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In this paper, regression tree ensembles (bagged and boosted) have been 
utilized in predicting atomic coordinate of Carbone nanotubes (CNTs). 
The aim of this study is to use ensembles classifiers to compute the atomic 
coordinates of Carbone nanotubes rather than other simulation tools. 
The dataset we used in this paper are provided by the UCI Repository of 
Machine Learning and it has a total of (10721) instances with (8) attributes 
(five as inputs and three as outputs) and it has no missing data. Various 
performance measures are also calculated to evaluate the classifiers we 
employed. The results show that there is a slight difference in performance 
between bagged and boosted trees, however, they are preferable classifiers 
for carbon atom coordinates prediction due to their high accuracy and 
short computation time. Using these predicted atomic coordinates as 
early coordinates for the simulation tool, the actual atomic coordinates 
can be retrieved in minutes or seconds instead of days by minimizing the 
iterations in the computation process.

INTRODUCTION
To tackle the issues created by miniaturization, 

carbon nanotubes (CNTs) have been introduced 
as an alternative to copper/aluminum metallic 
interconnects. CNTs are rolled-up sheets of 2-D 
graphene crystal. Since they are rolled up, they 
have electronic components that vary based on 
their direction [1,2]. For years, ab initio estimates 
have had a major effect on the investigation of 
material properties. Ab initio methods have no 
parameters and only need the atomic number as 
input. These are the reasons for ab initio methods’ 
great success. Through advances in computer 
efficiency and algorithms, these methods are 

now being applied to a growing number of 
physical and chemical phenomena [2, 3]. Ab initio 
computational methods are used to estimate 
chemical and physical characteristics of periodic 
systems in terms of chemical composition and 
crystalline structure as accurately as possible at 
a good cost without any requirement for a given 
empirical data [4]. 

BIOVIA Materials Studio CASTEP is a leading 
code for computing the characteristics of materials 
from fundamental principles. Density functional 
theory can be used to model a wide range of 
material properties. Structural at the atomic scale, 
electronic structure, electrical responsiveness, 
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and vibration characteristics are some of these 
properties [5, 2]. The computation time for a huge 
number of atoms is exceedingly long, as shown in 
numerous CASTEP simulations. Due to the power 
of the computer/server, computations may take 
many days to complete. With density functional 
theory, the fastest and most accurate approach to 
calculate atomic coordinates, atomic coordinates 
are calculated faster than with any other 
mathematical approach. In contrary, users  must 
employ more powerful computers and parallelism 
machines, both of which are prohibitively 
expensive to minimize computing time [2]. 

Rather than computing the problem, we take 
a different strategy here; the atomic coordinates 
are precisely predicted in such a little period. 
The actual atomic coordinates can be obtained 
in minutes or seconds instead of days using 
these anticipated atomic coordinates as early 
coordinates for the simulation tool. 

The use of approximated atomic coordinates in 
research also enhances the efficiency of acquiring 
appropriate results. In order to acquire rapid 
and accurate results, we focused our research 
on machine learning approaches that have been 
utilized in the literature for forecasting such 
tasks. To transfer learning researches to machine 
learning, several paradigms and techniques are 
deployed. Statistic recognition systems, symbolic 
processing, case-based learning, artificial neural 
networks, and evolutionary programming are just 
a few examples. Machine learning’s goal can be 
characterized as computers performing the task 

of human learning. Variety of approaches and 
algorithms are utilized during this learning [6, 2]. 

Numerous problems can be solved by 
performing long and tough formulas in an actual 
or simulation tools, and the outcomes can be 
obtained within that approach. In most cases, 
these situations result in lengthy and costly 
hardware and software development. Instead, 
artificial neural networks (ANNs) approaches are 
being utilized to forecast the outcomes of these 
issues utilizing datasets received from the real 
world or a simulated environment. 

