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The advent of antifungal agents’ resistance has sparked the creation of more 
effective medications and innovative methods for treating a variety of fungal 
infections. Due to its biodegradability, lack of cytotoxicity, and reactive 
surface that may be modified with biocompatible coatings, chitosan-coated 
iron oxide Fe3O4 nanoparticles (CS-coated Fe3O4 NPs) have received a lot 
of attention. The authors were prompted to research whether CS-coated 
Fe3O4 NPs would be useful against fungal infections brought on by Candida 
species after learning about the different medical applications of CS-coated 
Fe3O4 NPs. Fourier transform infrared (FTIR) spectroscopy, transmission 
electron microscopy (TEM) and X-ray diffraction were used in this study 
to characterize CS-coated Fe3O4 NPs. The objective of this investigation 
was to compare the antifungal efficacy of CS-coated Fe3O4 NPs to several 
Candida spp. against fluconazole (FLC). The MIC (minimum inhibitory 
concentration) and MFC (minimum fungicidal concentration) values of 
CS-coated Fe3O4 NPs varied from 59 to 475 g/ml and 475 to 950 g/ml, 
respectively. Both the MFC and MIC of FLC were found to be in the range 
of 61–486 g/ml and 15–119 g/ml, respectively. According to the growth 
inhibition value, CS-coated Fe3O4 NPs were most effective against Candida 
glabrata, Candida albicans, and Candida tropicalis species. The results 
demonstrated that all of the tested Candida spp. could not develop when 
exposed to the CS-coated Fe3O4 NPs.

INTRODUCTION
Hospital-acquired infections, often known as 

nosocomial infections, are increasingly being 
linked to Candida species (spp.). About 30% of 
patients in intensive care units are affected by 
nosocomial infections, which have significant 

morbidity and fatality rates [1–3]. In patients 
with impaired immune systems, invasive fungal 
infections are a serious health concern. Clinical 
symptoms can vary and range from current 
infection caused by local aetiologic factors 
to colonization in allergic bronchopulmonary 
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illness. When fungal tissue involvement is seen 
during a histopathologic examination using 
specific stains, or when the aetiologic agent is 
culture-isolated from sterile clinical specimens, 
an infection has been established. One of the 
most significant medical issues is opportunistic 
Candida yeast infections [4]. More than 90% 
of invasive candidiasis infections are caused by 
Non-albicans Candida (NAC) species comprising 
C. parapsilosis, C. glabrata, C. tropicalis, C. krusei 
and C. lusitaniae and Candida albicans [5–7]. Over 
the past 20 years, the prevalence of this infection 
in immunocompromised hosts has substantially 
grown. Several antifungal medications such as 
amphotericin B formulations, echinocandins 
and fluconazole (FLC) are available as a means 
of treating invasive candidiasis [8–10]. However, 
using antifungal medications for a long time or in 
high doses can lead to significant issues such as 
treatment failure, creation of resistant organisms, 
and increasing antifungal medication resistance in 
Candida species [8]. For prevention, treatment, 
or management of human fungal diseases caused 
by resistant organisms, it is critically necessary 
to discover alternative antifungal medicines with 
fewer adverse effects. Decreased drug toxicity, 
increased therapeutic efficacy, drug rapid spread, 
higher drug accumulation at the spot, and drug 
absorption in patients are enhanced by drug 

delivery systems based on nanoparticles (NPs) 
[11–13]. One of the most adaptable, secure, and 
non-toxic nanomaterials are chitosan-coated 
iron oxide nanoparticles (CS-coated Fe3O4 NPs) 
[14,15]. A biopolymer created by deacetylating 
chitin, chitosan is a linear polysaccharide that 
is biodegradable, biocompatible, and contains 
amino, and primary and secondary hydroxyl 
groups [16,17]. These act as a foundation for 
targeting ligands, imaging agents and combining 
therapeutics [18]. Chitosan has minimal toxicity 
to human cells yet antibacterial action against 
a variety of microorganisms [19,20]. Particles of 
magnetite (Fe3O4) and/or maghemite (γ-Fe2O3) are 
found in iron oxide nanoparticles [21]. These NPs 
have sizes between 8 to 20 nm in diameter [22]. Due 
to its biochemical and magnetic characteristics, as 
well as their affordability for usage in a variety of 
medicinal applications, iron oxide nanoparticles 
are frequently used. The following are the essential 
uses for CS-coated Fe3O4 NPs: blood detoxification, 
cell tracking, magnetic hyperthermia, protein 
separation, biosensing, as gene carriers for gene 
therapy, as target-specific medication delivery, in 
magnetic data storage, and in magnetic resonance 
imaging [23]. In this research, six distinct Candida 
spp. were used to assess the antifungal activity 
and characteristics of CS-coated Fe3O4 NPs.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. XRD pattern: (a) Fe3O4 NPs and (b) CS-coated Fe3O4 NPs.
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MATERIALS AND METHODS
Approximately, 35–65% of all candidaemias in 

the general patient population are caused by NAC 
species. Bone marrow transplant (BMT) recipients 
and cancer patients with haematological 
malignancies are the groups most likely to 
experience them (40–70%). Intensive care unit 
(ITU) and surgical patients (35–55%), children (1-
35%), and patients with HIV infection (0–33%) 
are less likely to experience them. Therefore, C. 
parapsilosis, C. glabrata, C. lusitaniae, C. tropicalis, 
C. krusei, and C. albicans were the six distinct 
Candida spp. used in the current investigation. 
These species were found in people who had 
different clinical manifestations of candidiasis. 
The polymerase chain reaction-based approach 
and conventional mycological techniques utilizing 
particular Msp I enzyme and primers were 
previously used to identify the species [24,25]. 
Sabouraud dextrose agar (SDA) was used to 
cultivate the six Candida spp. The appropriate 
ethical committee has given its permission for this 
research. By using the XRD technique, the crystal 
structure of the NPs acquired from Sigma-Aldrich, 
USA, was examined. Fig. 1 displays the XRD 
patterns of both and CS-coated and bare Fe3O4 
NPs.

