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Asymmetric dimeric liquid crystals (ADLCs) are fascinating and used 
in fluorescence and nanohybrids. Due to their intermediate condition 
between solid crystals and isotropic liquids, liquid crystals are important 
materials. Asymmetric dimeric liquid crystals exhibit remarkable physical 
and visual properties due to their unique chemical architectures. It 
covers ADLC synthesis, characteristics, and behavior. Their structural 
arrangements, which give them chirality, birefringence, and polarizability, 
are highlighted. Understanding these features unlocks their full potential in 
many applications. The latter part of the review focuses on the application 
of ADLCs in fluorescence and nanohybrid systems. These materials have 
proven to be promising candidates for fluorescence-based devices, owing 
to their ability to modulate light emission through molecular alignment. 
Additionally, the incorporation of ADLCs into nanohybrid structures 
has opened up new avenues in nanotechnology and materials science. 
Their compatibility with other nanomaterials and their tunable properties 
makes them suitable for designing novel nanocomposites with enhanced 
functionalities. Furthermore, the review discusses the challenges and 
future prospects associated with ADLCs. It highlights the current gaps 
in research and proposes potential directions for further exploration 
and development of these fascinating materials. The current review 
underscores the significance of asymmetric dimeric liquid crystals as a 
captivating field of study with immense potential in various applications, 
particularly in fluorescence-based devices and nanohybrid systems. The 
comprehensive understanding presented here can serve as a valuable 
resource for researchers and scientists working in liquid crystal chemistry, 
materials science, and nanotechnology.

INTRODUCTION
Liquid crystals can be described as an 

intermediate state that exists between solids, 
wherein molecules are constrained to a three-
dimensional grid with a well-defined molecular 
structure, position, and direction. On the other 
hand, in the liquid phase, molecules move freely 

and randomly, lacking a specific arrangement. Fig. 
1 illustrates how liquid crystals possess unique 
properties distinct from both solids and liquids, 
despite sharing some characteristics with each [1, 
2]. 

The specific intermediate state obtained is 
determined by the thermal energy required to 
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Fig. 1. Molcular arrangement of  solid, liquid crystal and liquid [5].

 

  Fig. 2. Structure of cholesteryl benzoate [6].

disrupt the parallel arrangement of molecules 
within the crystal grid. As the temperature rises, 
the forces between molecules weaken, causing 
one dimension of the crystal grid to break down 
and form a two-dimensional system known as the 
Smectic phase. Further heating will then disrupt 
the forces in another dimension, resulting in the 
formation of a one-dimensional system called the 
nematic phase [3, 4].

In 1888, Friedrich Reinitzer, an Austrian 
botanist, made an intriguing observation regarding 
cholesteryl benzoate (shown in Fig. 2). He noticed 
that it displayed a peculiar fusion behavior with 
two separate melting points. When heated, 
the substance transforms into a noxious liquid 
at 145.5 °C, and upon further heating to 178.5 
°C, it undergoes a complete disappearance and 
turns into a pure liquid (a phenomenon known as 
isotropy)[6]. 

Reinitzer was sent to Otto-Lehman, where the 
world identified a new and distinct state of matter 
with the help of the polarized microscope and 
confirmed the existence of the new physical state 
of the substance [7]. In 1890 he proposed the 
term “liquid crystalline” for the new intermediate 
situation and launched an introduction entitled 
“Fluid crystals” or “Liquid crystals” containing 
observations on the noxious liquids.

In 1908 Vorlander studied a methodology to 
determine the relationship between molecular 
structure and liquid crystal properties [8], 
providing several research to systematically 
modify the structure of the aromatic nucleus and 
study several homogeneous chains, and finding 
that these changes in transport temperature were 
always occurring in the series [9, 10], and in 1922 
the French scientist Freidel launched the term 
mesophases on the three liquid crystals (Nematic, 
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Fig. 3. (a)Liquid crystal director and (b) temperature dependence of order parameter[16].

Smectic, Cholestric) to distinguish them from the 
rest of the substance, using the polarized optical 
microscopy and microscopy of textures [11].

Despite these discoveries, liquid crystals were 
not popular among scientists in the 20th century, 
but after World War II Gray at Hull University was 
able to prepare several mesogenic compounds. 
This work has helped to draw the attention of 
many scientists to the preparation of compounds 
that possess mesogenic characteristics and study 
the relationship between molecular structure and 
the meogenic characteristics [12].

It was thought that the possibility of preparing 
liquid crystal phase in polymeric materials was 
difficult to form, because the polymer chain 
was usually in coil form while the liquid crystal 
phases had a long-range orientational order and/
or a positional order. In 1956, Paul Flory first 
proposed the ability of highly degree of order 
polymers to exist in the liquid crystal state through 
his studies of the thermodynamic properties of 
solutions of polymers. Thus, the liquid crystalline 
behavior of polymeric materials has now 
received considerable attention because of many 
different and distinct characteristics, and thus 
liquid polymers, such as polyazomethines, are 
considered to be one of the most important liquid 
crystalline polymeric material produced and their 
widespread applications in high-performance 
polymer fibers, optics, energy storage, etc., whose 
composition can be influenced by the chemical 
structure of the polymer backbone, mesogenic 
unit, flexible spacers and the surrounding alkyl 

tail [5, 13]. Studies and discoveries of liquid 
crystal compounds continued, helping to develop 
and flourish in industrial applications such as 
computers, clocks, telephones, many electronics, 
electrons, temperature measures and medicine, 
as well as their use in liquid crystal display devices 
(LCD)[14]. To describe the order of molecules 
within the liquid crystal lattice, it is necessary to 
clarify two basic concepts:

