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In this research two methods were used for the co-precipitation synthesis 
of tin oxide NPs, the first was by the chemical synthesis using the CTAB 
surfactant and the second was the green synthesis employing Teucrium 
polium plant as the surfactant. The structure of the NPs was identified by the 
X-ray diffraction pattern (XRD). Also, the scanning electron microscopy 
(SEM) was utilized to recognition of morphology of the NPs. And for 
determining the functional groups of the particles, Fourier-transform 
infrared spectroscopy (FTIR) was applied and photoluminescence 
spectroscopy (PL) was used for the analysis of the optical properties of the 
NPs. Debye Scherer formula was used to estimate the average size of the 
crystallites which was evaluated about 10nm and 17nm for the green and 
chemical synthesis respectively. The SEM images revealed that the size of 
the NPs for the green synthesis was 15-20nm and for the chemical synthesis 
the NPs, the size was approximately 20-30nm. The FTIR spectra confirmed 
the existence of the functional groups expected for the both methods. The 
maximum intensity in Pl profile appeared at wavelength around 398nm 
both for the green and chemical syntheses. Antibacterial analysis showed 
that they had a huge impact on pathogenic bacterial species. The minimum 
inhibitory concentrations of tin oxide NPs (MIC) for standard strains of 
Staphylococcus aureus ATCC 43300 and Pseudomonas aeruginosa PAO1 
are 13.16±0.28µg/ml and 6.41±0.38 C, respectively.

INTRODUCTION
Nanotechnology is one of the most important 

achievements of the latest century which plays 
a key role in bond physics, chemistry, biology, 
and metallurgy together[1]. When components 
are brought to nanoscale, the way they operate 
changes and a lot of their physical properties 
changes[2]. The metal oxide structures that 

have an extensive bandgap are of importance as 
semi-conductors in chemistry and physics [3] and 
because of the important properties of metal 
oxides in nanoscale such as optical, electrical, 
magnetic, and structural properties, they have 
different applications in sensors, catalyzers, and 
photocatalysts, micro-electronics. nonlinear 
optics, photoelectrochemistry, imaging science, 
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and electro-optical science[4-6]. Tin(IV)oxide 
(SnO2) is one of the important nanostructures 
that has been given a lot of attention due to its 
transparency in the visible wavelength spectrum 
and other properties such as high carrier density, 
high-temperature tolerance, chemical stability, 
and low resistivity[4, 7]. SnO2 is an n-type 
semiconductor with a bandgap of 3.6 eV[8]. 

In a study conducted by Boucherka Teldja et 
al., the effects of the combination of indium with 
tin oxide on the structure, morphology, optical 
and electrical properties of the combination 
were analyzed via the sol gel method. They have 
reported that the combination of indium with 
tin oxide improves the optical transmission and 
decreases the electrical conduction due to indium 
naturalness. In that research, thin films with high 
transmission and low resistance were obtained[9]. 
Ariya Nachiar and co-authors have reported that 
if the copper NPs are synthesized with tin oxide 
NPs using the co-precipitation method, the copper 
causes a change in the structural and optical 
properties of tin oxide NPs and reduces the bandgap 
of tin oxide NPs[2]. SnO2 have many applications 
in gas and solid-state sensors, lithium batteries, 
electro-optical tools, as catalysts for the oxidation 
of organic components, ceramic and transparent 
conductors, biomedical and nanoelectronics[1, 3, 
6, 10, 11], supercapacitors[12], plasma screens, 
touch screens[13], special coating for energy-
conserving “low-emissivity” windows[14] and the 
electrodes of the solar cells [15]. 

There are different methods for accomplishing 
a chemical and physical synthesis of  SnO2 such 
as co-precipitation, micro-emulation, sol-gel, and 
hydrothermal methods [8, 16], RF magnetron 
sputtering[17], spray pyrolysis[18], chemical 
vapor deposition [19] and deposition via laser[15]. 
Also, the strong light emission of tin oxide and 
other metal semi-conductors have important 
applications in remote communication and driving 
signs[20].

