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(MWCNTs)-COOH/Fe3O4-CaO magnetic nanostructure was employed 
for the high-yield synthesis of hexahydroacridine-1,8-dione derivatives via 
three-component reaction of dimedone, unprotected sugars, and aniline or 
4-bromoaniline in ethanol under reflux conditions.  (MWCNTs)-COOH/
Fe3O4-CaO was prepared by COOH functionalized multi-walled carbon 
nanotubes (MWCNTs)-COOH with Fe3O4-CaO nanoparticles in the 
presence of FeSO4 and eggshell. This heterogeneous hybrid nanostructure, 
(MWCNTs)-COOH/Fe3O4-CaO, was determined by SEM, TEM, XRD, 
EDX, FT-IR, and TGA. The potential application of this covalently 
linked basic catalyst was also investigated as an efficient, recyclable, and 
heterogeneous catalyst for the synthesis of hexahydroacridine-1,8-dione. 
The condensation of dimedone with unprotected sugars and aniline or 
4-bromoaniline in the presence of a catalytic amount of (MWCNTs)-
COOH/Fe3O4-CaO magnetic nanostructure gave hexahydroacridine-1,8-
dione derivatives in good yields. The products were identified by FT-IR, 
NMR spectra, and elemental analysis. The catalyst was separated by an 
external magnet from the reaction mixture, washed, and dried at 100 °C 
for 2 h. The recovered catalyst was then re-entered into a fresh reaction 
mixture and recycled 5 times without considerable loss of activity.

INTRODUCTION
In recent years, the combination of carbon 

nanotubes (CNTs) and inorganic nanoparticles 
have formed nanostructures that have superior 
properties [1]. Multi-walled carbon nanotubes 
have gained more interest than others, based on 
their great potentialities in various technological 
fields such as controlled drug release, wide surface 
area, chemical, electrical, thermal performance, 
and heterogeneous catalysis [2–6]. The greatest 
advantages of heterogeneous catalysts are the 

ease of separation from the reaction mixture and 
reuse [7,9]. However, the most important problem 
concerning MWCNTs lies within their separation 
from aqueous solution [10]. To overcome 
the poor processability and dispersibility, the 
functionalization and solubilization of CNTs have 
received much attention. The decoration of CNTs 
with inorganic compounds through covalent and 
non-covalent bonds can give them new properties 
and potential for various new applications [11]. 
The reaction of bimetal oxides like Fe3O4-CaO 
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nanoparticles and multi-walled carbon nanotubes 
to form new type of hybrid nanostructure materials 
will exploit even more diverse applications [12].

Fe3O4 magnetic nanoparticles were used in 
most studies due to high saturation magnetization, 
high magnetic susceptibility, chemical stability, 
and biocompatibility. Fe3O4 MNPs have been 
used in gene delivery, cell therapy, drug delivery, 
recording material, sensor, and catalyst [13-18]. 
These magnetic nanoparticles have been used as 
an efficient catalyst in many organic reactions [19]. 
Fe3O4 MNPs tend to aggregate to form the bulk 
metal oxide, giving rise to a dramatic decrease in 
surface area. To prevent this undesirable metal 
oxide aggregation, magnetic cores have been 
surrounded by functional ligands such as ligands 
that contain terminal amine, phosphoric acid, 
thiol, or carboxylic acid groups [20,21]. They can 
bind with the surface of magnetic nanoparticles. 
Magnetic metal oxide NPs immobilized acid 
functionalized multi-walled carbon nanotubes 
(MWCNTs)-COOH have shown superior catalytic 
activities for the synthesis of organic reactions, 
due to the presence of a very active site on the 
large surface of (MWCNTs–NPs) hybrid structures 
[22,23]. On the other hand, CaO was often used 
as a heterogeneous catalyst because of its low 
toxicity, regeneration, high basicity, and high 
catalytic activity [24]. However, the shortcomings 
possessed by CaO are low thermal stability and low 
mechanical strength, so it needs to be impregnated 
with other oxides [25]. CaO can be easily derived 
from the environment, waste sources such as 
ashes, crab shells, sand, oyster shells, animal 
bones, snail shells, and also eggshells [26-30]. The 
most chemical component of the calcined waste 
eggshell is CaO (about 97%), which can be obtained 
from calcium carbonate in the eggshell under high 
temperatures (in the range of 700–1000 oC) [31]. 
Because of the above reasons and due to the 
presence of the high surface area of MWCNT–
COOH/Fe3O4-CaO hybrid, it can be employed as 
alternative catalyst support, because of their high 
surface area resulting in high catalyst loading 
capacity, high dispersion, outstanding stability, 
and convenient catalyst recycling. We proposed 
that the MWCNT–COOH/Fe3O4-CaO hybrid can 
increase the catalytic properties for the synthesis 
of hexahydroacridine-1,8-dione derivatives. 
hexahydroacridine-1,8-dione derivatives have 
been extensively studied due to their wide range of 
biological activities and pharmaceutical properties, 

such as anticancer, antimicrobial, anti-Alzheimer, 
antibiotic, antileishmanial, and antimalarials 
agents [32,33]. There are various reports in the 
literature on the three-component Hantzsch-type 
synthesis of acridines involving condensation of 
aromatic aldehydes, anilines, and dimedone via 
conventional methods [34]. However, many of 
these methods suffered some limitations.  So in 
this article, we present a simple, cheap, and eco-
friendly synthesis of hexahydroacridine-1,8-dione 
derivatives using (MWCNTs)-COOH/Fe3O4-CaO 
hybrid as an effective catalyst under mild reaction 
conditions and good yields.