Director
The Director can be described as the guiding 

force that represents the collective molecular 
orientations at each intermediate point. It 
operates along the visual axis of the phase and 
can exhibit specific tendencies and possibilities, 
which may vary from one point to another within 
the intermediate state. These variations can lead 
to the emergence of malignancy or unfavorable 
characteristics, as shown in Fig. 3a.

Order parameter
The order parameter was introduced by the 

Zwetkow used to describe the degree of molecular 
alignment with respect to director, and it is given 
by following equation (1) [15]:

S = 1/2(3 𝐶𝐶𝐶𝐶𝐶𝐶2 𝜃𝜃 − 1)                                                                                      (1)

where the angle θ between the director and the 
long axis of each molecule. The brackets denote 
an average overall of the molecules in the sample. 
In an isotropic liquid, the average of the cosine 
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terms is zero, and therefore the order parameter 
is equal to zero. For a perfect crystal, the order 
parameter evaluates to one. Typical values for the 
order parameter of liquid crystal range between 
0.3 and 0.9, and the exact value is a function of 
temperature, as a result of kinetic molecular 
motion. This is illustrated below for a nematic liquid 
crystal materials. The order parameter is usually 
found to decrease with increasing temperature 
and vanishes suddenly at the isotropic transition 
temperatures [16] as shown in Fig.3b.

TYPES OF LIQUID CRYSTALS
The most widely employed categorization of 

liquid crystals is depicted in Fig.4.

Lyotropic liquid Crystals
Amphiphilic molecules have the striking property 

of presenting two antagonistic characteristics 
within the same molecule, i.e., hydrophobicity 
and hydrophilicity. In contact with polar and/
or nonpolar liquids, under proper temperature 
and relative concentration conditions, they form 
lyotropic liquid crystalline phases [17]. The effect of 
these polar solvents (e.g., water or alcohol) on the 
combined forces of these compounds consists of 
a series of lyotropic mesophases, the appearance 
of which lies between solid and liquid conditions 
by increasing the concentration of the solvent, 
i.e., at high concentrations and with enough 
amphiphilis liquid crystals, the composition of the 
solvents (Micelles) will be combined. In the case 
of low concentrations, these liquid crystals do not 
take any composition, such liquid crystals are of 
particular importance in biological systems and in 

the diagnosis of diseases. A well-known biological 
example for lytropic lamellar structures is the lipid 
bilayers of cell membranes[18, 19] as shown in 
Fig. 5 a and b, it’s an example of a liquid lyotropic 
crystal  Sodium dodecyl Sulfate (SDS) compound 
Fig. 5c[20].

Thermotropic Liquid Crystals 
Thermotropic liquid crystal is temperature 

dependent. Thermotropic liquid crystal can be 
characterized by the various phase transitions 
that occur during heating, displaying temperature 
transitions between the crystal and the liquid 
(isotropic) phases and called such compounds 
polymorphous. If the increase in temperature is 
too large, all molecular forces will be destroyed 
and lead to the formation of the isotropy phase 
as in Fig. 6. The temperature of the transition 
from crystal to the liquid crystal phase is known 
as the melting temperature (Tm), while the 
temperature of the substance from liquid crystal 
phase to an isotropic liquid is known as the 
clearing temperature (Tc) [21]. There are two 
types of thromotropic liquid crystals in which 
mesophases are shown by heating solid matter and 
refrigerating liquid inversely called enantiotropic. 
The other type shows liquid crystals only during 
cooling, so when the crystals are heated, they 
melt directly into isotropic liquid and when they 
are cooled, they show liquid crystals and are called 
monotropic [22].

The Thermotropic liquid crystals are classified 
according to the order of the molecules into three 
categories:
1. Rod-like liquid crystals 
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Fig. 5. A, B- A scheme that represents amphiphilis molecules and water affected by changes in concentration and temperature[18]. 
C- Sodium dodecyl Sulfate as lyotropic liquid crystal[20].

2. Discotic liquid crystals 
3. Polycatener liquid crystals

Rod-like liquid crystals 
The mesogens in this category possess 

elongated shape, longitudinally shaped molecules, 
which are accountable for the manifestation of 
anisotropic properties., i.e., the variation in the 
significant physical properties in the molecular 
form of thermomotropics, in order to achieve a 
phased thermal meltdown of the mesogen, the 

molecular implied forces must vary in the physical 
properties to an appropriate extent, resulting 
from the fact that the length of the molecule (I) 
is significantly greater than the molecular breadth 
(b) called calamitic liquid crystals, as shown in 
Fig. 7. A typical calamitic mesogen consists of a 
rigid central core, since it must remain elongated 
to produce directional interaction. In addition to 
the flexible side chains which provide a stabilizing 
effect, there are also rigid linking groups. The 
rigid core is essentially aromatic, but it may also 
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Fig. 6. A-Thermotropic Liquid Crystals[23], B- Mechanism of  formation Thermotropic Liquid Crystals.