Artificial Neural Network (ANN) is used by 
Cheng et al. [7] to construct a model on a graphene 
metal–oxide–semiconductor field effect transistor. 
The computing time for the MOSFET model was 
considerably reduced. The graphene MOSFET 
model was implemented as a subcircuit in HSPICE 
software, which may obviously improve the 
efficiency of simulations on graphene large-scale 
incorporated circuits. Yet, another work by Cheng 
et al. [8] has coupled support vector regression 
(SVR) along with particle swarm optimization to 
build mathematical models to predict mechanical 
characteristics of carbon nanotubes/epoxy 
composites based on an observational dataset.

A study is also used to predict the Newmark 
displacement using a gradient-boosted regression 
tree (GBRT). When compared to other ML 
approaches, this methodology integrates a 
succession of regression trees (RTs) into a 
powerful prediction model and has been proved 
to be a valuable tool for various data mining 

 

 

 

 

 

 

 

 

 

  

  

Fig. 1. Carbon nanotubes
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challenges. Unlike normal GBRT, the regularization 
idea was introduced into XGBoost to penalize 
tree complexity in exchange for enhanced model 
performance [9].

The aim of this study is to minimize the time it 
takes to calculate atomic coordinates from hours 
to seconds. Existing mathematical approaches 
are acknowledged to be incapable of reducing 
computation time toward this scale. Hence, 
Regression tree ensembles are used in this study 
to achieve this aim. The other sections of this 
paper as follows; section two gives an introduction 
to Carbone nanotubes, materials and methods 
of this study are stated in section three. Finally, 
results and discussion are explained in section four 
and the conclusion is stated in section five. 

Carbon nanotubes can be considered of as 
a cylinder-shaped sheet of graphene and these 
enigmatic formations have generated considerable 
intrigue in recent years, and considerable research 
has been devoted to their interpretation. Physical 
qualities are continuously being discovered and 

debated at the moment. It is possible to make 
carbon nanotubes as thin as 1 or 2 nanometers, 
which is a real example of nanotechnology. 
They are chemically and physically manipulable 
molecules that can be of great benefit. Materials 
research, electronics, chemical processing, energy 
management, and a slew of other industries 
benefit from their use [10]. The Fig. 1 illustrates 
the carbon nanotubes [11]. 

Carbon nanotubes with a variety of structures 
have been identified ever since. They are primarily 
classified as single-walled (SWNTs) or multi-walled 
carbon nanotubes (MWNTs) based on the number 
of graphic shells. Fullerene cages are used to seal 
the ends of SWNTs, which are defined as long tubes 
made from a single graphene sheet rolled into a 
1-nanometer-diameter cylinder. The curvature of 
the surface is created by the fullerene structures, 
which alternatively have five hexagons and one 
pentagon [11]. The Fig. 2 shows the classification 
of carbon nanotubes [12].

Carbon nanotubes’ sidewalls are comprised of 
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coordinates w' 

1 2 1 0,67900 0,70131 0,01703 0,721039 0,730232 0,017014 

2 2 1 0,71729 0,64212 0,23131 0,738414 0,65675 0,232369 

3 2 1 0,48933 0,30375 0,08846 0,477676 0,263221 0,088712 

4 2 1 0,41395 0,63299 0,04084 0,408823 0,657897 0,039796 

5 2 1 0,33429 0,54340 0,15989 0,303349 0,558807 0,157373 

 
  

Table 1. Samples of dataset

Fig. 2. Classification of Carbon nanotubes
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graphene sheets, which are composed of hexagonal 
cells stacked on top of each other. Pentagons and 
heptagons are sidewall flaws in other polygon 
structures. SWNTs with diverse architectures 
and qualities can be made with different rolling 
directions on the cylindrical sidewalls. Cylindrical 
symmetry limits the number of feasible ways for 
creating seamless cylinders to a tiny number, which 
are characterized by chiral vectors with constant 
coefficients (n, m). The electrical properties of a 
nanotube are directly influenced by its structural 
architecture. A nanotube is said to be “metallic” 
(very conductive) when (n – m) is more than 3, 
otherwise it is a semiconductor. In contrast to 
other designs, the nanotube in the Armchair is 
always metallic. [10, 11].

