RESEARCH PAPER

Investigation of Nanostructured Zirconium Oxide Films Manufactured by Spray Pyrolysis: Structural, Morphological, and Optical Properties

Hajir M. Ali^{1*}, Hiba Qays Khaleel al Qaisy², Hayfaa A. Mubarak³, Mustafa M. Karhib⁴, Emad Salaam Abood⁵

¹ Baghdad University, Baghdad, Iraq

² Ministry of Higher Education and Scientific Research

³ Department chemical engineering, College of Engineering, University of Babylon, Iraq

⁴ Department of Medical Laboratory Techniques, Al-Mustaqbal University College, Babylon, Iraq

⁵ *Medical physics department, Hilla university college, Babylon, Iraq*

ARTICLE INFO

Article History:

Received 11 June 2023 Accepted 20 September 2023 Published 01 October 2023

Keywords:

Cu doping Morphology Optical properties Spray Method ZrO₂

ABSTRACT

Nanostructured ZrO_2 and ZrO_2 : Cu were prepared employing CSP method. XRD anaylsis assures that ZrO_2 offer the formation of crystalline phase with (200) plane by increasing Cu-doping. Crystallite size (*D*) increases from (15.990 -19.780) nm as copper content increase, whilst strain (ϵ) decreased from 2.160 to 1.750, whilst dislocation density (δ) reduction from 3.91 to 2.55. AFM technique was employed to know the film topography. The AFM have revealed that particle size observed was in the zone of (82.310 - 67.760) nm with Undoped ZrO₂ and ZrO₂: 3% Cu respectively, Whilst the root mean-square(rms) roughness from (5.830 - 3.210) nm of Undoped ZrO₂ and ZrO₂:3.0% Cu respectively. E reduction from 5.2 eV before doping to 5.0 eV after 4% Cu-doping. Whilst absorption coefficient, Refractive Index and extinction coefficient are rising with rising with Cu content with ZrO₂ thin films.

How to cite this article

Ali1 H., Khaleel al Qaisy H., Mubarak H., Karhib M., Abood E. Investigation of Nanostructured Zirconium Oxide Films Manufactured by Spray Pyrolysis: Structural, Morphological, and Optical Properties J Nanostruct, 2023; 13(4):1159-1167. DOI: 10.22052/JNS.2023.04.024

INTRODUCTION

ZrO₂ is promising material due to its god transparencyand thermal stability [1,2]. In recent years, zirconium dioxide (zirconia,ZrO₂) thin films, owing to excellent optical, thermal, mechanical and electrical properties [3–10], have been widely used in diverse fields, such as optical filters, anti-corrosion, protective and thermal barriers, gas sensor, anti-reflection coating [8, 9] and as insulators in microelectronic devices * *Corresponding Author Email: hengineer91@gmail.com* [10].Depending on deposition technique, its parameters and heat treatment, ZrO_2 films can exist in various phases, monoclinic, tetragonal, cubic and amorphous [3, 8]. Its own direct and indirect transition in (5.87), (5.22) eV, respectively [9]. Several method for depositing ZrO_2 like; pulsed laser deposition [11], thermal evaporation method [12], sol-gel [13], RF sputtering deposition was employed [14] Plasma spraying [15], laser ablation [16], ECD [17], magnetron-sputtering [18], dip-

COPY This work is licensed under the Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. coate [19] hydro-thermal processing [20], liquid phase deposition[21], and spray pyrolysis method [22-28]. spray pyrolysis method have control over the deposition rate, film. This work aims to deposit ZrO₂ films by spray pyrolysis method, This work aims is to study physical properties of undoped ZrO₂ and ZrO₂: Cu film.

MATERIALS AND METHODS

Nanostructured ZrO_2 films were deposited utilizing chemical spray pyrolysis technique. A solution containing 0.10 M ($ZrOCI_2.8H_2O$), resolved oxalic acid in (100.0 mL) re-distilled H₂O. (0.10 M) of CuCI₂.4H₂O was used a doping agent with a concentration of 2%, 4% to obtain Cu doped Zirconium oxide.. It began with a 400 °C starting point. Following criteria were used to evaluate the deposition conditions: It was 28 centimeters from the base to the spout. 10 seconds were spent spraying, at a rate of 4 milliliters per minute, with a 3 minute interval among each sprayer action. As a transport gas, N2 was used. ZrO2 thin film formation was verified by XRD analysis. Filmthickness was measured by weighing and was 35025 nm. To obtain film topography, (AFM) used . Transmittance and absorption measurements were performed using a dual beam UV-Visible spectrophotometer to evaluate the optical characteristics.

