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Increasing environmental pollution is one of the major problems in recent 
decades. Finding new ways to remove contaminants is critical mission 
for scientists.  In this research, Fe3O4/TiO2/Ag magnetic nanocomposite 
synthesized for investigation of degradation of methylene blue (MB). Fe3O4 
magnetic nanoparticles was first synthesized with simple co-precipitation 
method. Then the magnetic nanocomposite structure of Fe3O4/TiO2 by 
hydrothermal methodwas shaped. After that, to improve the ability of the 
nanocomposite to reduction of MB, Ag nanoparticles was doped on the 
surface of the Fe3O4/TiO2. In fact, in this structure, we used local surface 
plasmon resonance (LSPR) future of Ag and photocatalyst property of TiO2 
to modify the ability of MB reduction. Various techniques were employed 
to characterize the morphology of magnetic nanocomposite such as X-ray 
diffractometer (XRD), Fourier transform infrared spectroscopy (FT-IR), 
scanning electron microscope (SEM) and an alternating gradient force 
magnetometer (AGFM). We also used ultraviolet-visible (UV) analyses to 
determine the band gap. The results show that the nanocomposite formed 
successfully in desired structure and morphology. Catalytic measurements 
on the samples show an excellent efficiency for the MBdegradation. After 
the reduction of MB, one can use a magnet bar to separate the catalyst 
from solution easily. Artificial neural network (ANN) models can 
eliminate the huge part of experimental investigations in various filed 
of science and technology. After gathering some information about the 
methyl blue degradation, the ANN modeling was carried out to calculate 
the optimum values of initial variables to achieve the maximum removal 
efficiency. In this project, we used an initial ion concentration, the amount 
of nanocomposite that were used in photocatalyst activity and removal 
time as initial variables, finally the removal efficiency of pollution (MB) 
was considered as the output. In this project, we used a genetic algorithm 
(GA) to trained models and predation.
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INTRODUCTION
One of the most significant part of the water 

pollution is propagation of the organic dyes. The 
different sources of pollution could be as: paper, 
painting, food, and textileindustries. These organic 
dyes, like methylene blue (MB), are hazardous 
to the environment and human life because of 
their substantial toxicity property. Therefore in 
the recent decades, scientists investigate their 
environmental effects and try to reduce them as 
much as they can. After a comprehensive study, 
two methods have been introduced to degrade 
organic dyes emissions, named as physical 
absorption and chemical methods. The physical 
adsorption has low efficiency and cannot be 
removed from organic dyes completely. However, 
some chemical methods indicate different results 
and lead to more effective removal of organic 
dyes compare with the physical absorption. These 
chemical methods can make non-toxic materials 
by changing the structure of organic dyes. [1-11]

Among many materials that could help humans 
to solve pollution issues and degenerate the 
organic dies, noble metals such as Ag, Au, Pt, 
and Cu have particular situations, because these 
metals show interesting property named SPR 
(Surface Plasmon Resonance). This phenomena 
happen when the frequency of conduction 
electrons in metals, be equal to the frequency of 
photon, emitted to the surface. In this situation, 
the free electrons in the metal surface oscillate 
with the frequency of the emitted photon. If 
the particle size of metal components decreases 
and tends to the nano size, one faced by LSPR 
(Local surface Plasmon Resonance) phenomena. 
This event appears in metallic nanoparticles. In 
fact, the strong interaction between the metallic 
nanoparticles and light takes place within a specific 
wavelength. By controlling the nanoparticlessize, 
one can change the interaction wavelength and 
optical properties of metal. One of the most 
interesting noble metals for researchers in recent 
decades, is Ag. Because of the high electrical, 
optical, and thermal conductivity of Ag, and also 
its lower price compare to Au and Pt, the interest 
in utilizing the Ag nanoparticles is ever growing. 
Silver nanoparticles are extraordinarily efficient at 
absorbing and scattering light and depend upon 
the size and shape of the particle. For example, 
by modifying the silver nanoparticles, the SPR 
wavelength peak can be tuned from 400 nm (violet 
light) to 530 nm (green light)  [12-23].