MATERIALS AND METHODS
Datasets and Experimental setup 

This study made use of publicly available 
internet benchmark datasets. The datasets, which 
has total of (10721) instances with (8) attributes, 
are provided by the UCI Repository of Machine 
Learning which has been developed with the aim 

of assisting the machine-learning (ML) groups in 
conducting precise research on machine learning 
techniques [13]. The dataset has no missing values 
and Table 1 shows a sample of this dataset.

Moreover, this study makes use of MATLAB 
(R2018b) which is a platform for programming to 
analyse the data and create models. It contains 
apps which show the engineers and scientists how 
learning approaches interact with their data till 
they get the desired results. The app of regression 
learner which was obtainable since 2017 is used 
in this paper to generate the results. It helps users 
to grasp the correlation between parameters and 
numerical outcomes. Essentially, this app allows 
you to design regression models directly and then 
evaluate their accuracy and performance [14]. 

Regression Tree Ensembles  
Regression tree ensembles are predicting 

approaches that incorporate many regression tree 
techniques in a weighted combination merging 
sundry techniques to improve the performance 
of the predicting models. The ensemble model’s 
primary idea is that clustering of prosaic classifiers 

 

 

 

 

 

 

 

 

 

 

 

 

  

  

Fig. 3. Bagging ensemble approach
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Fig. 4. Boosting ensemble approach

Fig. 5. Carbon nanotube dataset
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forms an alliance to create a robust classifier 
for better prediction. However, bagging which 
is parallel and boosting which is sequential are 
two strategies of the ensemble methods. Fig. 3 
illustrates Bagging ensemble approach [15]. 

Furthermore, bagging incorporates all of the 
learners’ outputs and aggregates the prediction of 
each one by averaged their outputs. In addition, 
it attempts to eliminate the inconsistency of 
learning methods by mimicking an approach 
identified prior to the application of a specific 
training set. Rather than randomly selecting new 
training datasets each time, the original dataset 
is modified by discarding some samples and 
combining the others. 

To generate new datasets, a stochastic sample 
is placed to instances from the original datasets 
with replacement. The acquired datasets through 
oversampling differ from one another, but they 
are not self-reliant since one dataset serves as 

the foundation for others. Even though, it appears 
that bagging produces a combined model which 
normally outperforms the single model generated 
from the native training data that is never 
considerably worse [16, 17]. Otherwise, Fig. 4 
shows the Boosting approach [15].

Another ensemble strategy is boosting which 
makes a group of models so the learners are taught 
sequentially with initial learners matching simple 
classifiers to data and afterwards assessing data 
for faults. Thus, we suit subsequent trees with the 
purpose of solving for net error from the previous 
tree at each step. This approach uses aggregating 
to integrate the outcomes of every classifier. The 
error of the model is calculated using the weights 
of samples and the learning model will focus on a 
certain group of high-weight samples. As a result, 
boosting approach begins by giving all training 
data samples the same weight, then pushing 
the learning model to develop a model for this 

 

 

 

 

 

 

 

 

 

  

  

Classifier RMSE R-Squared MSE MAE 
Training 

Time 

Bagged Trees 1.999 0.58 3.998 1.247 
7.156  

Sec 

Boosted Trees 1.952 0.60 3.811 1.348 11.523 Sec 

 

Table 2. Performance of prediction classifiers

Fig. 6. Flow diagram of the methodology



1026

A. Ibrahim et al. / Atomic Coordinate Prediction of Carbon Nanotubes

J Nanostruct 13(4): 1030020-1030, Autumn 2023

 

 

 

 

 

 

 

 

 

 

 

 

  

  
 

 

 

 

 

 

 

 

 

 

 

 

 

  

  

Fig. 8. Actual versus predicted plot

Fig. 7. True and predicted data
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data and re-weighting each sample based on the 
model’s output [16].

Implementation
This study makes use of MATLAB (R2018b) 

which is a platform for programming to analyses 
the data and create models. Moreover, we have 
used two strategies of the ensemble methods 
which are bagging and boosting. Then, we have 
applied them to carbon nanotubes dataset. The 
dataset which has total of (10721) instances with 
(8) attributes, are provided by the UCI Repository 
of Machine Learning and has no missing values. 
Fig. 5 bellow illustrates the original dataset of 
carbon nanotube when imported into MATLAB.  

