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Multilayer graphene was synthesized by chemical vapor deposition from 
mixture of naphthalene/ methanol with ratios (1.5 g: 100 m L) respectively 
at ambient pressure and nitrogen as carrier gas with two different flow 
at 700 °C. The active sites for growth was Ferrocene with thickness 
reach to125 μm. The product was characterized by Raman spectroscopy, 
scanning electron microscopy, and Energy Dispersive X-Ray Analysis. The 
analysis shows that high flow of carrier gas (250 cm3/min) was succeeded 
to produce graphene multilayers while the ether (100 cm3/min) witnessed 
many tubular structure in addition to graphene layers.

INTRODUCTION
Despite of appearance carbon nanotubes 

CNTs and fullerene after 1990s but graphite 
and graphene did not lost their shining so, they 
remained occupied huge attention on the world 
in many fields. Many literatures were [1] reported 
different techniques for synthesized graphene 
such physical and chemical exfoliation , oxidation 
of graphite by different oxidation reagents, 
physical vapor deposition, laser irradiation[2] 
and chemical vapor deposition (CVD) [3] . All the 
methods can produces few–sheets of graphene 
and graphite when choosing the specific condition 

for preparation. Mostly the CVDs represent 
the best method for synthesized quantitative 
and qualitative planer and tubular of carbon 
which represent by carbon nanotubes CNTs and 
graphene respectively [4]. Ryuichi and Masataka 
were developed CVDs with plasma to synthesis 
[5] thin film of graphene at 1300 °C.  Duygu et 
al. [6] was used a combined method of high-
energy ball milling and ~0.57 Torr of pressure 
CVDs to synthesized Graphite-encapsulated Fe 
nanoparticles   from CH4/H2 at 1050°C. 

Aparna et al. [7]were prepared Few layer 
graphene by combining ball milling with exfoliants 
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from low-cost graphite, in an aqueous medium 
containing a strong exfoliant (1-pyrenecarboxylic 
acid) and Methanol. Zoran and Silvio [8] design a 
very low-cost CVDs reactor for synthesized high 
quality single and multi-layer graphene at less 
than 1000°C from methanol with foil made of 
transition metals as catalyst for growth. Zhen et 
al. [9] succeeded to synthesized centimeter-scale 
single- to few-layer graphene films by CVD on Ni 
foils from mixture Methane/H2/Ar at 900°C. Cortes 
et al. [10] used acetylene as carbon source to 
synthesized Few-layer graphene by CVDs on a CuO 
deposited by sputtering over SiO2/Si substrates 
without post processing to transfer the CuO onto 
a dielectric substrate or the use of ultra-high 
vacuum during synthesis.

May et al. [11] used bi-metallic Co-Ni oxide/
Al2O3 substrate in CVDs method to synthesized   
multilayer graphene   at a temperature range of 
700-900 °C. Allaedini et al.[12] prepared few-
layered graphene using (CVD) method with Ni–
Ce–Fe as tri-metallic catalyst by using Carbon 
dioxide as the carbon source at 800°C. Hyosub 
et al. [13] synthesized Graphene with 2-3 layers 
was prepared on 100 μm-thick Fe foil as catalyst 
at low temperature by CVDs from acetylene as 
a hydrocarbon source.  The studies shows that 
increase flow rate  of acetylene from 5 cm3 to 25-
50 cm3  and increase the exposure time from 5 min 
to 15-30 min , causing increase the thickness of 
graphene layer. 

In this work multi-layers of graphene was 

synthesized from Naphthalene/methanol mixture 
as source of carbon in CVDs method at 700 °C and 
Ferrocene as catalyst on SiO2 support. 

MATERIALS AND METHODS
Materials

Naphthalene from Sigma-Aldrich with 99% in 
purities, solvent Methanol (99.85%) from Hyman, 
England and Nitrogen gas N2 as carrier gas with 
purities 99.999% was purchase from Emirates 
industrial gases. Ferrocene Fe (C5H5)2 as catalyst 
sources was purchased from Sigma and Nitric acid   
(70%) from Fisher was used for purification.