The crystalline structure of Fe3O4 ferrite, is an 
inverse cubic spinel. In this formation, the iron ions 
are shared between tetrahedral and octahedral 
sites. The Fe3+ and Fe2+ ions occupied octahedral 
sites in the same ratio and tetrahedral sites being 
occupied just by Fe3+ ions. In fact, this dispersion 
of iron ions, create the tangible magnetic property 
of Fe3O4 ferrite. The magnetic interaction among 
octahedral ions shows ferromagnetic future and 
among iron ions at octahedral and tetrahedral 
sites is antiferromagnetic. Overall Fe3O4 shows 
ferri-magnetic behavior.

Especial properties of Fe3O4 attracted massive 
attention in several applications in recent 
years, including: magnetic hyperthermia and 
cancer treatment, smart drug delivery system 
and delivery drug to specific targets, biological 
separation mechanism, magnetic resonance 
imaging (MRI) technology, different wastewater 
treatment technique, heterogeneous catalysis, 
and various photocatalytic activities.Although balk 
Fe3O4 ferrite indicates ferri-magnetic property, 
but in the nanoparticle size, because of the 
superparamagnetic behavior, it is a good candidate 
for use in photocatalysis field. This future creates 
the ability to remove composite catalysts from the 
solution, easily by external magnetic field, because 
of to their excellent magnetic and dielectric 
properties.Also this future could play vital roles in 
numerous scientific and research branches such 
as new generation of bioelectrochemical sensors, 
biotechnology(biomedicine), development of new 
medical diagnosis, environmental remediation, 
catalysis, super-capacitors and lithium-ion 
batteries in electric vehicles and portable 
electronics, data storage, magnetic fluids as part 
of cooling systems, photocatalysis, microwave 
absorption covering equipment, carriers of 
drug or gene delivery, improve contrast agents 
for magnetic resonance imaging biomolecules 
separation, are some of the potential applications 
for Fe3O4 and its nanocomposites. [24-33]

On the other hand, Remarkable mechanical 
and optical properties and as well as their 
wide of utilities, lead to make the TiO2 (N-type 
semiconductor) nanoparticles as one of the vital 
catalyst that attracted the attention in the recent 
years. Suitable difference between the valence 
and conduction bands (3.2 eV), Indirect band gap, 
non-toxic, low price of synthesis, and hydrophilic 
features are some advantages of using TiO2. 

TiO2 nanoparticles observe in four kinds of 
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structures: Anatase, Rutile, Brookite, and Beta. 
Behind all advantages of these nanoparticles, 
there are some the limitations as well. For 
example, for high photocatalytic activity, the band 
gap permits only ultraviolet(UV) visible spectrum 
to be proficiently used.

One should notice that only less than 5% of 
sunlight contains UV spectrum and if one wants to 
use it, there would be a colossal problem. 

Recent reports reveal the new generation of 
nanocomposites that show the magnetic and optical 
properties at same time and shape bright future in 
field of material science and modern technology. 
The large number of employment exhibited 
by the magnetic-plasmonic-semiconductor 
materials. These applications get into multiples 
acknowledgment areas, such as biology, catalysis, 
biomedicine, and optoelectronics. Generally, the 
magnetic-plasmonic-semiconductor materials are 
composed of three parts. The family of ferrites 
as in their magnetic part of, noble metals such 
as Au, Ag, Cu, or Pt as plasmonic part, and finally 
special metal oxide as semiconductor parts such 
as titanium dioxide.Depend on the final goal and 
usages, we can determine to factors that have 
huge effect on functionality of the magnetic-
plasmonic-semiconductor materials, particle’s 
size and shape. In this structure, noble metals 
have two various applications. First they react 
as part of degrade organic dyes individually, and 
the second, is help the semiconductor materials 
such as TiO2 nanoparticles to increase the hole-
electron combination time [34-40]. Also some 
papers published and mentioned to Eco-friendly 
way to synthesis nanocomposite to degradation 
of various organic and non-organic pollutions. 
For example using different juices as green fuel 
or organic surfactant as new way to control the 
nanocomposite size. These researches show the 
high value of this issue for earth and future of 
human life.

Artificial intelligence (AI) is the new branch 
of computer science that mention to abilities of 
simulation of human brain processes by machines. 
This technology is programmed to think and act 
like humans and their actions. For example, design 
special methods that due to the machines that 
exhibit features like related human mind, such as 
problem-solving or learning.The idea of creating 
artificial intelligence was designed special system 
that thinking and reacting like human being to 
find the best way to achieve a specific targets. 