The manufacture of NPs in different shapes 
and sizes is more biologically and chemically 
active due to the fact that the number of surface 
atoms increases to volumetric atoms and causes 
antimicrobial agents. NPs can invade and disrupt 
bacteria in a variety of ways. NPs bind to the 
bacterial membrane by electrostatic reaction 
or by reacting with amines and carboxyl groups 
of the peptidoglycan layer of the bacterial 
wall, disrupting it and destroying the cell walls, 

completely destroying the bacterium [21-23]. 
Studies have been performed on the antibacterial 
properties of tin oxide NPs. According to the 
results of this work, tin oxide NPs synthesized 
by chemical methods show good antibacterial 
properties[24]. Kamaraj et al. synthesized tin 
(IV) oxide nanoparticles in a green method using 
the methanolic extract of Cleistanthus Collinus 
plant and investigated their biological activities. 
They investigated the antibacterial activity of the 
synthesized nanoparticles against Escherichia coli 
and Staphylococcus aureus bacteria. Antifungal 
activity of nanoparticles was also investigated. In 
this research, the average size of the synthesized 
nanoparticles was reported to be 49.26 nm, the 
synthesized nanoparticles showed significant 
antibacterial activity against Escherichia coli [25]. 
Khan et al were also able to synthesize tin (IV) 
oxide nanoparticles through the green method 
and using the extract of Clerodendrum Inerme. 
They also investigated the antibacterial and 
anticancer activities of synthetic nanoparticles. 
Morphological and crystalline changes of 
synthesized nanoparticles were also investigated 
by XRD and TEM analyses [26]. Studies on the 
biosynthesis of nanoparticles in the extracts of 
different plants were very different and it was 
found that in different plants, the synthesized 
nanoparticles show different effects. Plant 
extracts have antioxidant properties and a lot of 
secondary compounds [27]. The average size of 
nanoparticles synthesized using Turicum puliom 
plant in this research is approximately 20 nm, 
which has a greater effect on bacteria compared 
to the previous studies.

The chemical methods for synthesizing the 
NPs are expensive and dangerous and the NPs 
produced with these procedures are highly toxic 
and hazardous to the environment. The green 
synthesizes of the NPs, using plants, is cheaper 
and non-toxic, these methods are ecofriendly and 
the components used in the synthesis procedure 
are easily found in the nature[10, 28]. Medicinal 
plants also have a biological state, so they do not 
accumulate in the body and do not cause side effects 
and therefore have a significant advantage over 
chemical drugs. Teucrium polium plant is known for 
its medicinal uses and has properties such as liver 
protector, antioxidant, anti-inflammatory, anti-
tumor, and antibacterial and contains important 
compounds including diterpenoids, flavonoids, 
iridoids, sterols, and terpenoids[29, 30]. The 
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prevalence of drug-resistant microorganisms is a 
serious problem. Also, infections caused by these 
bacteria are leading causes of morbidity and 
mortality. Therefore, new research is needed for 
the development of antimicrobial compounds. 
One of the important antibacterial compounds is 
NPs. Herein, the Teucrium polium plant has been 
used for the first time to synthesize the tin oxide 
NPs using the co-precipitation method and the 
optical properties have been compared to the NPs 
produced with the chemical synthesis method. The 
procedure for producing the NPs with the green 
method was cheaper and was eco-friendlier than 
the one synthesized with the chemical method.

MATERIALS AND METHODS
The morphology and the size of NPs were 

identified using a Philips Scanning electron 
microscopy (SEM) of TESCAN-SEM Mira3-XMU. 
Fourier transform infrared spectroscopy (FTIR) 
model MagnaIR550 was employed to study the 
functional groups. The optical properties of the 
materials were investigated using the PerkinElmer 
LS55 photoluminescence spectrometer.

Preparation method
Teucrium polium plant extract was used as a 

surfactant for the green synthesis of tin oxide NPs. 
First, 1ml of the extract was added to 30ml of twice 
distilled water. Then, two drops of tin chloride was 
dissolved in 50ml of twice distilled water. After 
30 minutes, the solution containing the extract 
of Teucrium polium was added to the tin solution 
and brown-colored sediment was obtained. The 
precipitate was removed using centrifugation and 
washed with water and ethanol. The precipitate 
was dried in an oven for 24 hours. The dried 
precipitate was placed in a furnace for a period 
of time to remove the excess components. For 
the chemical synthesis of NPs, two-aqueous tin 
chloride, ammonia and CTAB were used.