Fig. 7. Calamitic liquid crystals [23].

be alicyclic, and the polar group is also commonly 
used. Most of these compounds consist of two or 
more aromatic rings that are directly related to 
each other or connected by a linking group [23, 
24].

The calamitic liquid crystals can be classified 
depending on the arrangement of the molecules 
in different mesophase into Smectic phase (S), 
Nematic phase (N), and Cholestric phase (ch).

Smectic phase (S)
The word “Smectic” is derived from the Greek 

word Smectose, which means soap, created by 
Fridel because the compounds of this phase are 
a think turbid liquid with soapy properties [25]. 
Of all the liquid crystal phases, this is the most 
orderly phase, where molecules at this phase take 
the order of the class as a result of the parallel 
alignment of the linear axes of the molecules with 
each other, adding to the ability of these molecules 
to sort their end together by placing their weight at 
the same level, thus having these molecules in the 
directional order (Long range orientation order) 
and the positional order. This is characterized by 
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Fig. 8. A-Smectic liquid crystals[13], B- compound in Smectic phase [27].

the free sliding of the layers above each other and 
by the high viscosity because of the high order 
of the molecules within the layer that makes the 
longitudinal movement limited.

Smectic liquid crystals can be classified 
according to the molecular axle slope for the type 
of layer, namely SmA, SmB, SmC, SmF, SmI and 
others, and the most studied Smectic phases are 
SmA and SmC as shown in Fig. 8a.

In the Smectic-A, the molecules of each layer 
are arranged vertically, and the centre is unequally 
arranged such that in a liquid state. The lateral 
forces between the molecules are strong with 
respect to the inter layer attraction. Consequently, 
these layers can glide relatively easily. As a result, 
this phase has fluid properties. The Smectic-C 
is tilted from of smectic-A. The molecules are 
inclined with respect to the layer [23, 26]. It’s an 
example of a Smectic phase as in the compound 
of Fig. 8b.

Nematic phase (N)
The name of the phase is derived from the 

Greek word «nema», which means thread since 
the phase has a thread-like schlieren texture and is 
characterized by a wide range of directional order 
(Long range orientational order) while there is no 

positional order as a result of the parallel alignment 
of the longitudinal axes of the molecules and their 
endpoints overlapped in a finger, where there is 
no relationship between the centers of the weight 
of the molecules. In addition,  the ability of the 
molecules to slide freely above each other so that 
it is least ordered than the Smectic phase when 
observed under the polarized optical microscopy 
(POM) shows the Nematics compound the  
threaded texture, as shown in Fig. 9b [26, 28]. The 
discovery of the twist-bend nematic phase (NTB) is 
a milestone within the field of liquid crystals that 
have a helical structure with a repeat length of 
a few nanometers, and is therefore chiral, even 
when formed by achiral molecules, where this 
discovery has been made into the synthesis and 
characterization of dimeric and oligomeric liquid 
crystalline [29], as shown in Fig. 9a.

The nematic phase is very close in its attributes 
to the isotropic fluid as a one-dimensional system, 
but it can change in the absence of external 
steering forces, such as the electric or magnetic 
fields of the electrotrophic state, which makes this 
phase highly liquid and less liquid for a Smectic 
phase, and this characteristic is very useful for 
liquid crystal displays (LCD) [30]. Example of liquid 
crystals showing a nematic phase in the compound 
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Fig. 9. a-Alignment in a nematic Phase[32], b- Thread-like texture of  nematic phase [23], 
c-compound in nematic phase [31]

in Fig. 9c [31].

Cholestric phase (ch)  
The initial discovery of this phase occurred 

in cholesterol derivatives. The molecules in this 
phase align parallel to one another, resembling 
the nematic phase with a broad directional 
organization. However, unlike the nematic phase, 
there is no extensive in-plane arrangement where 
the molecules are organized in a flat configuration. 
Instead, the director’s direction changes in what 
is known as the cholesteric pitch, giving rise to 
a helical-like structure commonly referred to 
as the Twisted Nematic phase. An important 
physical characteristic of the cholestric phase is 
the phenomenon of selective reflection, which is 
characterized by its brightness and is one of the 
most important characteristics of the Cholestric 
phase. These colors are the first phenomena in 
the detection of the intermediate phase of liquid 
crystals, and the absence of colors in some of 
the cholesterical liquid crystals does not mean 
that there is no cholesterical phase because the 

selective reflection occurs in the red zone of the 
spectrum or the molecules may be in a particular 
state of alignment so that they do not lead to the 
selective reflection. Consider this phase optically 
active due to possessing helical structure, which 
rotates the level of bulbing of falling light [16, 33], 
as appears in Fig. 10.

