starting materials having electron-
withdrawing groups. The all prepared product was 
summarized in Table 2. In the recovering method 
of NiO/Co3O4@N-GQDs nanocatalyst, chloroform 
was added to curd product after terminating the 
reaction. The nanocatalyst was not dissolve in 
chloroform and was separated by simple filtering. 
The reusing ability of the nanocatalyst was 
checked for 5 runs, proving almost similar yield of 
the desired product (Fig. 6).

A proposed mechanism was revealed in Fig. 7. We 
supposed that the reaction occurs via Knoevenagel 
condensation between 4-hydroxycoumarine and 
substituted aryl aldehydes to form intermediate 
(I). After that, the Michael addition of pyridinium 
yield with enones affords the zwitterions 
intermediate and followed by cyclization affords 
the product. The final step includes classical SN2 
reaction. Besides, pyridine plays an important 
role. It acts as a nucleophilic tertiary amine to 
form zwitterionic salt and acts as a leaving group 
to finish the intermolecular substitutions reaction. 
In this proposed mechanism, NiO/Co3O4@N-GQDs 
was introduced as an acid catalyst and active the 
carbonyl group. 

CONCLUSION
As a result, we have developed the green, 

flexible, and highly efficient method for the 
synthesis of furo[3,2-c]coumarines catalyzed 
by NiO/Co3O4@N-GQDs nanocomposites. The 
present protocol tolerates most of the substrates 
and the designed catalyst can be recovered at least 
5 runs without remarkable loss of activity. The 
advantage of this research are using ultrasound 
irradiations as a green and clean source, efficient 
and recoverable catalyst, little catalyst loading, 
and facile separation of product. This job reveals 
the advantage of ultrasound irradiations-assisted 
heterogeneous catalyst in the preparation of 
furo[3,2-c]coumarines.
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