RESULT AND DISCUSSION

XRD styles in [Fig. 1]displays nanostructured ZrO_2 , ZrO_2 :Cu thin film (thickness350 nm) is 31.46°, 34.25°, 49.26°, and 54.70° matched anatase

Table 1. Explain D structural parameters, and E_p of deposited films.

Samples	(hkl)	20	FWHM	D(a.m)		Dislocations density	Strain
	Plane	(°)	(°)	ν (nm) Optical bandgap (ev		(× 10 ¹⁵)(lines/m ²)	× 10 ⁻³
Undoped ZrO ₂	200	34.25	0.52	15.99	5.2	3.91	2.16
ZrO ₂ : 2% Cu	200	34.00	0.47	17.68	5.1	3.19	1.96
ZrO ₂ : 4% Cu	200	33.96	0.42	19.75	5.0	2.55	1.75

Fig. 1. XRD pattern of intended films.

J Nanostruct 13(4): 1167159-1167, Autumn 2023

(cc) BY

(111.0),(200.0), (220.0)

and (003.0) planes, respectively. Increase peak at (200.0) was seen that fit with(ICDD) card no 1314-23-4.

The average crystallite size (*D*) is obtained employing Scherrer's formula [29-31]:

$$D = \frac{0.9\,\lambda}{\beta cos\theta} \tag{1}$$

At which, β and θ are (FWHM) and (λ) is the wavelength of the X-rays employed (0.15410 nm), β and θ are (FWHM) and the diffraction angle, respectively. (Table 1) presents the obtained information. It was demonstrated that as copper content increased, D increased from (15.990 - 19.780) nm. Therefore, copper concentration is appropriate for determining the diameters of

material crystals.

The relation [32–34] was used to determine the dislocation density (δ) in thin films

$$\delta = \frac{1}{D^2} \tag{2}$$

Table 1 explains that dislocation density (δ) lawering for (3.91 - 2.55).

information about material structure gives by the strain (ϵ), depend by employing the following equation [35-37]:

$$\varepsilon = \frac{\beta \cos\theta}{4} \tag{3}$$

Table 1 explains that strain (ϵ) decreased from 2.16 to 1.75.

Fig. 2 offers FWHM, D, ϵ and δ vs. Copper concentration.

Fig. 2. FWHM (a) D, (b) δ , (c) ϵ ,(d) of intended film.

J Nanostruct 13(4): 1167159-1167, Autumn 2023

The 3D AFM surface images were shown in Fig. 3 (a1, b1 and c1). From these figures, it can be noticed that homogenous grain vertically aligned were observed. From Figure 3 (a3, b3 and c3) it can be noticed that The particle P_{av} size was in the zone of (82.31- 67.76) nm with Undoped ZrO_2 and ZrO_2 : 3.0% Cu respectively, Whilst the (rms) roughness from (5.830 - 3.210 nm) of nanostructured ZrO_2 , ZrO_2 : 3.0% Cu respectively, according to the granularity cumulation distribution, their average values were shown in Table 2.

The wavelength range of the transmittance

(T) spectra, which extend from 300 to 900 nm, is displayed in Fig. 4. All the ZrO_2 produced at 4% Cu doping showed Transmission values above 63% for Cu-doped thin films.

Using [38-40], we can calculate the absorption coefficient (α):

$$\alpha = \ln \left(1/T \right)/d \tag{4}$$

in which (d) is the thickness of the film.

Reduced with an increase at 2% or 4% doping, according to Fig. 5.

Fig. 3. AFM images of Undoped ZrO₂ and ZrO₂:Cu thin films with granularity cumulation distribution chart, and variance of AFM parameters against doping

	Pav	Ra	rms.
Samples	Nm	(nm)	(nm)
Undoped ZrO ₂	82.31	7.84	5.83
ZrO ₂ : 2% Cu	77.54	5.33	4.89
ZrO ₂ : 4% Cu	67.73	4.21	3.21

Fig. 5. α Vs. hv for intended films.

J Nanostruct 13(4): 1167159-1167, Autumn 2023

Fig. 6. $(\alpha h\nu)^2$ Vs. hv of intended films.

Fig. 7. Extinction coefficient (k) of the grown films.

H. Ali et al. / Investigation of ZrO, Nano Film Prepared by Spray Pyrolysis

Eq. 5 : [41–43] can be used to calculate the bandgap Eg:

$$(\alpha h v) = A(hv - E_g)^{\frac{1}{2}}$$
(5)

Fig. 5 illustrates that A is the constant. The energy gaps values are displayed in Fig. 6, where they are shown to drop from 5.2 eV for an undoped ZrO, thin film to 5.0 eV over 5% Cu-doping.