Synthesis process
Chemical vapor deposition was applied by 

mono-stage tube furnace (XIN YOO electronic 
components co. Ltd.) from Chania equipped 
with a quartz tube, 1.60 cm in length and 5 cm 
in diameter. The sources of carbon was solution 
of Naphthalene/Methanol (1.5g: 100 mL) which 
evaporated at 90°C. Fig. 1, shows the skim for 
CVDs system where two types of the graphene 
multi sheets was synthesized by CVD at ambient 
pressure. A ferrocene with ≈125 μm thick was used 
as catalyst over (3×7.2 cm2) SiO2 support. Before 
the precipitation, the catalyst/substrate was baked 
on tube furnace at 700 °C in an atmosphere of N2 
(250 cm3/min) for 10 min to precipitation Fe on 
the support. The synthesis was done for 30 min. 
at 700°C, and 250 cm3/min consumption rates of 
realized N2 for the first sample which a sign (G-

 

  
Fig. 1. The Skim of tube furnaces system used in the preparation Graphene by CVDs at 700 °C.
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250). The second samples (G-100) was synthesis 
at the same conditions with reduce the flow rate 
of N2 gas to 100 cm3/min. After deposition the 
furnace was switched off and allowed to cool at 
room temperature under a continuous N2 flow, 
then the product was purified by reflex with 1 M 
of HCl for 6 hours at 80 °C. 

RESULTS AND DISCUSSION
The Raman spectroscopy was done by Sentara 

Infinity Bruker 1, for the range from 100 cm-1 – 3500 
cm-1.  Scanning electron microscopy SEM, JEOL – 
JSM-6700F Japan with EDX system were used to 
shows the nature of surface and morphology with 
elements analysis for the synthesized materials.

The Graphene or graphite peak created from 
the first-order scattering process of the double 
vibration’s degenerate phonon of center Brillouin 
zone which is due to sp2 bonded carbon, while, 
the disordered structure of the graphene edges 
sheets in graphene was represent by D band [14]. 
Mostly Measurement of 𝐼G/𝐼D ratio is a well-known 
method for characterization the nature structure 
and disorder [15] for tubular graphene or 
graphite. The high intensity for 2D for graphite and 
graphene make it suitable to identify the nature 
of planer graphene and graphite by measurement 
the ratios of 𝐼2D/𝐼G [16]. However the identification 
parameters between tubular structure and planer 
structure of sp2 carbon was the intensity ratios of 
2D. The evaluation of the synthesized graphene 
structure G-250 and G-100 required Raman 
spectroscopy to probe structural and physical 
properties of graphitic materials, such disorder, 
defects, charges, and strain [17]. The Raman 

spectroscopy shows the D, G, and 2D bands for 
G-250 at 1360 cm−1, 1584 cm−1, and 2740 cm−1 
respectively, the G-100 were 1348cm-1, 1548 cm-1 
while 2D band was very week (Fig. 2). Raise 2D for 
first sample G-250 refer to forming graphene with 
multi-sheets while reduce or weakness 2D for the 
second sample indicate to low ratios of graphene 
sheets [18].  

May be the reason behind week intensity for 
2D peaks due to interference with D+G peak due 
to forming tubular structure of graphene with the 
product as shown in SEMs images. 

Fig. 3, and 4 include the SEM images for the two 
samples, the first, shows 3a and 4a bulk material 
for synthesized products. Fig. 3b, c and d shows 
different scale for G-250 which shows many planar 
fragments without any filaments structures. Fig. 
4b, c and d shows many scales for the second 
sample include the many sheets of graphene with 
many agglomerate for filament of CNTs which 
mostly refer to MWCNTs. 

The EDXs analysis of the prepared two samples 
are presented in Fig. 5, Which confirms that 
carbon is the dominant atomic composition when 
forming 68.36% and 45.06% for G-250 and G-100 
respectively. The two samples contained oxygen 
with 5.34% and 8.13% respectively, in addition to 
present Fe, Si, Al, Au, Ca and Mo, which are the 
elements of the catalyst and support of catalyst. 
Carbon in the first sample has the highest weight 
percent compare the ether, and that may be refer 
to adequate ratios of  the flow rate for carrier gas  
has played an active role in the CVDs system to  
producing graphene.