Discotic liquid crystals
Mesogens with a disc-shaped are known as 

discotic liquid crystals. In 1977, the Indian scientist 
S. Chandrasekhar et al. first discovered the disc-
shaped mesophase. Typically, discoid mesogens 
usually consists of a central aromatic functionalized 
core with three to eight flexible chains. These 
chains can either be directly attached to the 
aromatic ring or linked through an ether, ester, 
or thioether bond. [34, 35]. Disk liquid crystal 
molecules are characterized by the fact that their 
diagonal axis is greater than the longitudinal axis, 
as (d) represents the diagonal axis of the molecule 
and (t) the thickness of the molecule, as shown in 
Fig. 11a.
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Fig. 10. (a) Molecular arrangement and (b) example of cholesteric liquid crystal phase [16].

Fig. 11. (a) Discotic liquid crystals[35], (b) Type of Discotic liquid crystals [37].

There are two main types of discotic liquid 
crystals:

Disc Nematic phase
The nematic disc phase, represented by (ND), 

is the least ordered mesophases and typically 
occurs at higher temperatures. This phase exhibits 
orientational order but no positional order, as the 

molecules intersect with each other horizontally 
and stack in a parallel manner. The discotic 
nematics has a similar structure to the calamitic 
nematics, although in this case, the axis of the disc 
is more or less in the same direction.

Columnar phase
It is denoted by the symbol (Col). The columnar 
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Fig. 13. α-(4-cyanobiphenyl-4`-yloxy)-ω-(4-n-alkylanilinebenzylidene-4`- oxy)alkanes [50, 51].

Fig. 12. α,ω-bis(4-n- alkylanilinebenzylidene-4`-oxy)alkanes[44].

(or disk) liquid crystals differ from the previous 
types, where the molecules are stacked into 
columns, the columns then being organized in 
a two-dimensional lattice. Molecules in such a 
phase have a positional order in two dimensions 
and are disordered in the third. Columnar phases 
are very rich and are normally classified at three 
levels; according to the symmetry of the two-
dimensional array, the orientation of the core with 
respect to the column axis, and finally the degree 
of order within the column. The columnar phase 
divided into hexagonal and rectangular columnar 
phases, as shown in Fig. 11b [36, 37].

Polycatenar liquidcrystals  
Polycatenar liquid crystals are intriguing 

substances composed of elongated, rod-like cores 
that contain between three and six terminal 
chains. These chains are often, but not always, 
arranged symmetrically around the core. Two 
common examples are shown (a ‘tetracatenar’ 
and a ‘hexacatenar’ system) [38].

Dimeric Liquid Crystals
For many years it was considered that the 

liquid crystals of low molar mass should consist 
of molecules containing a semi-rigid core usually 
joined by a flexible spacer and attached to which 
were one or two alkyl chains, alkoxy, thioalkyl, 
halogens, cyano, and so on. However, this is no 
longer held to be true, as it was found that there 
are many molecular compounds that have the 
ability to show liquid crystalline properties, as 
the dimeric liquid crystals consist of molecules 
containing two semi-rigid mesogenic/ non-
mesogenic unit connected via a flexible spacer, 

which forms an alkyl chain, which is characterized 
by showing Liquid crystal properties at low 
temperatures, and this can be seen through the 
relationship between the molecular structure and 
liquid crystal properties in many studies[39-41].

The pointed materials are further classified into 
two broad classes:

Symmetric Liquid Crystal Dimers
The interest in liquid crystalline dimers can 

be traced back to the scientist Griffin and Britt 
in 1980 AD suggested that they can be used 
as model compounds for a semi-flexible main 
chain liquid crystalline polymers of technological 
importance[42], while its discovery was several 
decades ago by the scientist Vorlander has 
been largely ignored[43]. This type consists of 
two mesogenic units are the same that contain 
the structural features found in mesogenic 
compounds of low molar mass and are linked to 
each other by a flexible spacer normally, but not 
always, an alkyl chain. These compounds were 
called dimers and prepared the first dimeric series 
that showed liquid crystal properties α,ω-bis(4-n- 
alkylanilinebenzylidene-4`-oxy)alkanes,[44, 45] 
which took the following structure (Fig. 12).
Nonsymmetric Liquid Crystal Dimers 

They are unconventional liquid crystal dimers 
that have attracted a lot of attention due to the 
unique liquid crystal properties that these dimers 
possess, which include two asymmetric mesogenic 
groups that are linked together by alkyl chains 
(CH2)n through flexible spacers[40, 41], and the 
lack of The homogeneity of the skeleton structure 
of these compounds will have an impact on the 
thermal and mesomorphic properties, where the 
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Fig. 14. The general formula for liquid crystalline particles [45].

thermal properties and mesomorphic behaviors 
of the liquid crystal dimers are affected by several 
factors, including the composition, the size of the 
mesogenic units, the length of the spacer and the 
terminal chains, and that these asymmetric liquid 
crystal dimers have a high potential to show a wide 
range of phases Compared to symmetrical dimers, 
it has a tendency to form few phases [46-49]. To 
verify this interesting possibility, many studies 
were conducted on several asymmetric crystalline 
dimers, but these studies were much less than it is 
compared to symmetric crystalline dimers. Among 
these studies are the following α-(4-cyanobiphenyl-
4`-yloxy)-ω-(4-n-alkylanilinebenzylidene-4`- oxy) 
alkanes, as shown in the general structure  (Fig. 
13) [50, 51].