As mentioned earlier, ensembles models 
(bagging and boosting) were used in this study for 
atomic coordinate prediction of carbon nanotubes. 
In view of the varying portion of training datasets, 
very few learning methods were used with the 
aim of finding the best learning plan for the 
experiment. The Fig. 6 illustrates the methodology 
of this paper. 

The characteristics of these methods were 
as follow. The minimum leaf size of the bagged 
approach was (8) and the number of learners 

was (30) throughout the experiment. On the 
other hand, the minimum leaf size of the boosted 
approach was (8), the number of learners was 
(30), and learning rate was (0.1) throughout the 
experiment. The K-Folds cross validation which is a 
technique for resampling the data were set to (5) 
and principal component analysis (PCA) was set to 
(off) on both models for better comparison. 

RESULTS AND DISCUSSION
This section introduces a comparative analysis 

of the two classifiers we used in this paper. 
We used four performance metrics to evaluate 
these models. Firstly, the Root Mean Square 
Error (RMSE) which is a commonly used metric for 
comparing the predicted values with the values 
observed by a classifier.  Secondly, R-squared that 
is the percentage of variance in the dependent 
variable that can be predicted by the independent 
variable. Thirdly, Mean Squared Error (MSE) which 
is the difference in average squared between both 
the actual and estimated values. Finally, Mean 
Absolute Error (MAE) which is the range of error 
units between actual and predicted values. 

Table 2 illustrates the performance of prediction 
for the two classifiers based on the evaluation 

 

 

 

 

 

 

 

 

 

 

 

  

  

Fig. 9. Error plot of bagged trees
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metrics we used in the paper. This performance 
is based on fivefold cross validated Carbone 
nanotubes dataset. Th outcomes of classifiers are 
compared and analyzed.

The Figs. 7-9 show the outcomes of the bagged 
trees in terms of true (blue) and predicted (gold) 
data and the actual versus predicted plot and the 
errors as well. 

 

 

 

 

 

 

 

 

 

 

  

  
 

 

 

 

 

 

 

 

 

 

 

 

  

  

Fig. 11. Actual versus predicted plot

Fig. 10. True and predicted data
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The Figs. 10-12 show the outcomes of the 
boosted trees in terms of true (blue) and predicted 
(gold) data and the actual versus predicted plot 
and the errors as well. 

The use of machine learning approaches has 
proven its effectiveness in prediction of problems 
in different fields. In particular, bagged and boosted 
trees have proven their ability in this paper to 
predict carbon atom coordinates and the results 
which obtained by them are competitive compared 
to the study in [2] as an example. Furthermore, 
it is notable from the Table 2 and Fig. 8 that the 
bagged trees outperform the boosted trees as 
the MAE is lower, which means that the range of 
error units between actual and predicted values 
are less than boosted trees and this indicates how 
exact the predictions are in comparison to the 
desired values. However, R-Squared in boosted 
trees is higher than bagged trees which means 
is acceptable as the high value is desirable in this 
metric. Furthermore, there is a slightly difference 
between bagged and boosted trees and due to 
their excellent accuracy and minimal calculation 
time, the bagged and boosted trees are preferred 
for computing carbon atom coordinates compared 
to traditional methods.

CONCLUSION
The use of Regression tree ensembles in 

predicting atomic coordinate of Carbone nanotubes 
is proposed in this paper. Carbone nanotubes 
datasets are used to perform these classifiers.  
The dataset has a total of (10721) instances with 
(8) attributes (five as inputs and three as outputs) 
and it has no missing data. Furthermore, different 
performance metrics are computed to assess the 
classifiers we used.   The outcomes show that 
there is a slightly difference between bagged and 
boosted trees in their performance and at the 
same time they are preferred for carbon atom 
coordinates prediction due to their excellent 
accuracy and minimal calculation time. The actual 
atomic coordinates can be obtained in minutes or 
seconds instead of days using these anticipated 
atomic coordinates as early coordinates for the 
simulation tool. Future studies can be divided into 
two categories: The first is to raise the number 
of features in the dataset. The second category 
might be to predict atomic coordinates using new 
machine learning approaches.  
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