One of the main part of artificial intelligence is 
machine learning.This subset refers to thisconcept 
that computer programs can learn and adapt 
to new data without assistance of human and 
running automatically. Deep learning is the name 
of popular branch of machine learning that 
enable this automatic learning. These techniques 
work with absorbing theunstructured data from 
different sources, such as texts, images or videos.

Artificial neural network (ANN) is one of the 
subsets of deep learning computing tools that 
inspired the biological nervous network of human 
brains. The main target of ANN is to predict 
uncertain relationships between input and output 
parameters in a complicated system by the learning 
process. The researcher defined three various 
methods of learning, named: supervised, semi-
supervised or unsupervised.  An ANN contains 
nodes, and these processing units are made 
up of input and output units. In the supervised 
technique, the algorithm use data to recognize 
patterns by calculating the weights for each node. 
Although the neural network utilizes in recent 
years, but it has the enormous effects on exciting 
problems in different areas of science, medicine, 
and engineering, and cause incredible progress. 
Recently, ANN was employed in nano science 
and determined the relation between other 
measurement parameters that affect results. One 
of the interesting topics, in this case, is forecast 
the removal ofazo dyes in aqueous solutions. 
Finding optimized conditions to degenerate 
pollution could save time and eliminate expensive 
experimental research. [40-49]

In this paper, Fe3O4/TiO2/Ag nanocomposite 
prepared for the effective catalytic degradation 
of methylene blue schematically is shown in Fig. 
1. At first, Fe3O4 nanoparticles was synthesized by 
co-precipitation method. Then TiO2 nanoparticles 
was coated to the Fe3O4surface, so that Fe3O4/TiO2 
nanocomposite was formed. In the next step, Ag 
nanoparticles was added and created a new layer 
on the surface Fe3O4/TiO2. Therefore, Fe3O4/TiO2/
Ag magnetic nanocompositewas produced in three 
phases. Then the photocatalyst (in form of solid) 
was added to the aqueous solution of azo dyes 
(methylene blue) and the solution is put under 
the UV light to start degradation process. The 
product then was investigated for photocatalytic 
reduction of MB by monitoring a UV-visible 
spectrophotometer. Because of the magnetic 
property of nanocomposite, the photocatalyst 
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can be collecting from solution simply by using a 
magnet bar. The experiment is repeated and 20 
points of experimental data with various initial 
ion concentrations, removal time and, adsorbent 
dosage parameters were collected, and the 
artificial neural network is employed to predict 
removal percentage.

MATERIALS AND METHODS
Materials

Iron(III) chloride (FeCl3.6H2O), Iron(II) chloride 
(FeCl2.4H2O), Silver nitrate (AgNO3), sodium 
hydroxide (NaOH), methylene blue (C16H18N3SCl), 
titanium (IV)isopropoxide (TIPP) (97 % purity) 
were purchased from Merck Company.

Synthesis magnetic nanocomposite Fe3O4/TiO2/Ag 
5.84g of FeCl3.6H2O was dissolved in 200ml of 

distilled water and the solution was stirred using 
a magnet bar. After 5 min of mixing,2.16g of 
FeCl2.4H2O was added to the solution. Meanwhile, 
the solution temperature increases. Afterward, 
added drop-wise NaOH (2M) was added into 
the solution until the solution color turned from 
yellow to black and the solution pH reaches to 
10. After 1 h, the magnetic Fe3O4 nanoparticles 
were produced. At the next step, to synthesize the 
Fe3O4/TiO2 nanocomposite, 2ml TIPP was injected 
to solution and was shaken for 2h, and followed 
by the sonication process which taken place for 1 
h. At the final part of the synthesis, 1.2g of AgNO3 

dissolved in distilled water and was added to 
product to make Fe3O4/TiO2/Ag nanocomposite. 
The sodium hydroxide was added to increase pH 
solution to 10. After using 50 min of ultrasonic 
process, the solution was mixed for 1 h by starrier. 
Finally, the solution was washed with distilled 
water 2 times and dried at 40 °C in an oven. 

Degradation process of Azo dyes 
To determine the effectiveness of Fe3O4/TiO2/

Ag nanocomposite to remove azo dyes from the 
solution, 0.5g of this nanocomposite was added to 
200 ml of the dye solution (20 ppm). The solution 
was mixed and shaken by a mechanical stirrer for 
1.5 h in dark environment to distinguishbetween 
the rate of adsorption and photocatalystefficiency. 
Next, the solution was transferred to a reactor with 
four 100 W UV lamps.  The solution was stirred for 
1 h while it was under the irradiation of UV light. 
Finally, the nanocompositewas separated from the 
solution by a magnet bar. The solutionwas filtered, 
centrifuged, and their concentration was analyzed 
to determine the methyl blue concentration.  