(α) and the extinction coefficient can be related by [44,45]:

$$K(\lambda) = \frac{\alpha(\lambda)\lambda}{4\pi}$$
(6)

Where k (λ) is extinction coefficient.

The extinction coefficient related inversely with wavelength for all deposited nanostructured Cudoped ZrO_2 thin films as in (Fig. 6.) In addition, increasing Extinction coefficient when increasing Cu-doping in the ZrO₂ thin films.

Fig. 7. Illustrate the relation between $k(\lambda)$, which offer a decrement of its value with increment of Au until 550 nm, thereafter no change of $k(\lambda)$.

The refractive index (n) was obtained via the

$$R = \frac{(n-1)^2 + k^2}{(n+1)^2 + k^2} \tag{7}$$

Fig. 8. shows refractive index against wavelength for (Cu-doped) ZrO_2 thin films showing a decrease of n with increasing (Cu) content

CONCLUSION

Nanostructured zirconium oxide is grown by spray pyrolysis method. XRD displayed that zirconium oxide films have (200) dominant peak. [D] increases from (15.990 -19.780 nm) as Copper content, whilst strain (ε) decreased from 2.160 -1.750, whilst dislocation density (δ) decreased from 3.91 - 2.55. The AFM have revealed that the The crystallite size, roughness average and rms were lawering with the high Cu-doping respectively, The increase in Cu-doping drives to a decrement in transmission values, whilist adecrease in band gap from 5.2 eV to 5.0 eV is seen. the absorption coefficient ,refractive index and extinction coefficient were also determind.

CONFLICT OF INTEREST

The authors declare that there is no conflict of interests regarding the publication of this manuscript.

REFERENCES

- 1. Rebib F, Laidani N, Gottardi G, Micheli V, Bartali R, Jestin Y, et al. Investigation of structural and optical properties of sputtered Zirconia thin films. The European Physical Journal Applied Physics. 2008;43(3):363-368.
- Zhu LQ, Fang Q, He G, Liu M, Zhang LD. Microstructure and optical properties of ultra-thin zirconia films prepared by nitrogen-assisted reactive magnetron sputtering. Nanotechnology. 2005;16(12):2865-2869.
- Zhao S, Ma F, Xu KW, Liang HF. Optical properties and structural characterization of bias sputtered ZrO₂ films. J Alloys Compd. 2008;453(1-2):453-457.
- Suchorski Y, Wrobel R, Becker S, Opalińska A, Narkiewicz U, Podsiadly M, et al. Surface Chemistry of Zirconia Nanopowders Doped with Pr₂O₃: an XPS Study. Acta Phys Pol, A. 2008;114(Supplement):S-125-S-134.
- 5. Li N, Abe Y, Kawamura M, Kim KH, Suzuki T. Evaluation of ion conductivity of ZrO₂ thin films prepared by reactive sputtering in O2, H2O, and H2O + H2O2 mixed gas. Thin Solid Films. 2012;520(16):5137-5140.
- 6- Zhu J, Li TL, Pan B, Zhou L, Liu ZG. Enhanced dielectric properties of ZrO₂ thin films prepared in nitrogen ambient by pulsed laser deposition. J Phys D: Appl Phys. 2003;36(4):389-393.
- Paskaleva A, Weinreich W, Bauer AJ, Lemberger M, Frey L. Improved electrical behavior of ZrO₂-based MIM structures by optimizing the O3 oxidation pulse time. Mater Sci Semicond Process. 2015;29:124-131.
- Galicka-Fau K, Legros C, Andrieux M, Brunet M, Szade J, Garry G. Role of the MOCVD deposition conditions on physico-chemical properties of tetragonal ZrO₂ thin films. Appl Surf Sci. 2009;255(22):8986-8994.
- Wang S, Xia G, Fu X, He H, Shao J, Fan Z. Preparation and characterization of nanostructured ZrO₂ thin films by glancing angle deposition. Thin Solid Films. 2007;515(7-8):3352-3355.
- 10. Balakrishnan G, Sairam TN, Kuppusami P, Thiumurugesan R, Mohandas E, Ganesan V, et al. Influence of oxygen partial pressure on the properties of pulsed laser deposited nanocrystalline zirconia thin films. Appl Surf Sci. 2011;257(20):8506-8510.
- 11. Shen Y, Shao S, Yu H, Fan Z, He H, Shao J. Influences of oxygen partial pressure on structure and related properties of ZrO₂ thin films prepared by electron beam evaporation deposition. Appl Surf Sci. 2007;254(2):552-556.
- 12. García-Hipólito M, Alvarez-Fregoso O, Martínez E, Falcony C, Aguilar-Frutis MA. Characterization of ZrO2:Mn, Cl luminescent coatings synthesized by the Pyrosol technique. Opt Mater. 2002;20(2):113-118.
- 13- Joy K, Berlin IJ, Nair PB, Lakshmi JS, Daniel GP, Thomas PV. Effects of annealing temperature on the structural and photoluminescence properties of nanocrystalline ZrO₂ thin films prepared by sol–gel route. Journal of Physics and Chemistry of Solids. 2011;72(6):673-677.
- 14. Yildiz K, Akgul U, Coskun B, Atici Y. Rf-sputtering deposition of nano-crystalline zirconia thin films with high transparency. Mater Lett. 2013;94:161-164.
- 15-Peshev P, Stambolova I, Vassilev S, Stefanov P, Blaskov V, Starbova K, et al. Spray pyrolysis deposition of