MATERIALS AND METHODS
Chemicals and Instrumentation

Solvents and chemicals were purchased 
from Aldrich and Merck. (MWCNTs)-COOH (OD: 
20-30 nm) was purchased from US Research 
Nanomaterials, Inc. (MWCNTs)-COOH/Fe3O4-CaO 
was distinguished by powder X-ray diffraction 
(XRD) PW 3040/60 X’Pert PRO diffractometer 
system, using Cu Ka radiation with (λ = 1.5418 Å) 
in the range of 2θ = 20–80° at room temperature. 
The morphology and sizes of NPs were measured 
using a transmission electron microscope (TEM, 
150 kV, and Philips-CM 10) and a scanning electron 
microscope (SEM) by Daypetronic Company-
Iran. FT-IR measurements were recorded on a 
Shimadzu 8400s spectrometer with KBr plates. 
The NMR spectra were determined on Bruker XL 
400 (400 MHz) instruments; Mass-spectrometric 
measurements were made on an Agilent 6890 
N Network GC system. The elemental analysis 
was performed by the microanalytical service of 
the Daypetronic Company. Melting points were 
obtained on an Electrothermal 9100 without 
further corrections.  

Preparation of (MWCNTs)-COOH/Fe3O4-CaO hybrid
Waste quail eggshells were thoroughly cleaned 

and air-dried after the removal of the inner 
membrane layer. Cleaned eggshells were crushed 
into small pieces and dried at 80°C for 24 h in the 
oven. The functionalize (MWCNTs)-COOH (0.3 g), 
the dried eggshells (0.1 g), and FeSO4 (0.1 g) were 
added to 50 ml of acetic acid in a flask. The mixture 
was kept in an ultrasonic bath for 30 min and 
then slowly stirred outside the ultrasonic device 
for another 2 hours, under reflux conditions. 
The solvent was evaporated and The resulting 
precipitate was calcined at 250°C for 3 hours to 
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obtain magnetically (MWCNTs)-COOH/Fe3O4-CaO 
(Fig. 1).

General procedure for the synthesis of compounds 
1-5 in the presents of (MWCNTs)-COOH/Fe3O4-CaO 

Raw materials and (MWCNTs)-COOH/Fe3O4-CaO 
(7 mol%) were mixed and reacted in ethanol (10 
ml) under reflux conditions. The completion of the 
reaction was determined by TLC using n-hexane: 
ethyl acetate (2:1) and appeared by a UV lamp (254 
& 366 nm). In the end, the catalyst was separated 
by an external magnet, filtered, washed with 
ethanol and water, dried at 80 °C for 1h, and reused 
for the same reaction. The residue of the reaction 
mixture was evaporated, and the crude product 
was purified by short-column chromatography 
on silica gel (CHCl3: MeOH / 10:1). This column 
chromatography operation was repeated to give 
pure compounds (1-5) as colorless, viscous oils. 
The products were determined by CHN analyses, 
NMR, and FT-IR spectra.

10-(4-bromophenyl)-9-((R)-((2S,3S,4R)-3,4-
d ihydroxytetrahydrofuran-2-y l ) (hydroxy) 
methyl)-3,3,6,6-tetramethyl-3,4,6,7,9,10-
hexahydroacridine-1,8(2H,5H)-dione 1 

Reaction of d-mannose (1 mmol), dimedone 
(2 mmol), and 4-bromoaniline (1 mmol), yellow 
powder. FT-IR spectrum, ν, cm–1: 3420.8 (OH), 
3061.7 (CHaro), 2955.4 (CHaliph), 2869.2 (CHaliph), 
1740.1 (C=O), 1622.0 (C=C), 1489.5 (C=C), 1398.8 
(C=C), 1262.6 (C-O), 1223.1 (C-O), 1771.5 (C-O), 
1146.5 (C-O), 1070.4 (C-O), 1036.1 (C-O). 1H NMR 
spectrum (400 MHz, DMSO-d6), δ ppm (J, Hz): 
7.11 (2H, d, J = 8.8 Hz, CHaro), 6.50 (2H, d, J = 8.4 
Hz, CHAro), 5.25 (2H, br, OH), 4.28 (1H, t, J = 7.6 Hz, 
CH), 4.15 (1H, d, J = 6.4 Hz, CH), 3.65 (1H, d, J = 
8.4 Hz, CH), 3.57 (1H, d, J = 8.4 Hz, CH2), 3.34 (2H, 

t, J = 9.2 Hz, CH), 2.23 (1H, d, J = 16.0 Hz, CH2), 
2.16 (1H, d, J = 16.0 Hz, CH2), 2.09 (1H, d, J = 14.4 
Hz, CH2), 2.02 (1H, d, J = 14.4 Hz, CH2), 1.94 (3H, 
t, J = 16.2 Hz, CH2), 1.09 (3H, s, CH3), 1.00 (3H, s, 
CH3), 0.94 (6H, s, 2CH3). 