Characterization
The phase characterization and XRD patterns, 

were recorded by a Philips, X-ray diffractometer 
using Ni-filtered Cu Ka radiation. For ultrasonic 
irradiation, we have used a multi-wave ultrasonic 
generator (FAPN) with oscillation frequency of 20 
kHz, and maximum power of 150 W. SEM images 

 

 

 

Fig. 1. Schematic of preparation Fe3O4/TiO2/Ag magnetic nanocomposite
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were taken using aMIRA3 TESCAN instrumen. 
The samples were coated by a very thin layer of 
platinumto prevent the charge accumulation and 
gain a high resolution and better contrast. To 
investigate the magnetic property of samples and 
analyze the hysteresis loop, we were employed an 
alternating gradient force magnetometer (AGFM)
made by MeghnatisDaghighKavir. In order to 
check the chemical bonds of the compositions 
and purity percentage of the samples, Fourier 
transform infrared spectrometer (FT-IR) made 
by BRUKER (ALPHA) was employed.To calculate 
the concentration of initial and final methyl blue 
solution, an UV-Vis spectrophotometer (SCO) was 
used.

Artificial neural network
We used the Tensor Flow platform to create and 

learn algorithms. To design the experiments, initial 
ion concentration, removal time, and adsorbent 
dosage were selected as input variables, and the 
removal percentage of methyl blue was chosen 
as the output. The network architect consists of 
three nodes as input, hidden layer, and one node 
as output. The input neurons relate to the node j 
in the hidden layer by

𝜕𝜕𝑗𝑗 =∑(X𝑖𝑖𝑊𝑊𝑖𝑖𝑗𝑗) + 𝛳𝛳𝑗𝑗
ℎ

𝑖𝑖=1                                                  
(1)

Also the output from j the neuron of the hidden 
layer is given by

 

 

 

Fig. 2. XRD patterns of the prepared materials, (a) Fe3O4 (b) Fe3O4/TiO2 (c) Fe3O4/
TiO2/Ag
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𝜕𝜕
                                                               

  (2)

In the above equations, h is the number of 
nodes in the input layer, t is the number of neurons 
in the hidden layer, 𝜃j is the bias term, W is the 
weighting factor, and 𝑓 is the activation function 
of the hidden layer. In the end of ANN structure, 
the output of the kth neuron in the output layer 
is given by:

𝑌𝑌𝑘𝑘 = ∑ (O𝑖𝑖𝑊𝑊𝑖𝑖𝑘𝑘) + 𝑏𝑏𝑘𝑘
ℎ
𝑖𝑖=1 k = 1, 2, …, n        

(3)
     

Where 𝑊 is the weighting factor, 𝑏k is the bias 
term, and n is the number of neurons in the output 
layer. 

 The experimental points were divided into 
two categories. First one, consists of 15 points 
to train the model and 5 points to test. We were 
used root mean square error (RMSE) as model to 
prediction, and to compile the model the binary 
cross-entropy was applied as loss function, and 
Adam as optimizer.

RESULTS AND DISCUSSION
Figs. 2(a-c) show the XRD pattern for Fe3O4 (a) 

nanoparticles, (b) Fe3O4/TiO2 and (c) Fe3O4/TiO2/
Ag nanocomposite. The main crystallographic 
planes of Fe3O4 are (220), (311), (400), (422), and 

(440) planes. The low intensity of background 
shows the high purity of the sample, and the 
pattern is indexed as a cubic phase with JCPDS 
of 03-0863 reference card. The Fe3O4/TiO2XRD 
pattern shows an additional peak related to the 
TiO2 nanoparticles. The sharpest peak with the 
highest intensity is due to the (101) plate. Adding 
the Ag nanoparticle to the composite, leads to a 
decrease of peak intensities because of forming 
the multiphase structure. The (111) peak in Fig. 
2(c), relates to Ag nanoparticles. The crystalline 
sizes of samples were calculated by the Scherrer 
equation (Dc= Kλ/βCosϴ)   (4), where, Dc is the 
crystalline size, K is so-called shape factor taking 
equal to 0.9, λ is the X-ray wavelength. All samples 
have crystalline sizes less than 20nm.  