In which n and m refer to the number of 
carbon atoms in the spacer and terminal chains, 
respectively. During the study of differential 
scanning calorimetry and the polarized optical 
microscopy, it was found that the length of the 
terminal chain, as well as the length of the flexible 
spacer, had a clear effect on the appearance and 
type of liquid crystalline characteristics, as such 
dimers give the nematic phase When the length 
of the chain is short and medium, and as the 
length of the terminal chain increases, as well as 
the length of the flexible spacer, the probability of 
the appearance of the semactic-A phase increases 
[52], and although a number of problems are still 
not fully identified, which have been discussed 
recently in many studies [53-56].

Chalcone Liquid Crystalline 
The chalcone consists of two aromatic rings, 

which are linked together by a bond group 
consisting of three carbon atoms of the α,β-
unsaturated carbonyl system. The chalcone is 
also known by other names: benzlacetophenone, 

benzylideneacetophenone and 1,3-diphenyl-2-
propene-1-one, which It contains a ketoethylenic 
group (-CO-CH=CH-), that is, the chromophore 
group, and this is why these compounds are 
colored [57].

The chalcone group is considered an 
intermediate group consisting of an odd number 
of carbon atoms, which leads to the formation 
of a central structure that has the shape W, and 
this leads to an increase in the molecular width, 
which makes this group less inclined to show 
crystalline properties. However, chalcone linkage 
has been used in liquid crystalline compounds 
due to its geometrical shape, rigidity, and thermal 
stability. In addition, charge transfer property 
by π-bond conjugation of chalcone linkage 
plays important role in fluorescence, dielectric 
properties of molecues, and also polymerisation 
process. The liquid crystal properties of molecules 
containing chalcone linkages can be improved 
by incorporating other central linkages that 
enhance the appearance of liquid crystalline 
properties such as imine. (Schiff’s base), ester or 
azo along with it[58], as it was present in many 
studies of liquid crystalline compounds that 
include in their composition the aromatic rings, 
which are considered the core structure of liquid 
crystalline compounds that are linked to each 
other by central linkages -N=N-, COO, -CH=N- and 
compensators at the Para or Meta site, groups 
may be halogen atoms, NO2, CN, or alkyl or alkoxy 
chains. These studies show that the appearance of 
liquid crystalline phases and their thermal stability 
depend on the nature of the molecules [59-61].

There are different ways to prepare chalcone, 
but the most suitable method is the Claisen-
Schmidt by condensation of ketone with aldehyde 
in the presence of aqueous alkaline bases or in the 
presence of alcoholic alkali [62, 63].
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Fig. 15. Different linking groups [23].

Schiff’s Bases
Schiff bases are among the most important 

reactions that are used in the preparation of 
compounds with liquid crystalline characteristics 
for many reasons, including the ease of chemical 
preparation and the fact that they give a more 
rigid model, which makes them possess high 
stability over a wide range of temperatures due to 
the presence of the double bond between carbon 
and nitrogen -C=N- Which makes studying the 
physical properties of these compounds at the 
liquid crystalline phase easy [64, 65].

They are generally prepared through a 
condensation reaction between carbonyl 
compounds and primary amines or amino acids 
to form an azomethine group [66]. The stability 
of Schiff bases depends on the type of amine and 
the type of aldehyde or ketone used, as Schiff 
bases prepared from aromatic aldehyde and 
aromatic amine are the most stable among bases. 
This is due to the increase in resonance stability, 
and the aldehydes are more effective towards 
nucleophile addition with amines compared 
to ketones due to the inductive effect of the 
attached alkyl groups (donor effect) in addition 
to the approach of the attacking nucleophile to 
the carbon atom faces steric hindrance, especially 
if the alkyl groups are large. Upon the discovery 
of 4-methoxybenzylidene-4`-butyl aniline 
(MBBA) that appears as an mesophase at room 
temperature, Schiff bases were studied repeatedly 
[67], and many studies show that liquid crystals 

containing the azomethine group form the core 
structure and can be used as linking groups to form 
different types of liquid crystal compounds [68].
The linking unit between ring systems increases 
the length of the molecules, as well as altering 
the polarizability and flexibility of the molecules. 
Linking units can impart polarity or act as non-
polar groups and, hence, increase or decrease 
polarizability, and a variety of molecules with 
Schiff base units have been synthesized and their 
liquid crystal properties were determined [69, 70].  
In the study[71], an asymmetric dimeric chain was 
prepared from chalcones and Schiff bases, which 
are characterized by their liquid crystal properties, 
the effect of alkyl chain lengths on the behavior 
of liquid crystals was studied, and mixing liquid 
crystal compounds with zinc oxide nanoparticles. 
Photoluminescence of compounds was examined 
and the results indicated that the emission in the 
blue region reveals that material has blue light 
emission properties.

THE RELATIONSHIP BETWEEN STRUCTURE 
PROPERTY AND THERMOTROPIC LIQUID CRYSTAL.
Core  

In order to clarify the molecular structure 
relationship in thermotropic liquid crystalline 
organic compounds, the general formula for liquid 
crystalline molecules that have the ability to show 
mesogenic properties [45] was developed, which 
is represented in Fig. 14. 