13C NMR spectrum (100 
MHz, DMSO-d6), δ, ppm: 193.01, 184.97, 171.56, 
145.09, 138.05, 132.02, 124.98, 116.18, 113.59, 
110.91, 93.49, 81.09, 70.03, 64.21, 51.60, 49.25, 
34.51, 28.81. Found, %: C, 60.47; H, 6.21; N, 2.53. 
C28H34BrNO6 (559.16). Calculated, %: C, 60.00; H, 
6.11; N, 2.50.

10-(4-bromophenyl)-9-((S)-((2S,3S,4R)-3,4-
dihydroxytetrahydrofuran-2-yl) (hydroxy)
methyl)-3,3,6,6-tetramethyl-3,4,6,7,9,10-
hexahydroacridine-1,8(2H,5H)-dione 2

Reaction of d-galactose (1 mmol), dimedone 
(2 mmol), and 4-bromoaniline (1 mmol), yellow 
powder. FT-IR spectrum, ν, cm–1: 3404.1 (OH), 
3369.8 (OH), 3012.4 (CHaro), 2953.9 (CHaliph), 
2874.8 (CHaliph), 1699.7 (C=O), 1619.9 (C=C), 
1489.2 (C=C), 1402.0 (C=C),1260.6 (C-O), 1223.7 
(C-O), 1172.4 (C-O), 1069.6 (C-O), 1031.7 (C-O). 
1H NMR spectrum (400 MHz, DMSO-d6), δ ppm (J, 
Hz): 7.12 (2H, d, J = 8.8 Hz, CHaro), 6.50 (2H, d, J = 
8.4 Hz, CHAro), 5.25 (2H, br, OH), 4.66 (1H, d, J = 8.0 
Hz, CH), 4.37 (1H, d, J = 7.2 Hz, CH), 3.72 (1H, t, J = 
5.2 Hz, CH), 3.45 (1H, t, J = 9.6 Hz, CH2), 3.40 (1H, 
br, CH), 2.24 (1H, d, J = 16 Hz, CH2), 2.13 (1H, d, J = 
16 Hz, CH2), 1.98 (3H, br, CH2), 1.93 (1H, d, J = 8.8 
Hz, CH2), 1.86 (1H, d, J = 10.0 Hz, CH2), 1.06 (3H, s, 
CH3), 1.00 (3H, s, CH3), 0.93 (6H, s, 2CH3). 

13C NMR 
spectrum (100 MHz, DMSO-d6), δ, ppm: 192.45, 
186.64, 175.25, 149.11, 146.77, 131.69, 121.97, 
116.19, 115.62, 111.86, 110.72, 101.69, 90.53, 
70.86, 69.99, 63.52, 51.60, 34.20, 31.88, 28.36. 
Found, %: C, 60.36; H, 6.15; N, 2.47. C28H34BrNO6 
(559.16). Calculated, %: C, 60.00; H, 6.11; N, 2.50.

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Preparation of (MWCNTs)-COOH/Fe3O4-CaO nanomaterial.
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1 0 - ( 4 - b r o m o p h e n y l ) - 9 - ( ( 2 S , 3 S , 4 R ) - 3 , 4 -
d i hy d r ox y tet r a hy d r o f u r a n - 2 -y l ) - 3 , 3 , 6 , 6 -
tetramethyl-3,4,6,7,9,10-hexahydroacridine-
1,8(2H,5H)-dione 3   

Reaction of d-arabinose (1 mmol), dimedone 
(2 mmol), and 4-bromoaniline (1 mmol), yellow 
powder. FT-IR spectrum, ν, cm–1: 3417.8 (OH), 
3015.9 (CHaro), 2955.4 (CHaliph), 2873.3 (CHaliph), 
1705.2 (C=O), 1616.9 (C=C), 1485.0 (C=C), 1402.6 
(C=C),1262.4 (C-O), 1224.4 (C-O), 1171.9 (C-
O),1147.3 (C-O), 1078.1 (C-O), 1035.3 (C-O). 1H 
NMR spectrum (400 MHz, DMSO-d6), δ ppm (J, 
Hz): 7.11 (2H, d, J = 8.8 Hz, CHaro), 6.50 (2H, d, J = 
8.8 Hz, CHAro), 5.25 (2H, br, OH), 4.62 (1H, t, J = 5.6 
Hz, CH), 4.38 (1H, d, J = 8.0 Hz, CH), 3.57 (1H, d, J = 
8.4 Hz, CH), 3.38 (2H, m, CH2), 3.21 (1H, d, J = 8.4 
Hz, CH), 2.19 (2H, d, J = 11.6 Hz, CH2), 1.94 (3H, t, J 
= 5.6, CH2), 1.89 (2H, s, CH2), 1.06 (3H, s, CH3), 1.00 
(3H, s, CH3), 0.92 (6H, s, 2CH3). 