nanostructured zirconia thin films. Materials Science and Engineering: B. 2003;97(1):106-110.

- 16. Chang S-m, Doong R-a. ZrO₂ thin films with controllable morphology and thickness by spin-coated sol–gel method. Thin Solid Films. 2005;489(1-2):17-22.
- 17. Brunet M, Kotb HM, Bouscayrol L, Scheid E, Andrieux M, Legros C, et al. Nanocrystallized tetragonal metastable ZrO₂ thin films deposited by metal-organic chemical vapor deposition for 3D capacitors. Thin Solid Films. 2011;519(16):5638-5644.
- Venkataraj S, Kappertz O, Weis H, Drese R, Jayavel R, Wuttig M. Structural and optical properties of thin zirconium oxide films prepared by reactive direct current magnetron sputtering. J Appl Phys. 2002;92(7):3599-3607.
- Ivanova T, Harizanova A, Koutzarova T, Krins N, Vertruyen B. Electrochromic TiO₂, ZrO₂ and TiO₂- ZrO₂ thin films by dip-coating method. Materials Science and Engineering: B. 2009;165(3):212-216.
- 20. Bokhimi X, Morales A, Novaro O, Portilla M, López T, Tzompantzi F, et al. Tetragonal Nanophase Stabilization in Nondoped Sol–Gel Zirconia Prepared with Different Hydrolysis Catalysts. J Solid State Chem. 1998;135(1):28-35.
- Kuratani K, Mizuhata M, Kajinami A, Deki S. Synthesis and luminescence property of Eu³⁺/ZrO₂ thin film by the liquid phase deposition method. J Alloys Compd. 2006;408-412:711-716.
- 22. Behnia B, Safardoust-Hojaghan H, Amiri O, Salavati-Niasari M, Anvari AA. High-performance cement mortarsbased composites with colloidal nano-silica: Synthesis, characterization and mechanical properties. Arab J Chem. 2021;14(9):103338.
- 23. Khadayeir AA, Jasim RI, Jumaah SH, Habubi NF, Chiad SS. Influence of Substrate Temperature on Physical Properties of Nanostructured ZnS Thin Films. Journal of Physics: Conference Series. 2020;1664:012009.
- 24. Sakhil MD. Influence MgO Dopant on Structural and Optical Properties of Nanostructured CuO Thin Films. Neuroquantology. 2020;18(5):56-61.
- 25. Jandow NN, Othman MS, Habubi NF, Chiad SS, Mishjil KA, Al-Baidhany IA. Theoretical and experimental investigation of structural and optical properties of lithium doped cadmium oxide thin films. Materials Research Express. 2019;6(11):116434.
- 26. Ghazai AJ, Abdulmunem OM, Qader KY, Chiad SS, Habubi NF. Investigation of some physical properties of Mn doped ZnS nano thin films. AIP Conference Proceedings: AIP Publishing; 2020. p. 020101.
- 27- Habubi NF, Mishjil KA, Chiad SS. Structural properties and refractive index dispersion of cobalt doped SnO₂ thin films. Indian Journal of Physics. 2012;87(3):235-239.
- 28. Khadayeir AA, Hassan ES, Mubarak TH, Chiad SS, Habubi NF, Dawood MO, et al. The effect of substrate temperature on the physical properties of copper oxide films. Journal of Physics: Conference Series. 2019;1294(2):022009.
- 29- Burleson DJ, Roberts JT, Gladfelter WL, Campbell SA, Smith RC. A Study of CVD Growth Kinetics and Film Microstructure of Zirconium Dioxide from Zirconium Tetra-tert-Butoxide. Chem Mater. 2002;14(3):1269-1276.
- 30. Ghazai A, Qader K, Habubi NF, Chiad SS, Abdulmunem O. Structural and Optical Performance of The doped ZnO Nano-thin Films by (CSP). IOP Conference Series: Materials Science and Engineering. 2020;870(1):012027.
- 31. Hassan ES, Mubarak TH, Chiad SS, Habubi NF, Khadayeir AA, Dawood MO, et al. Physical Properties of indium doped Cadmium sulfide thin films prepared by (SPT). Journal of Physics: Conference Series. 2019;1294(2):022008.