The molecular anisotropy required for its 
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Fig. 16. Effect of Terminal Group [74].

mesogenicity is primarily due to the core, which 
is also the cause of the comparatively high 
melting point. The core rings are connected either 
directly or by linling groups, along with lateral 
substituent. Calamitic liquid crystals generally 
have aromatic rings. An increase in aromatic 
rings will generally result in an increase in the 
melting point. Furthermore, the mesogenicity of 
the compound increase as the number of linearly 
connected rings increases. When the CH group in 
the ring is replaced by an N atom, the shape of the 
ring changes little, but the electronic properties 
change, and a considerable electric dipole is 
generated, which changes the intermolecular 
attraction [23].

Linking groups
The linking groups are a structural units that 

connects one part of the core to another part of 
a liquid crystal molecule, as the linking groups 
between aromatic systems increase the length of 
the molecules while maintaining the linear shape, 
in addition to increases the polarization anisotropy 
of the molecular core, and improves the stability 

of the liquid crystal phase. The effect of the linking 
groups of aromatic and non-aromatic rings is 
significantly different since there is no conjugation 
effect of the non-aromatic rings. The ester group is 
considered the most commonly used linking group 
in liquid crystals because it is relatively stable 
and easy to prepare and can produce important 
liquid crystals with low melting points, while the 
ethylene group is a fully conjugated linking group 
that can improve longitudinal polarization and 
lengthen the molecule while preserving linearity, 
while acetylene maintains rigidity, Linear shape, 
polarization of the core and increases the length 
of the molecule. The rules of the functional 
group (CH=N) are widely used as a linking group 
to increase the rigid and high stability and 
promote the formation of mesophases, although 
it produces a staggered central structure [65]. Fig. 
15 shows the different linking groups used in liquid 
crystal molecules.

Terminal Group
The terminal groups type and the dipole 

moment type that these substituted groups have 
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Fig. 17. Example of the effect of Terminal Group [75].

at the terminal of the molecule are the most 
important factors affecting the thermal stability 
of mesogenic compounds and the type of liquid 
crystal phase.

Where studies were conducted on the effect 
of the terminal chain length on the mesogenic 
properties, it was found that the compounds that 
contain an terminal substituted are more stable 
mesophases than the non-substituted mesogenic 
compound, whether the alkyl chain or the alkoxy 
chain. The choice of end groups is critical for the 
formation of a particular type of liquid crystalline 
phase. The theory of Mayer and Saupe [72] showed 
that the transition temperature from the nematic 
phase to the isotropic of a compound is related 
to the molecular polarization of the molecule, 
and the molecular polarization is always related 
to the terminal group and its influence on the 
intramolecular conjugation. Sometimes Smectic 

liquid crystals reduce the thermal stability of some 
terminal groups. In the short alkyl chains, the 
nematic phase appears only because the terminal 
attractive forces are high, as the separation 
between the aromatic rings compensated by 
terminal groups is small, and this can be explained 
in the compound in Fig. 16a.

Increasing the length of the chain leads to the 
appearance of the smectic and nematic phases 
together because of the increase in the attractive 
forces between the sides of the molecules resulting 
from the polarization of the CH2 groups added 
at the end of the molecule. While the very long 
chains show the smectic phase only because of 
increasing the separation between the ends of the 
molecules, and this leads to a great weakening of 
the peripheral attractive forces and the transition 
to the smectic phase occurs directly without going 
through the nematic phase [2, 73] as in Fig. 16b, 
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  Fig. 18. Jablonski diagram of the various processes associated with the absorption and emission of radiation.Jablonski diagram 

illustrating the main primary deactivation processes following excitation from the ground electronic singlet state (S0) to excited 
electronic singlet states (S1and S2)[79]

and as in compound in Fig. 16c [74].
The compound shown in Fig.16c is compensated 

for by the alkoxy terminal groups of the nematic 
and smecti phases with different temperature 
ranges and according to the compensated terminal 
groups.

The replacement of the OCH3 alkoxy group in the 
aromatic ring provides a dipole moment across the 
longitudinal axis of the molecule, which promotes 
the emergence of the nematic phase only, but 
when replaced by the (Br) group, it leads to the 
appearance of the smectic phase. This is evident 
from the difference in liquid crystalline properties 
and the thermal range shown by compounds in Fig 
17a and b [75].

The melting point and thermal range decrease 
for both compounds when the length of the 
flexible spacer is increased.

 In the rod-shape aromatic systems that take a 
linear form, the order of activity of the terminal 
group of the Smectic phase is as follows [76]:

Ph > -Br > -Cl > -F > -NMe2 > -Me > -H > -NO2 > 
-OMe > -CN

While the effect of the terminal group of the 
nematic phase is as follows:

-Ph > -NHCOCH3 > -CN > -OMe > -NO2 > -Cl > -Br 
> -NMe2 > -OMe > -F > -H.

FLUORESCENCE
It is an essential parameter for liquid crystal 

materials used in display devices [77]. When a 
beam of electromagnetic radiation with a suitable 
wavelength is shined on the molecules of the 
substance in the solution, these molecules absorb 
an amount of energy and turn into excited particles, 
and this absorbed energy is often disposed of in 
the form of visible rays, this phenomenon is called 
luminescence.