13C NMR spectrum 
(100 MHz, DMSO-d6), δ, ppm: 192.60, 186.96, 
176.41, 148.53, 131.77, 116.20, 116.05, 109.87, 
106.42, 90.51, 72.68, 71.54, 64.33, 51.61, 49.47, 
37.97, 35.29, 34.19, 31.83, 29.40, 28.98, 28.51. 
Found, %: C, 61.28; H, 6.17; N, 2.69. C27H32BrNO5 
(530.46). Calculated, %: C, 61.14; H, 6.08; N, 2.64. 

1 0 - ( 4 - b r o m o p h e n y l ) - 9 - ( ( 2 S , 3 S , 4 R ) - 3 , 4 -
d i hy d r ox y tet r a hy d r o f u r a n - 2 -y l ) - 3 , 3 , 6 , 6 -
tetramethyl-3,4,6,7,9,10-hexahydroacridine-
1,8(2H,5H)-dione 4

Reaction of d-ribose (1 mmol), dimedone (2 
mmol), and 4-bromoaniline (1 mmol), yellow 

powder. FT-IR spectrum, ν, cm–1: 3393.5 (OH), 
3019.0 (CHaro), 2954.6 (CHaliph), 2876.3 (CHaliph), 
1710.7 (C=O), 1600.8 (C=C), 1474.3 (C=C), 1395.9 
(C=C), 1220.5 (C-O), 1171.6 (C-O), 1147.9 (C-O), 
1082.1 (C-O), 1035.5 (C-O). 1H NMR spectrum (400 
MHz, DMSO-d6), δ ppm (J, Hz): 7.11 (2H, d, J = 8.8 
Hz, CHaro), 6.50 (2H, d, J = 8.8 Hz, CHAro), 5.26 (2H, 
br, OH), 4.60 (1H, dd, J = 4.4, 7.2 Hz, CH), 4.31 (1H, 
d, J = 7.2 Hz, CH), 3.57 (1H, dd, J = 4.4, 6.4 Hz, CH), 
3.42-3.35 (2H, m, CH), 2.25 (1H, d, J = 16.8 Hz, 
CH2), 2.01 (4H, s, CH2), 1.94 (2H, d, J = 18.2, CH2), 
1.85 (1H, d, J = 14.8 Hz, CH2), 1.05 (3H, s, CH3), 1.00 
(3H, s, CH3), 0.93 (6H, s, 2CH3). 

13C NMR spectrum 
(100 MHz, DMSO-d6), δ, ppm: 192.54, 174.95, 
131.76, 116.20, 115.42, 111.50, 91.59, 73.17, 
71.82, 63.64, 51.50, 48.73, 37.80, 34.67, 34.18, 
31.89, 29.49, 28.79, 28.26. Found, %: C, 61.33; H, 
6.02; N, 2.68. C27H32BrNO5 (530.46). Calculated, %: 
C, 61.14; H, 6.08; N, 2.64.

 
9 - ( ( S ) - hy d r ox y ( ( 2 S , 3 S , 4 R ) - 4 - hy d r ox y - 3 -
(((2R,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxyl 
m e t h y l ) t e t r a h y d r o - 2 H - p y r a n - 2 - y l ) o x y )
tetrahydrofuran-2-yl)methyl)-3,3,6,6-tetramethyl-
10-phenyl-3,4,6,7,9,10-hexahydroacridine-
1,8(2H,5H)-dione 5

Reaction of maltose (1 mmol), dimedone (2 
mmol), and aniline (1 mmol), yellow powder. 
FT-IR spectrum, ν, cm–1: 3415.6 (OH), 3017.4 
(CHaro), 2955.5 (CHaliph), 2928.8 (CHaliph), 1728.8 
(C=O), 1603.2 (C=C), 1473.1 (C=C), 1404.2 (C=C), 
1268.5 (C-N), 1145.8 (C-O), 1120.7 (C-O), 1071.7  

 

 