Determination of the minimum inhibitory 
concentration (MIC)

In this study, the antibacterial activity of the 
SnO2 was evaluated against Staphylococcus aureus 
ATCC43300 and Psoudomonas aeroginosa PAO1.

Minimum inhibitory concentration (MIC) 
determine by the broth microdilution method, 
according to the Clinical and Laboratory Standards 
Institute (CLSI) guidelines. First, 100 μL of Mueller 
Hinton broths (MHB) loaded onto sterile 96-well 

plates.  Afterward, dilution series of SnO2 was 
prepared and added to the wells. Finally, 10 μL 
of bacterial suspension (5×105 CFU) was added to 
each well and then incubated at 37 °C for 24 h. 
The lowest concentration of NPs that inhibited the 
growth of bacteria was recorded as the minimum 
inhibitory concentration. 

Antibiofilm Activity of SnO2 against MRSA and 
PAO1 Biofilm

Microtiter plate (MTP) assay is a quantitative 
method to determine the Antibiofilm Activity 
of SnO2. Bacterial suspension is 10-fold (1/10) 
diluted to reach 5.106 CFU/ml and 100 μl of 
bacterial suspensions are inoculated into 96-well 
flat-bottomed sterile polystyrene microplate in 
the absence and presence of, 1/8 MIC 1/4MIC, 
1/2 MIC, and MIC concentrations of SnO2. Wells 
involving biofilms were washed with phosphate-
buffered saline (PBS). Then wells were fixed with 
methanol for 20 minutes. Subsequently, Biofilm 
mass was stained with 200 μL of 0.1% crystal violet 
for 15 minutes. Following the air-drying process of 
wells of a microplate, the dye of biofilms that lined 
the walls of the microplate is resolubilized by 200 
μL glacial acetic acid. Then microplate is measured 
spectrophotometrically at 570 nm by a microplate 
reader.

		Percentage	of	biofilm	inhibition = !"#$%"&	()*+,-$	()
!"#$%"&	()

× 	100	 

  RESULT AND DISCUSSION
X-ray diffraction pattern (XRD)

XRD analysis was performed to determine 
the crystal structure and phase composition or 
phase purity of the sample. Fig. 1 shows the SnO2 
diffraction pattern at angles of 2q=10-90 degrees 
which corresponds to the standard card number 
1250-021-00 [31]. The observed peaks with the 
page numbers in 2q=(002), (321), (202 (301), (310), 
(220), (211), (200), (101), (110) and confirms the 
diffraction pattern of nanoparticle synthesis which 
lattice structure is tetragonal [32]. The size of the 
crystals can be estimated from a maximum peak of 
the XRD spectrum.

The Scherer relation fairly shows the 
dependence of particle size on the amplitude and 
diffusion of diffraction lines:

 

 

		𝐷𝐷./0 =
kl

bcosq
 

 In this respect, D is the approximate size of the 
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crystallites, is the wavelength of the X-ray beam, 
and β is the full width at half maximum (FWHM) of 
the main peaks for the hkl plates and is the angle. 
Using the above relation, the size of tin oxide 
NPs for green and chemical synthesis was 10 nm 
and 17 nm, respectively. X-ray diffraction pattern 
analysis is the same for both green and chemical 
synthesis, except that the particle size in green 
synthesis is smaller, which can be detected by the 
enlargement of the peak.

X-ray energy diffraction spectroscopy (EDS) is 
a method that uses X-ray energy to analyze and 
determine the chemical composition of samples 
on a small scale [33]. Using the EDS spectrum, 
the phase purity of the NPs is obtained. The initial 
composition of the sample is shown in Fig. 2. 
According to this diagram, only SnO2 existed and 

no additional impurities were observed.