- 32. Lee J-S, Matsubara T, Sei T, Tsuchiya T. Journal of Materials Science. 1997;32(19):5249-5256-
- 33 Behnia B, Anvari AA, Safardoust-Hojaghan H, Salavati-Niasari M. Positive effects of novel nano-zirconia on flexural and compressive strength of Portland cement paste. Polyhedron. 2020;177:114317.
- 34. Khadayeir AA, Hassan ES, Chiad SS, Habubi NF, Abass KH, Rahid MH, et al. Structural and Optical Properties of Boron Doped Cadmium Oxide. Journal of Physics: Conference Series. 2019;1234(1):012014.
- 35. Ehrhart G, Capoen B, Robbe O, Boy P, Turrell S, Bouazaoui M. Structural and optical properties of n-propoxide sol–gel derived ZrO₂ thin films. Thin Solid Films. 2006;496(2):227-233.
- 36. Ali RS. Characterization of ZnO Thin Film/p-Si Fabricated by Vacuum Evaporation Method for Solar Cell Applications. Neuroquantology. 2020;18(1):26-31.
- 37. Muhammad SK, Hassan ES, Qader KY, Abass KH, Chiad SS, Habubi NF. Effect of Vanadium on Structure and Morphology of SnO2 Thin Films. Nano Biomed Eng. 2020;12(1).
- 38. Panda D, Tseng T-Y. Growth, dielectric properties, and memory device applications of ZrO₂ thin films. Thin Solid Films. 2013;531:1-20.
- 39. Dawood MO, Chiad SS, Ghazai AJ, Habubi NF, Abdulmunem OM. Effect of Li doping on structure and optical properties of NiO nano thin-films by SPT. AIP Conference Proceedings: AIP Publishing; 2020.
- 40. Oboudi SF, Chiad SS, Habubi NF. Annealing Effect on Some Optical Properties of Cr₂O₃ Thin Films Prepared by Spray Pyrolysis Technique. Baghdad Science Journal.

2011;8(2):561-565.

- 41. Hajakbari F, Larijani MM, Ghoranneviss M, Aslaninejad M, Hojabri A. Optical Properties of Amorphous AlN Thin Films on Glass and Silicon Substrates Grown by Single Ion Beam Sputtering. Jpn J Appl Phys. 2010;49(9R):095802.
- 42. Ahmed NY. Effect of Boron on Structural, Optical Characterization of Nanostructured Fe_2O_3 thin Films. Neuroquantology. 2020;18(6):55-60.
- 43. Dawood MO, Mubarak TH, Saleh AM, Habubi NF, Chiad SS. Physical properties of Udoped TiO₂ and Zn doped TiO2 thin films prepared by spray pyrolysis. AIP Conference Proceedings: AIP Publishing; 2023. p. 090027.
- 44. Stefanov P, Stoychev D, Valov I, Kakanakova-Georgieva A, Marinova T. Electrochemical deposition of thin zirconia films on stainless steel 316 L. Materials Chemistry and Physics. 2000;65(2):222-225.
- 45. Mohammad-Salehi H, Hamadanian M, Safardoust-Hojaghan H. Visible-light induced Photodegradation of methyl Orange via palladium nanoparticles anchored to chrome and nitrogen doped TiO₂ nanoparticles. Journal of Inorganic and Organometallic Polymers and Materials. 2019;29:1457-1465.
- 46. Shaban ZM, Khlati JA, Khadayeir AA, Habubi NF, Chiad SS. Structural, Morphology and Optical properties of Agdoped Nanostructured CdS thin films. Journal of Physics: Conference Series. 2021;1999(1):012063.
- 47. Yusoh R, Horprathum M, Eiamchai P, Chindaudom P, Aiempanakit K. Determination of Optical and Physical Properties of ZrO₂ Films by Spectroscopic Ellipsometry. Procedia Engineering. 2012;32:745-751.