  
Fig. 2. XRD of (MWCNTs)-COOH/Fe3O4-CaO. 
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(C-O), 1033.0 (C-O). 1H NMR spectrum (400 MHz, 
DMSO-d6), δ ppm (J, Hz): 7.35 (2H, t, J = 7.6 Hz, 
CHaro), 7.17 (2H, d, J = 7.6 Hz, CHaro), 7.13 (1H, t, J = 
8.0 Hz, CHAro), 4.90 (4H, br, OH), 4.19 (1H, d, J = 8.0 
Hz, CH), 4.13 (1H, br, OH),  3.70 (2H, d, J = 4.8 Hz, 
CH), 3.57 (2H, d, J = 18.8 Hz, CH), 3.42-3.49 (6H, 
br, CH), 3.13 (1H, t, J = 6.0 Hz, CH), 3.04 (1H, t, J 
= 9.2 Hz, CH), 2.20 (2H, q, J = 12.4 Hz, CH2), 2.05 
(2H, s, CH2), 1.95 (2H, d, J = 12.4 Hz, CH2), 1.90 (4H, 
br, CH2), 1.35 (1H, m, CH2), 1.28 (2H, br, CH2), 1.05 
(3H, s, CH3), 0.99 (3H, s, CH3), 0.90 (6H, s, 2CH3). 
13C NMR spectrum (100 MHz, DMSO-d6), δ, ppm: 
192.45, 179.16, 167.45, 132.16, 129.65, 129.12, 
116.20, 100.46, 91.86, 79.62, 73.87, 73.64, 72.94, 

70.39, 63.42, 51.72, 38.52, 34.16, 31.64, 30.24, 
29.27, 28.81, 28.57, 23.69, 22.86. Found, %: 
C, 63.39; H, 7.15; N, 2.29. C34H45NO11 (503.22). 
Calculated, %: C, 63.44; H, 7.05; N, 2.18.

RESULTS AND DISCUSSION
The present paper reports the results of 

research aimed to verify the activity of the 
(MWCNT)-COOH/Fe3O4-CaO hybrid as an effective 
catalyst in the synthesis of hexahydroacridine-
1,8-dione derivatives. The possible interaction 
between eggshells, FeSO4, and (MWCNTs)-COOH 
was investigated using TGA/DTA, XRD, TEM, SEM, 
EDX, and FT-IR spectroscopy.

 

 
  Fig. 3. TEM image of (MWCNTs)-COOH/Fe3O4-CaO nanomaterial.
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(MWCNTs)-COOH/Fe3O4-CaO characterization
The typical FT-IR spectra of (MWCNTs)-COOH/

Fe3O4-CaO can be clarified briefly.
the vibration of the carbon skeleton of the 

carbon nanotubes was shown at around 1300-
1550 cm-1. The bands at about 1630-1750 and 
1000-1300 cm-1 indicate the existence of C=O 
groups of (MWCNTs)–COOH [35]. The bands at 
about 2000-2450 cm-1 are belonged to the C=C 
double bonds stretch vibration from the surface 
of the MWCNTs [36]. The weak peaks around 
3500-3900 cm-1 can be assigned to the stretching 
vibrations of OH groups [37]. The absorption band 
at 400–700 cm−1 is related to the Fe-O and Ca-O, 
which confirms the formation of the Fe3O4-CaO 
MNPs. 

X-ray diffraction (XRD) is normally used to study 
and characterize the crystallization and average 
size of (MWCNTs)-COOH/Fe3O4-CaO. In Fig. 2, 
the XRD pattern of (MWCNTs)-COOH/Fe3O4-CaO 
demonstrates seven intense peaks in the whole 
spectrum of 2θ values ranging from 5˚ to 80˚. 
The presence of eight distinct high diffraction 
peaks at 2θ values of 23.08˚, 43.15˚, 47.84˚, and 
57.37˚ for carbon, 29.52˚, 35.94˚, 39.44˚, 48.67˚ 
for CaO, and 30.36˚, 35.76˚, 43.47˚, 57.51˚, and 
63.16˚ for Fe3O4 respectively, (JCPDS Number. 
C: 00-026-1080, Fe3O4: 01-075-0449, and JCPDS 
Number. CaO: 98-000-5337) [38,39] confirmed 
that the (MWCNTs)-COOH/Fe3O4-CaO had been 
formed. The other diffraction peaks could be due 
to some chemical compounds and crystals on 
the surface of the nanoparticle. The wide X-ray 

diffraction peaks around their bases show that 
the (MWCNTs)-COOH/Fe3O4-CaO is in nano sizes. 
With the XRD pattern, the average diameter which 
can be calculated from the Scherrer equation [40] 
(D=Kλ/βcosθ, where β is the peak width at half 
maximum, λ is X-ray wavelength, and K is constant) 
is obtained at about 13.7 nm for Fe3O4-CaO NPs. 
The crystallite size was calculated based on the 
diffraction peak at a 2θ value of 35.75 These 
nanoparticles have been fixed on the different 
layers of carbon nanotubes and increased the 
outer diameter of the nanotubes (about 70-100 
nm, Fig. 2).

The morphology and size of (MWCNTs)-COOH/
Fe3O4-CaO were studied using transmission 
electron microscopy (TEM) in Fig. 3. The TEM 
image indicates that the Fe3O4-CaO nanoparticles 
are well bonded to the surface of multi-wall carbon 
nanotubes. On the other hand, TEM values are in 
good agreement with XRD.