Scanning electron microscope (SEM)
The SEM image of SnO2 samples synthesized 

by co-precipitation is shown in Fig. 3. This image 
shows that the NPs are uniform and have spherical 
shape. Also, the size of NPs is in accordance with 
the size obtained from the Scherer formula. The 
size of the NPs obtained by the green synthesis (A) 
and chemical synthesis (B), obtained in the range 
of 15-20 nm and 20-30 nm, respectively according 
to the inset figures. 

Photoluminescence Spectroscopy (PL)
One of the well-known types of luminescence 

is PL, in which excitation is done by photons. 
The process of excitation of electrons to a higher 

 

 

 

  

 

 

  

Fig. 1. XRD spectrum of green synthesis (a) and chemical synthesis (b) of tin dioxide NPs made by co-precipitation method. 

Fig. 2. EDX spectrum of green synthesis (a) and chemical synthesis (b) of tin dioxide NPs made by co-precipitation 
method.
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energy level and then their transition to a lower 
energy level is accompanied by the absorption 
and emission of photons.  In the PL process, the 
sample is excited by a laser or a lamp and the 
spectrum is obtained by recording the emission as 
a function of wavelength. The study of PL is one 
of the important methods in studying the optical 
properties related to the adsorption and dispersion 
of nanomaterials, determining the optical quality, 
electronic structure, and photochemical properties 
of semiconductor materials and investigating 
the structure and properties of sites active on 
metal oxides and zeolites [34, 35]. In addition, PL 
can be used to study Crystal defects[36] and in 
the field of photocatalytic semiconductors, it is 
useful for understanding surface processes[37]. 
In nanostructured metal oxides, PL emission is 

divided into two main parts, including emission 
in the ultraviolet (UV) region and emission in 
the visible region. Emission in the UV region is 
associated with direct decay (band-band PL). Also, 
the emission in the visible region is the result of the 
radiative recombination of a hole with electrons in 
the oxygen and metal voids (excitonic PL) [38]. In 
semiconductor NPs, the sign of excitonic PL occurs, 
but the band-band PL signal is rarely observed [37] 
High emission intensity in the visible area is related 
to high concentrations of impurities and crystalline 
defects[39]. Defects such as oxygen voids are 
one of the most important and common defects 
in nanocrystalline oxides and act as luminous 
centers in the luminescence process[40]. The PL 
emission spectrum of tin oxide NPs in Fig. 4 was 
accomplished with the two methods mentioned, 

 

 

  

 

 

 

  

Fig. 4. Photoluminescence (PL) spectra of green synthesis (a) and chemical synthesis (b) of tin dioxide NPs excited at 280 nm.

Fig. 3. SEM image of green synthesis (a) and chemical synthesis (b) of tin dioxide NPs made by co-precipitation method.



669J Nanostruct 13(3): 664-672, Summer 2023

M. Karimi et al. / Green Synthesis of SnO2 Nanoparticles and Analysis of Its Optical Properties

under excitation at the wavelength of 280nm, at 
room temperature, indicating that the maximum 
PL peak was about 398 nm for both syntheses.

Fourier Transform Infrared Spectroscopy
Infrared spectroscopy is a well-known technique 

in the qualitative identification of materials and 
is a method in which the absorption of radiation 
and vibrational mutations of molecules and 
ions of polyatoms are examined. This method is 
used as a powerful and developed technique for 
measuring chemical species and is mainly used to 
identify organic compounds because the spectra 
of these compounds are usually complex and 
have a large number of maximum and minimum 
peaks that can be used for comparison. In both 
spectra of Fig. 5, the broad absorption band 
is at 3430 cm-1, which is related to the tensile 

vibrations of the O-H bond caused by the water 
adsorbed on the SnO2 surface[41]. The adsorption 
band at 11630 cm-1 corresponds to C = C groups 
or aromatic or tensile rings in the C = O carboxyl 
group [42]. The absorption bands shown in the 
1200-400 cm-1 range are known as fingerprint 
bands, which are different for each material. The 
tensile bonds of Sn-O-Sn, O-Sn-O, and Sn-O are 
located in this fingerprint region. The presence of 
these functional groups can be considered as light 
centers at the nanoparticle levels.