The fluorescence process begins with the 
absorption of energy by molecules that contain 
a Fluorophore (which are regions of electronic 
structure that exhibit fluorescence) at room 
temperature, then electrons move from the 
lowest level (ground-state) of electronic energy 
to the highest level (excited-state) of electronic 
energy, as this transition takes a short time (10 -15) 
of a second. This is the transition from the lowest 
vibrational energy level of the ground state to any 
excited vibrational energy level, usually the first 
or second excited singlet state, termed S1 and S2, 
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respectively. Because the state of excitement does 
not last for a long time, the electron will lose its 
energy in several ways, usually in the form of heat 
or radiation Fig. 18.

In organic molecules, the rotation of electrons 
in the stable state (the ground state) is Paired 
(↓↑) and the singlet state is called (S0), while 
the excited state can have two possibilities for 
electron rotation:

In the first case, the electron spin is unpaired, 
which is known as the triplet state and its symbol 
is T. It is difficult to change the electron spin, as 
the molecule moves from the stable level S0 to S1 
and S2, then the electron moves to the semi-stable 
triplet state T1 by moving across the systems then 
end to the steady state S0 and lose excitation 
energy slowly with the emission of violet or visible 
light in a time (10-3 to 10-2) of a second, represented 
by phosphorylation.

In the second case, the rotation is double for 
the excited electron (↓↑) and is known as the 
singlet state, and its symbol is S1 and S2 during a 
time (10-9 to 10-6) of a second, and the electron 
returns to the stable state S0 and is accompanied 
by the emission of energy in the form of rays, 
represented by fluorescence.

It is noted that the processes of fluorescence 
and phosphorylation always occur from a zero 
vibrational level for the first monomeric and 
triplet states, respectively, and it is noted that 
fluorescence occurs between two similar states 
in polymorphism, i.e. from one monomeric 
state to another monomeric state, while 
phosphorylation occurs between two states that 
differ in polymorphism from triplet to monomeric, 
where is The probability of electronic transition 
between two states of the same plurality is higher 
than the probability of electronic transition 
between two different states in plurality. 
Therefore, the probability of electronic transition 
depends on the plurality of these two states, so 
the fluorescence spectrum is of high intensity 
compared to the phosphorylation spectrum, and 
the phosphorylation lifetime is longer than the 
fluorescence lifetime [78]. All major photophysical 
processes and energy levels can be illustrated by 
the diagram in Fig. 18.

Determination of emission and excitation 
spectroscopy

The excitation and emission are two opposite 
processes, and the excitation process is nothing 

but the transition of an electron from a singlet 
ground state to a singlet excited state, while 
the emission process is exactly the opposite. 
Therefore, the emission spectrum is supposed 
to be a mirror image of the excitation spectrum, 
as in Fig. 19, but the two spectrums rarely have 
an identical picture of each other, usually for 
reasons related to defects in the manufacture 
of the device, or the presence of impurities that 
have different properties from the sample. It is 
important very select the appropriate wavelength 
for excitation and the appropriate wavelength for 
measuring fluorescence intensity.

Fluorescence occurs at lower frequencies, that 
is, at higher wavelengths, where the energy of the 
emitted radiation is smaller than the energy of 
the absorbed radiation. This difference between 
the excitation wavelength and the emission 
wavelength is called the Stokes shift, after the 
scientist Stokes, who was the first to notice this 
phenomenon in 1852 AD. The Stokes shift is 
expressed by the wavenumber. The emission 
spectrum is clear and less overlapping with the 
excitation spectrum as the Stokes shift increases, 
as in Fig. 20. Thus, the fluorescence spectrum is 
distinctive in that the absorption wavelength is 
shorter than the fluorescence wavelength.

Factors affecting the Fluorescence process
There are several factors that positively or 

negatively affect the intensity of flashing caused 
by different materials, and these factors include 
the following:

Effect of molecular structure and conjugation 
double bonds: Most of the molecules that emit 
fluorescence are large organic compounds with 
a ring structure that contain conjugation double 
bonds with high resonance stability. Aromatic 
compounds with plane structure and polynuclear 
aromatic hydrocarbons are ideal for this type of 
study, in addition to heterocyclic compounds. 
Increasing the double bond conjugation system in 
the molecule can shift the absorption and emission 

Temperature: Fluorescence is greatly affected by 
temperature. When the temperature increases, the 
fluorescence decreases as a result of the increased 
chance of collision between the molecules of 
the substance and the molecules of the solvent, 
i.e., the ease of movement of molecules in the 
medium in which the temperatures are high, and 
this leads to energy loss in non-radiative ways, and 
when the temperature decreases heat can reduce 
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Fig. 19. Emission and excitation spectroscopy[80].

this energy loss.
The nature of the solvent and its components: 

the polarity of the solvent has an important effect 
on the absorption and emission spectra, in the 
presence of a polar solvent the probability of 
transitions improves and this in turn leads to an 
increase in fluorescence due to the increase in the 
number of excited particles, because solvents with 
high polarity lead to a greater displacement in the 
direction of high wavelengths for emission spectra 
in fluorescence.

pH: the pH of the solution causes a chemical 
change in the nature of the compound and turns 
it into a non-fluorinating molecule, for example, 
aniline gives blue fluorescence in an acidic 
medium (PH˂5), but with increasing acidity of the 
solution it turns into a anilinium ion that does not 
give fluorescence[81].