Fig. 4 shows the SEM images of (MWCNTs)-
COOH/Fe3O4-CaO. The outside diameter (OD) 
of (MWCNTs)-COOH was 20-30 nm but after 
modification, it was changed to 70-100 nm. It is 
shown that Fe3O4-CaO nanoparticles have grown 
as nanoparticles on the surface and inside of the 
(MWCNTs)-COOH. 

In Fig. 5, EDX analysis was performed to confirm 
the elements present in the resulting (MWCNTs)-
COOH/Fe3O4-CaO. For using SEM/EDS to analyse 
the composition of a sample, usually a heavy 
metal such as Au (Au-Pd) was coated the sample 
to make it conductive before insert it into FE-
SEM. Therefore, there is a signal of coating metal 

 

   
 

 

 

  

  

Fig. 4. FESEM micrograph of (MWCNTs)-COOH/Fe3O4-CaO nanomaterial
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(Au) in EDX. In addition,  the analysis reveals the 
presence of Fe, Ca, O, and C which emphasizes the 
success of the decoration process with Fe3O4-CaO 
nanoparticles.

Fig. 6 shows the saturation magnetization (Ms) 
values of the magnetic (MWCNTs)-COOH/Fe3O4-
CaO and pure Fe3O4 NPs measured. All of the 
samples exhibited typically superparamagnetic 
features with negligible of coercivity and 
remanence. As shown in Fig. 6, the Ms of the 
(MWCNTs)-COOH/Fe3O4-CaO was weakened to 
a large extent when compared with that of pure 
Fe3O4 NPs. (MWCNTs)-COOH, the magnetic Fe3O4 
NPs, and CaO NPs can cause the coating effect, 
which leads to the reduction of the magnetic 
responsiveness. However, this value is high enough 
for the nanostructure to be separated from the 
reaction mixture by an external magnet.
The catalytic activity of (MWCNTs)-COOH/Fe3O4-
CaO and heterocyclic compounds characterization

 (MWCNTs)-COOH/Fe3O4-CaO (7 mol%) was 
used as an efficient catalyst for the synthesis of 
hexahydroacridine-1,8-dione derivatives. Because 
of its excellent capacity, the exceedingly simple 
workup and good yields (MWCNTs)-COOH/Fe3O4-
CaO was proved to be a good catalyst for these 
reactions.

In the preliminary stage of the investigation, 
the model reaction of 4-bromoaniline, arabinose, 
and dimedone (Fig. 7) was carried out by using 
various amounts of (MWCNTs)-COOH/Fe3O4-CaO 
in various solvents and solvent-free conditions. As 
shown in Table 1, the optimum amount of catalyst 
was 7 mol%. Decreasing the amount of catalyst 
leads to a decrease in the yield of the reaction 
while increasing the amount of catalysts, the 
optimum amount of (MWCNTs)-COOH/Fe3O4-CaO 
was 7 mol% as shown in Table 2. Increasing the 
amount of the catalyst to more than 7 mol%  does 
not improve the yield of the product any further. 

 
  Fig. 5. EDX of (MWCNTs)-COOH/Fe3O4-CaO nanomaterial. 
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In the absence of (MWCNTs)-COOH/Fe3O4-CaO, 
the result of the reaction on the TLC plate even 
after 4h of the reaction wasn’t good. The best 
yield of the product was acquired with 7 mol% 
of (MWCNTs)-COOH/Fe3O4-CaO in EtOH under 
mild reaction conditions (Table 1, Entry 9). It is 
important to note that, under the same conditions, 
(MWCNTs)-COOH or Fe3O4-CaO NPs displayed 
almost no activity. D-arabinose did not react with 
dimedone and the yield of the reaction did not 
exceed more than 10% even after 6 h. It is clear 
that modification of (MWCNTs)-COOH with Fe3O4-
CaO remarkably increased its catalytic activity.

The inductively coupled plasma–atomic 
emission spectroscopy (ICP-AES) analysis was 
performed to determine the amount of Fe and 
Fe3O4-CaO loading in (MWCNTs)-COOH/Fe3O4-
CaO before (6.74 mg/g) and after (6.62 mg/g) the 
reaction. 

The leaching of the catalyst has been measured 
by using a hot filtration method. The reaction 
mixture has been filtered out the catalyst 
((MWCNTs)-COOH/Fe3O4-CaO) from the reaction 
mixture at the stage of 50% conversion. We did 
not observe further progress of the reaction after 
filtration which indicates there was no leaching 

 

  

 

 

 

 

  

  

Fig. 7. Synthesis of 10-(4-bromophenyl)-9-((2S,3S,4R)-3,4-dihydroxytetrahydrofuran-2-yl)-3,3,6,6-te-
tramethyl-3,4,6,7,9,10-hexahydroacridine-1,8(2H,5H)-dione 3.