The phase diagrams of Fe necessary to predict 

 

  
Fig. 2. Raman spectroscopy for (a) G-250, (b) G-100
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the mechanism at the temperature of reaction in 
CVDs. The overall outcome of graphene synthesis, 
depend on Fe relatively high carbon solubility and 
that explained by phase diagram. Fig. 6, shows 
the phase diagram [19] it is notable that the 

solubility of carbon can reach a maximum of Fe 
is estimated to have the carbon solubility of >25 
%. The temperature of precipitation in this work, 
was 700 °C and the carbon solubility decreases to 
reach less than 1% causing spontaneous carbon 

 

  
Fig. 3. SEM images for synthesized G-250 at 700 °C.

 

  
Fig. 4. SEM images for synthesized G-100 at 700 °C.
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precipitation to gives graphene during the cooling 
stage, [20].

Chemical vapor deposition for the formation of 
graphene on Fe sites include a two-step [22]. The 
first step is the dilution or incorporation of carbon 
into the metal (dissolution), then followed by 
segregation when the graphene was formed after 
rapid cooling. 

The suppose mechanism for graphene 
formation by the precipitation free radical/
segregation process on the support with Fe 
catalyst was listed in equation 1 to equation 6. The 
mechanism have been agreement with Blakely’s 
group [23] , when supposed the segregation 
compositional involves heterogeneity in thermal 
equilibrium under conditions that correspond to 
one phase field in the phase diagram [21] whereas 
precipitation indicates the inhomogeneity due to 

the equilibrium phase separation [24]. The process 
required chemisorbs by the empty d-shell (1) for the 
hydrocarbon on the metal surface which followed 
by dissociates (2) through dehydrogenation, and 
the dissolute carbon (3) atoms will diffuse into 
the bulk metal. The last steps enhance the diffuse 
excess carbon to the surface (4), before the last 
step when (5) the segregation forming graphene 
which continues to produce graphite (6). 

Hydrocarbon	 + 	Fe	surface	®	Cheisorption	(Hydrocarbon… . . Fe) 
 

  

                           (1)
 

Hydrocarbon	 + 	Fe	surface	®	Cheisorption	(Hydrocarbon… . . Fe) 
 

  

 

Hydrocarbon… . . Fe
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Fig. 6.  Phase diagram for the binary system of Fe–C [21].

Fig. 5. EDX analysis for synthesized (a) G-250 and (b) G-100.
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(6)

The chemisorption was active due to the empty 
d-shell/ an electron acceptor between Fe catalyst 
and free radicals respectively [25]. The segregation 
is responsible to make active site for growth by 
nucleation process which continues until the 
concentration of free radical in the bulk metal has 
reduce to reach equilibrium, [25] with nucleation. 

The reason behind including G-250 graphene 
sheets only while G-100 shows a set of tubular 
structures in addition to graphene with high ratios 
of impurities can summarized to three reasons: 
i-From the phase diagram shows that the ability 
of Fe to saturation with carbon is low thus, the 
low flow velocity 100 cm3/min enabled carbon 
free radicals to react with Fe. The high flow at 
250 cm3/min make the precipitation to accrue 
vastly without reactant with Fe. ii-the suppose 
mechanism by [26], mentions that graphene can 
be formed before reaching to Fe/SiO2 and that 
kinetically favorite at high flow and that reduce 
the probabilities to react Fe with graphene. iii- 
Thermodynamically graphene more stable then 
CNTs[27] thus, high flow at 250 cm3/min make the 
probabilities for collision free radicals and forming 
graphene was easier than low rate which prefer to 
form CNTs. 

CONCLUSION
Graphene multi layers were synthesized at 

ambient pressure with two different flows of 
carrier’s gas which shows critical parameters 
and important requirement to decided planer or 
tubular structure of carbon material. Thus, the 
functional analysis with spectroscopic images 
technique showed that catalyst at the conditions of 
preparation carbon sheets at 700∘C unnecessary 
requirement for the synthesis of graphene. The 
results showed that flow of carrier gases can 
play important parameter for built carbon sheets 
or tubular structure when provided the ideal 

condition for diffusion with rearrange the donor 
with accepter electrons to forming uniform sheets 
or multi-form structures.
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