Figs. 3(a-f) shows the morphology of Fe3O4 
nanoparticles which synthesized at different 
temperatures. The nanoparticle shapes are mostly 
spherical with a reasonably high level of purity and 
average diameter of less than 60nm. Synthesize 
at high temperatures leads to decrease in the 
nanoparticles sizes, because temperature has 
many effects on nucleation growth. On the other 
hand, nanoparticles grown a lower temperatures 
are more uniform and have larger sizes. However, 
we observed that the reaction rate increases with 

 

 Fig. 3. SEM images of Fe3O4 nanoparticles in different magnificationsat different temperature. (a,b) 30О C (c,d) 60О C 
(e,f) 90О C
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increasing the reactive temperature.
Figs. 4(a-b) shows the SEM images of Fe3O4/TiO2 

nanocomposites and confirm that the spherical 
nanocomposites were successfully synthesized. 
The TiO2 nanoparticles had enough time to load 
on the Fe3O4 nanoparticlessurfaces, and the 
sonication process helped to achieve high purity 
of nanocomposite. 

The morphology of Fe3O4/TiO2/Ag 
nanocomposite illustrates in Figs. 5(a-b) with 
different magnification. The average size of the 
synthesized nanocomposite was determined 
under 70 nm. One reason for this result could 
be as: gradually increasing of the pH solution 
gives enough time to bond Fe3O4/TiO2. Also, 
the sonication leads to prevent the clumping 

 

 
Fig. 4. SEM images of Fe3O4/TiO2 nanocomposite in 

different magnifications
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of nanocomposites. The spherical shape of 
nanocomposites indicate that the Fe3O4/TiO2/
Agmagnetic nanocomposites are suitable 
candidate to usage in photocatalytic activities 
because the high rate of effective surface in this 
morphology due to more chemical reactions.

Fig. 6 exhibits the FT–IR spectrum of theFe3O4 
nanoparticles, Fe3O4/TiO2andFe3O4/TiO2/Ag 
nanocomposite. The peak at around 3419 cm-1 

corresponds to the stretching mode of OH group 
adsorbed on the surface of the nanoparticles and 
the peak at 1640 cm−1 corresponds to the bending 
vibration of H2O. The peaks at 450 and 583 cm-1 
correspond to the Fe–O bonds. The peak at 781 
cm-1 which attributes to the Ti–O bond in TiO2 
shows the metal-oxygen bond.

The magnetic property of Fe3O4 nanoparticles, 
Fe3O4/TiO2, and Fe3O4/TiO2/Ag nanocomposites 

 

 

 

Fig. 5. SEM images of Fe3O4/TiO2/Agnanocomposite in 
different magnifications
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Fig. 7. Hysteresis loops for: (a) Fe3O4 nanoparticles, (b) Fe3O4/TiO2, (c) Fe3O4/TiO2/Ag nanocomposites

Fig. 6. FT–IR spectrum ofFe3O4 nanoparticles, Fe3O4/TiO2 and Fe3O4/TiO2/Ag 
nanocomposite
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were investigated and the results are illustrated 
in Figs. 7(a-c). The hysteresis loop for Fe3O4 
nanoparticlesreveals the superparamagnetic 
behavior with the magnetic saturation around 
40 emu. By introducing TiO2nanoparticles and 
producing Fe3O4/TiO2, magnetic saturation of 
Fe3O4 decreases, because the appearance of TiO2 
nanoparticles in composite, covers the Fe3O4 
nanoparticles, the fact that confirmed by the 
hysteresis loop of Fe3O4/TiO2 nanocomposite at 
Fig. 7(b). Same effect is happen when the magnetic 
property and hysteresis loop of Fe3O4/TiO2/Ag 
nanocomposite was studied at Fig. 7(C).   