Fig. 6. VSM results of (a) Fe3O4 MNPs, (b) Fe3O4-CaO MNPs, (c) (MWCNTs)-COOH/Fe3O4-CaO Magnetic hybrid nanoma-
terial.
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to confirm the absence of Fe3O4-CaO NPs and 
stability of the catalyst. 

We extended our study to different organic 
reactions to evaluate the scope and potential 
limitations of this methodology (Table 2, 
entries 1–5). In almost all cases, the reactions 
proceeded smoothly within 2-3 hours, providing 
the corresponding products in good isolated 
yields. The products were isolated, purified, and 
analysed by NMR and IR. For example, the 1H NMR 
spectrum of 10-(4-bromophenyl)-9-((2S,3S,4R)-

3,4-dihydroxytetrahydrofuran-2-yl)-3,3,6,6-
tetramethyl-3,4,6,7,9,10-hexahydroacridine-
1,8(2H,5H)-dione 3 (Fig. 8) shows singlets at 5.25 
and 4.62 ppm for OH protons, 3.57, 3.38, and 
3.21 ppm for CH protons. Three singlet signals 
attributed to Me protons have appeared at 1.06, 
1.00, and 0.92 ppm, respectively. 

In the 13C NMR spectrum (Fig. 9), the resonances 
related to CH3 and CH2 carbon groups of 3 were 
appeared at 37.97, 35.29, 34.19, 31.83, 29.40, 
28.98, and 28.51 ppm, respectively. The signals 

Yielda (%) Time  
(hour)  

MWCNTs)-COOH/ 
Fe3O4-CaO ( mol%) 

Solvent Entry 

trace 4 - THFdry 1 
32 3 3 THFdry 2 
56 3 5 THFdry 3 
83 3 7 THFdry 4 
83 3 10 THFdry 5 

trace 4 - EtOH 6 
52 3 3 EtOH 7 
72 3 5 EtOH 8 
95 2 7 EtOH 9 
96 2 10 EtOH 10 

trace 4 - H2O 11 
38 3 3 H2O 12 
41 3 5 H2O 13 
57 3 7 H2O 14 
57 3 10 H2O 15 

trace 4 - CH2Cl2 dry 16 
33 3 3 CH2Cl2 dry 17 
45 3 5 CH2Cl2 dry 18 
52 3 7 CH2Cl2 dry 19 
53 3 10 CH2Cl2 dry 20 

trace 4 - CH3CN 21 
42 3 3 CH3CN 22 
57 3 5 CH3CN 23 
61 3 7 CH3CN 24 
61 3 10 CH3CN 25 

trace 3 - DMF 26 
46 4 3 DMF 27 
53 3 5 DMF 28 
71 3 7 DMF 29 
70 3 10 DMF 30 
47 3 - Solvent-free 31 
52 3 3 Solvent-free 32 
64 3 5 Solvent-free 33 
77 3 7 Solvent-free 34 
78 3 10 Solvent-free 35 

a Isolated yield 
 

  

 

 

 

 

 

 

 

 

 

 

Table 1. The reaction of 4-bromoaniline, d-arabinose (1 mmol), and dimedone (1 mmol) under different 
conditions.
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Yield% Time (h)/ Product Raw Materials Entry 

 
 
91 

 
 
2 

 

 

 

 
    
 
     1 

 
 
96 

 
 
2 

 

 

 

 
2 

 
 
95 

 
 
2 

 

 

 

 
 
 

3 

 
 
92 
 

 
 
2 

 

 

 

 
       
 

4 
 
 

 
 
89 

 
 
3 

 

 

 

 
 
 
 

5 

Table 2. Synthesis of hexahydroacridine-1,8-dione derivatives using (MWCNTs)-COOH/Fe3O4-CaO. 
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 Fig. 8. 1H NMR spectra of compound 3.
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attributed to CO carbon groups and their enol 
forms have appeared at 192.60, 186,96, 176.41, 
and 148.53 ppm. The C, CH and CHaro carbon 
bonds have appeared at 131.77, 116.20, 116.05, 
109.87, 106.42, 90.51, 72.68, 71.54, 64.33, 51.61, 
and 49.47 ppm. 

Thereafter, we carried out the synthesis of 
hexahydroacridine-1,8-dione derivatives with 7 
mol% of (MWCNTs)-COOH/Fe3O4-CaO in ethanol 
(Table 2). 

A plausible mechanism for the reaction of 
4-bromoaniline, dimedone, and sugar is envisaged 

 

 

 
 

 

  

Fig. 9.  13C NMR spectra of compound 3.
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in (Fig. 10). It is proposed that CO group of 
sugar is first activated by (MWCNTs)-COOH/
Fe3O4-CaO. Nucleophilic addition of dimedone 
to the activated oxygen followed by the loss of 
H2O generates intermediate I, which is further 
activated by (MWCNTs)-COOH/Fe3O4-CaO. Then, 
the 1,4-nucleophilic addition of a second molecule 

of dimedone on the activated intermediate 
I, in the Michael addition fashion, affords the 
intermediate II, which undergoes nitrogen attack 
of 4-bromoaniline to give 10-(4-bromophenyl)-
9-((2S,3S,4R)-3,4-dihydroxytetrahydrofuran-
2 - y l ) - 3 , 3 , 6 , 6 - t e t ra m e t hy l - 3 , 4 , 6 , 7 , 9 , 1 0 -
hexahydroacridine-1,8(2H,5H)-dione 3.   