QUANTUM YIELD
The efficiency of the fluorescence process 

can be expressed by calculating the ratio of the 
number of photons emitted through fluorescence, 
to the number of photons absorbed by the 
fluorophore. The quantum yield of fluorescence 
is of great importance because it is a physical 
property of a substance in a certain state. The 
values of the quantum yield range from 0 to 1, 
and the higher the values of the quantitative 
yield of fluorescence, the brightest emissions and 
stronger the fluorescence. It is possible to multiply 
the quantum yield by a hundred and thus obtain 

a percentage that is easier for comparisons, in 
which case it is called the quantum efficiency of 
fluorescence.

It is also possible to deduce the quantum 
yield from the rate of processes that occur in the 
molecules after absorption, so if there are no 
energy loss processes through fluorescence, then 
the process is effective, and the quantum yield 
is large. However, for example, if the transition 
mechanisms to the triplet state are easy, or the 
internal or external transition is easy, then the 
quantum return will decrease. The importance 
of ɸF has been demonstrated in many industries 
including research, development and evaluation 
of audiovisual equipment, electrical materials 
(OLED/LED), dyes/Pigment, and fluorescent 
probes for biological assays [ 82].

Numerous studies have been conducted on 
liquid crystalline compounds about their ability 
to fluoresce, among these studies: A study [83] 
in which the compound was presented in the 
Fig. 21a, the compound shown in Fig. 21a has 
liquid crystal properties and fluorescence, and 
the highest emission peak in the fluorescence 
spectrum was at λmax=349.5nm.

Another study [84] in which the compound 
presented in Fig. 21b showed liquid crystalline 
properties. The fluorescence properties of 
this compound were also studied and showed 
the highest absorption peak in the absorption 
spectrum at λmax (abs) = 364nm, while the highest 
peak in the fluorescence spectrum was at λmax 
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Fig. 21. Compounds with liquid crystal properties and fluorescence [83, 84].

Fig. 20. Definition of the Stocks shift for fluorescence [81].

(em) = 414 nm.

LIQUID CRYSTAL NANOPARTICLES
The tremendous progress that has occurred 

in the field of nanotechnology has stimulated 
researchers to take advantage of its applications 
in various fields, as these applications have 
multiplied in various scientific fields, and thus 
interfered with all the needs of individuals, as it 

was found that the use of nanoparticles from 
metal oxides has received more attention[85, 
86]. These nanomaterials are characterized by 
their thermal and chemical stability, in addition 
to their large surface area and unique optical 
and electrical properties. Among these metal 
oxide nanoparticles, zinc oxide nanoparticles 
exhibit superior optical properties such as 
color absorption in the visible region and UV 
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absorption. These nanoparticles have a wide range 
of applications such as catalysts, photocatalysts, 
drug delivery, environmental remediation, and 
electronics. Thus, the final properties of ZnO 
nanoparticles depend on the structural and 
morphological properties of the prepared ZnO 
nanoparticles [87]. The morphological and 
structural properties of zinc oxide nanoparticles 
were determined by synthesis methods. To date, 
different preparation procedures have been 
applied to prepare zinc oxide nanoparticles [88]. 
Despite their potential benefits, metal oxide 
nanoparticles also pose potential health and 
environmental risks. The small size allows these 
particles to penetrate cells and tissues, which 
can lead to toxicity and adverse health effects. It 
is therefore necessary to understand and control 
the risks associated with exposure to metal oxide 
nanoparticles to ensure their safe and sustainable 
use in different applications. The bonding of metal 
oxide nanoparticles to organic compounds is an 
important ongoing research area in nanoscience 
and modern nanotechnology [89].

Previous studies demonstrated the use of 
nanomaterials to enhance the thermal conductivity 
of theromtropic liquid crystal compounds. In 
addition, a study [90] reported that the addition 
of carbon-based nanoparticles enhanced thermal 
conductivity, modified phase change, and showed 
high chemical stability of phase change materials 
(PCMs).

CONCLUSION
The current review explores the fascinating 

world of asymmetric dimeric liquid crystals 
and their applications in fluorescence and 
nanohybrid systems. Various types of dimeric 
liquid crystals, including thermotropic liquid 
crystals, Chalcone liquid crystalline, and Schiff’s 
bases, have been thoroughly investigated and 
analyzed. The study highlights the significant 
factors that influence the phases of these liquid 
crystals, such as the core structure, linking 
groups, and terminal groups. Moreover, the 
review emphasizes the role of fluorescence as a 
fundamental process in liquid crystal materials 
and explores the utilization of ZnO nanoparticles 
in practical applications. It was observed that the 
mesogenic group containing the chalconic bond 
has limited utility in liquid crystalline compounds 
due to its W-shaped configuration. However, 
the presence of linking groups, specifically Schiff 

bases, enhances the appearance of liquid crystal 
properties. Furthermore, the type and size of the 
terminal group were found to impact the liquid 
crystalline properties significantly, leading to the 
emergence of the nematic and smectic phases. 
Overall, this review provides valuable insights into 
the potential applications and characteristics of 
asymmetric dimeric liquid crystals, shedding light 
on their promising prospects in fluorescence and 
nanohybrid technologies.
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