The Fe3O4/TiO2/Ag nanocomposites 
degrademethyl blue in two methods. In the first 
method TiO2 nanoparticles act as a semiconductor. 
The schematic diagram for this process is shown 

in Fig. 8. The emitted photons affect the electron 
from the valance band and transfer them to the 
conduction band. Therefore there are some 
electrons in the conduction band and some holes 
in the valance band. The electrons react with 
oxygen in the air, and superoxide anion is created. 
Because of the reaction of waterand holes in the 
valance band, hydroxyl radicals are appeared. 
.O2

- and .OH radicals degradeof azo dyes and 
other pollutions in aqueous solution. The second 
phenomena that help to remove pollutions is 
by the effect of the Ag nanoparticles and LSPR 
property. Since the radiation photons to the 
surface of silver nanoparticles and the LSPR effect, 
the electrons start to oscillate with a frequency 
equals to resonance frequencyof Ag nanoparticles 
(Fig. 9). In this case, the LSPR effect creates positive 

 

  Fig. 8. Schematic of degradation mechanism of organic dyes under UV irradiation by TiO2 nanoparticles

 

 

 

 

  
Fig. 9. Schematic of LSPR effect of Ag nanoparticles
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and negative charges and enters into removing 
dyes pollution. Fig. 10 indicates photocatalytic 
degradation efficiency at different times against 
UV spectrum (using the 0.5gr of Fe3O4/TiO2/Ag). To 
calculate the degradation efficiency, the following 
equation was used:   

C0 − 𝐶𝐶
C0

 × 100
                                                            

(4)

Where, the C0 is the initial concentration of the 
solution, and C is the final concentration after the 
photocatalyst process. 

 

 

 

 

 

  

Table 1. Experimental data set design, including 20 different samples 

Fig. 10. Photocatalytic degradation of methylene blue at different times against UV light
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The dataset shown in the Table 1 contain 20 
different experimental date (called samples) that 
were measured in different situations. They were 
randomly divided into two sets, which were used 
for training and testing the model. The training 
group includes 15, and the test branch has 5 
samples. The training data were used to estimate 
and calculate the parameters of the ANN algorithm 
and the testing data was applied to show that the 
network parameters are valid. This network has 
3 layers called: input, hidden, and output. In this 
research, the ANN network has 3 parameters as 

input, including: initial ion concentration, removal 
time and adsorbent dosage. The schematic of ANN 
architected is shows in Fig. 11. All of the input and 
output values were normalized in the range of 0 and 
1. One of the critical point to design the algorithm 
is setting and finding optimized activated function, 
loss function, and also choosing the optimum 
number of nodes in the hidden layer. Regarding 
the above mentioned concepts, the ANN network 
introduce the best results just by examine and 
use the experience of AI researchers in different 
fields. The difference between experimental and 

 

 
Fig. 11. Schematic of ANN architected

 

 

 

 

Table 2.Experimental and prediction values of degradation percentage of methyl blue
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prediction values of degradation percentage 
of methyl blue are compared and the results 
is summarized in Table 2.  The rate of predicted 
accuracy is acceptable despite the number of 
samples is limited. To achieve more accuracy, one 
need more samples and more power of algorithm 
by taking more hidden layers and input nodes 
into account. Based on the obtained results, by 
controlling the input parameters, it is possible to 
estimate the removal percentage and use them in 
industrial activities.     

CONCLUSION
In this paper, we have synthesized Fe3O4/

TiO2/Ag magnetic nanocomposite and use two 
different structures (metal oxide and metal) to 
degrademethyl blue. The chemical properties 
and constituent of this Fe3O4/TiO2/Ag catalyst 
were characterized by the SEM, TEM, EDS, FT-
IR, XRD and VSM methodsThe LSPR effect of 
Ag nanocomposite and also semiconductor 
property of TiO2 nanocomposite at the same time 
help to record better efficiency of degradation, 
compared with the structures of Ag, TiO2, 
andFe3O4, individually. Finally, by collecting the 
information about the samples and preparing a 
dataset of parameters, we used the ANN method 
to predict the removal percentage of methyl blue. 
Our model consists of 3 layers, i.e. input, hidden 
and output layers. Three parameters of initial 
ion concentration, removal time, and adsorbent 
dosage were chosen as input variables. Also, the 
removal percentage of methyl blue was selected 
as the output. In spite of having some limitations 
such as the finite input parameters and the number 
of samples, the accuracy of prediction is quite 
acceptable, indicating the right way and that the 
ANN algorithm is a powerful technique. Therefore 
we could use ANN as new way to remove huge 
expensive experimental costs and also increase 
the accuracy of empirical conclusions. We should 
notice that access to more datasets in various 
fields could help us to achieve these targets easily 
and immediately.
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