 
Fig. 10. A plausible mechanism for the synthesis of compound 3 using (MWCNTs)-COOH/

Fe3O4-CaO. 

 

Entery Catalyst  Amount of 
catalyst (mol%) 

Time 
(hours) 

Yeild % 

1 MNPs  4O3Fe 7 4 66 

2 H MNPs3SO-2@SiO4O3Fe 7 4 73 

3 CaO NPs  7 4 58 

4 ZnO-CaO NPs  7 4 81 

5 (MWCNTs)-COOH/Fe3O4-
CaO  

7 2 95 

 

  

Table 3. Comparison of the efficiency of different catalysts in the synthesis of compound 3 in 
ethanol.
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To investigate the efficiency of the (MWCNTs)-
COOH/Fe3O4-CaO, we compared some other 
metal oxide NPs for the synthesis of compound 3 
and the results were summarized in Table 3. The 
metal oxide NPs were synthesized according to the 
previously reported procedures [41-45]. As shown 
in Table 3, the best catalyst for the synthesis of 
compound 3 is (MWCNTs)-COOH/Fe3O4-CaO, 
using this metal oxide as a catalyst offers several 
advantages such as excellent yields, short reaction 
times, a simple procedure, and using ethanol as a 
green solvent in contrast with other metal oxides. 

In order to show the advantages of this method 
over previously reported ones. Some of our results 
are compared in Table 4 to those of some other 
methods. These results showed that the yield, 
time and ratio of the present method are better or 
comparable to the other reported results for the 
synthesis of hexahydroacridin derivatives.

The catalyst was simply separated by an 
external magnet, washed with ethanol and 
water, and dried at 100 °C for 2 h. The recovered 
catalyst was then re-entered to a fresh reaction 

mixture under the same conditions and recycled 
5 times without considerable loss of activity 
(Table 5). More recycling of the nano catalyst led 
to a gradual reduction during the recovering and 
washing steps.

CONCLUSION
In conclusion, hybrids of (MWCNTs)-COOH and 

Fe3O4-CaO NPs have been successfully fabricated 
in acetic acid to produce (MWCNTs)-COOH/Fe3O4-
CaO. The structure, morphological magnetic, and 
surface were evaluated in details. The presence 
of nanoparticles and CNTs were confirmed via 
EDX, XRD, FT-IR. TEM and SEM. (MWCNTs)-COOH/
Fe3O4-CaO was used as a reusable efficient catalyst 
for synthesis of hexahydroacridine-1,8-dione 
derivatives in ethanol. We have described a rapid 
and very efficient one-pot three component 
reaction between dimedone, unprotected sugars 
and aniline or 4-bromoaniline for the synthesis 
of hexahydroacridine-1,8-dione derivatives. 
We have demonstrated that eco-friendly, low-
cost and high- yielding synthetic route towards 

Entery Catalyst  conditions Time 
(hours) 

Yeild % Ref. 

1 CAN  PEG/50c 4 93-98 [46] 

2 2Zn(OAc) H2O/(reflux) 2-3 84-94 [47] 

3 O2.7H3CeCl [bmim][BF3]/10
0oC 

6 82-95 [48] 

4 Amberlist-15  CH3CN/reflux 4.5-6.5 90 [49] 

5 [Hmim]TFA Solvent-free/ 
80oC 

4.5-7 78-89 [50] 

6 (MWCNTs)-
COOH/Fe3O4-CaO  

Ethanol 2-3 89-96 This work 

      
 

  

Yielda (%) Number of cycles 

95 1 

93 2 

92 3 

89 4 

89 5 
a Isolate Yield. 

 

 

 

 

 

 

 

 

Table 4. Comparison of the efficiency of different methods in the synthesis of hexahydroacridine-1,8-dione. 

Table 5. Recycling of the (MWCNTs)-COOH/Fe3O4-CaO.
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hexahydroacridine-1,8-dione derivatives using 
(MWCNTs)-COOH/Fe3O4-CaO. This strategy will 
not only give practical synthetic methods but 
also assures the expansion of the versatility of 
clean organic reactions ethanol. In addition to the 
intrinsic properties of nano catalysts, (MWCNTs)-
COOH/Fe3O4-CaO hybrid showed high catalytic 
activity in organic reactions and increased 
the rate of the reaction without pollution. In 
addition, this study provides a new alternative 
to the poultry waste from the eggshell for its use 
in the biosynthesis of organic and heterocyclic 
compounds.
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