Investigation of antibacterial properties of NPs
Determination of the Minimum Inhibitory 
Concentration (MIC) and MBC

According to the data shown in Table 2, among 
the tested bacteria maximum antibacterial 
activity were demonstrated against Pseudomonas 

 

 

  
Fig. 5. FTIR spectrum of green synthesis (a) and chemical synthesis (b) of tin dioxide NPs made by co-precipitation method.

 
Mean ± SD Minimum-Maximum (µg/ml) Microorganism 

13.16±0.28 13-13.5 Staphylococcus aureus ATCC 43300 

6.41±0.38 6-6.75 Pseudomonas aeruginosa PAO1 

 

  

Table 1. Minimum inhibitory concentration of tin oxide NPs (MIC) for standard strain of staphylococcus aureus ATCC 43300 
Pseudomonas aeruginosa PAO1.

 

Mean ± SD Minimum-Maximum (µg/ml) Microorganism 
36±15 27-54 Staphylococcus aureus ATCC 43300 

22.5±7.7 13.5-27 Pseudomonas aeruginosa PAO1 

 

 

Table 2. Minimum bactericidal concentration (MBC) of tin oxide NPs for standard strain of staphylococcus aureus ATCC 
43300.
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aeruginosa PAO1.
Staphylococcus aureus is one of the most 

common and important gram-positive bacteria in 
the hospital, which can range from skin infections 
to life-threatening diseases and is increasing 
nowadays [43, 44]. Pseudomonas aeruginosa is 
a gram-negative bacterium that is scattered all 
over the world and is one of the most important 
bacteria in hospital[45].

In an experiment of interaction between NPs 
and two bacteria, Pseudomonas aeruginosa PAO1 
and Staphylococcus aureus ATCC 43300, with an 
average MIC and MBC of milligrams per milliliter, 
the NPs turned out to be capable of being used 
as drugs to remove bacterial strains, as shown in 
Tables 1 and 2.

Antibiofilm Activity of SnO2 against MRSA and 
PAO1 Biofilm

SnO2 NPs showed obvious inhibition of 
attachment and biofilm formation (Fig. 6). 
According to the result, the SnO2 nanoparticle in 
concentration MIC of SnO2 nanoparticle inhibited 
the biofilm formation by MRSA and PAO1 with an 
inhibition rate of 60% and 61% respectively. The 
effect of different concentrations of NPs on the 
reduction of biofilm formation in the standard 
strain of Staphylococcus aureus ATCC 43300 and 
the standard strain of Pseudomonas aeruginosa 
PAO1, each microplate used for two bacteria, and 
the nanoparticle for each stock bacterium was 

prepared with MIC concentration. The fractional 
concentration of NPs in sumps is 1/8 MIC, 1/4 
MIC, and 1/2 MIC and zero. They were studied in 
the same way as shown in Fig. 6, with an increase 
in the percentage of formation error, Biofilm is 
reduced for two bacteria.

However, different studies may suggest that 
MIC may vary due to the size of the NPs and the 
preparation methods, as well as differences in 
the strains of the studied bacteria and that the 
effect of NPs on bacteria depends not only on cell 
wall structure but also on fat peroxidation and 
producing the active species of oxygen[46, 47].

 
CONCLUSION

Tin oxide NPs were synthesized by the co-
precipitation method, using plants and chemicals 
as surfactants. The optical and antibacterial 
properties of SnO2 NPs were investigated using 
SEM, PL, EDX, XRD, and FTIR methods. The results 
of both methods are the same. Due to the fact that 
the use of chemical methods causes great harm to 
human health and the environment, plant-based 
materials and green synthesis are essential for 
the production of NPs that are non-toxic and less 
hazardous for the environment. The antimicrobial 
results of tin oxide NPs in inhibiting the formation 
of bacterial biofilms can be used as a suitable 
solution in the use of NPs for microbial purification 
and environments that are more exposed to this 
bacterium.

 

 

 Fig.6. The effect of different concentrations of tin oxide NPs on the reduction of 
biofilm formation in the standard strain.
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