Fig. 2 displays typical Transmission electron 
microscopy (TEM) images of the bare and CS-
coated Fe3O4 NPs. Magnetic NPs are seen to be 
well-formed, spherical, and of uniform size.

While CS-coated NPs had a mean diameter 
of around 7 nm, bare Fe3O4 NPs had a mean 
diameter of about 10 nm. This demonstrated that 
the deagglomeration of secondary particles had 
been caused by the chitosan grafting. At room 

temperature (25°C), the FTIR analysis verified that 
chitosan was present on the surface of Fe3O4 NPs. 
The distinctive peaks of CS-coated and bare Fe3O4 
NPs are depicted in Fig. 3.

By using the broth microdilution (BMD) 
and disc diffusion procedures based on the 
recommendations of the Clinical & Laboratory 
Standards Institute (CLSI) Guidelines [26], the 
growth inhibitory effects of FLC and CS-coated 
Fe3O4 NPs against the six Candida spp. were 
compared. In 96-well flat bottom tissue culture 
plates, the BMD technique was carried out using 
RPMI 1640 buffered with MOPS purchased from 
ATCC (Rockville, MD, USA). Deionized water and 
DMSO which was purchased from Sigma Aldrich 
were used to dissolve CS-coated Fe3O4 NPs and 
FLC powders, respectively [27]. Then, in RPMI 
1640 culture media, serial two-fold dilutions were 
prepared with concentrations of 950-0.18 g/ml for 
the CS-coated Fe3O4 NPs and 950-0.3 g/ml for FLC. 
The inoculum was then applied to each microtiter 
plate wells, comprising 1.8 × 103 CFU/ml of every 
Candida species. The 96-well microtitration plates 
were thoroughly mixed before being placed in an 
incubator (Jeio-Tech, Seoul, Korea) shaken at 135 
rpm for 48 hours at 30°C. At 480 nm, a microplate 
reader (Thermo Fisher Scientific) was applied 
to read the minimum inhibitory concentrations 
(MICs) following a 24-hour incubation period 
[28]. According to turbidity brought on by the 
development of the tested Candida species, the 
MICs were determined by microplate reader 
optical density determination and absorbance 
measurement. The above-mentioned wells and 
RPMI-1640 that utilized DMSO and deionized 
water for dissolving the FLC and CS-coated Fe3O4 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. TEM images: (a) the bare and (b) CS-coated Fe3O4 NPs.
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NPs, have been used as negative controls since 
it resulted in a reduction of Candida spp. growth 
inhibition by approximately 90% [29]. The MICs for 
the CS-coated Fe3O4 NPs and FLC were determined 
by comparing the levels of growth in the test 
wells with and without the agents to the levels of 
growth in the control wells without the CS-coated 
Fe3O4 NPs and/or FLC. Additional quality control 
was performed using isolates of C. albicans (ATCC 
10231) and C. parapsilosis (ATCC 22019). The lowest 
CS-coated Fe3O4 NPs and/or FLC concentration 
that can kill 99.9% of yeast cells is called the 
minimum lethal concentration or minimum 
fungicidal concentration (MFC). 10 µl from each 
growth well, visible or not, were dispensed onto 
SDA plates, where the MFC technique was carried 
out. After 28 hours at 30°C of incubation, the SDA 
plates were examined [30]. The lowest CS-coated 
Fe3O4 NPs and FLC concentration with fewer than 
three colonies were used to calculate the MFC 
values. The mean values of MFCs and MICs for the 
FLC and CS-coated Fe3O4 NPs were recorded after 
each experiment was run at least three times. A 
Mueller-Hinton agar plate (15 cm diameter) with a 
0.5 mg/ml dose of methylene blue and 2% glucose 
was used for the disc diffusion method [31]. The 
starting inoculum, equivalent to a McFarland 
standard of 0.5, contained 1-5×106 CFU/ml of every 
Candida species. The CS-coated Fe3O4 NPs and FLC 
were soaked in 950 and 0.3 g/ml concentrations 
in around 12 commercially manufactured blank 

paper discs. A blank paper discs containing DMSO 
and deionized water, an CS-coated Fe3O4 NPs + 
FLC disc, and a 25 µg FLC disc (Becton-Dickinson) 
have been employed as control. The inoculated 
agar surface was covered with all of the discs. The 
plates were incubated at 30±5°C for 24-28 hours 
[32]. By quantifying the zones of growth inhibition 
surrounding each disc with a meter ruler, the 
antifungal activity of the CS-coated Fe3O4 NPs 
and FLC were evaluated [17]. The growth zones’ 
average was recorded after three repetitions 
of each experiment. The MIC for each of the six 
types of Candida spp. determined through in vitro 
antifungal assays was communicated to the CS-
coated Fe3O4 NPs and FLC. A t-test and one-way 
ANOVA were used to examine the data. There was 
statistical significance at a p-value of less than 
0.05.

RESULTS AND DISCUSSION
The BMD and disc diffusion methods were used 

to test the antifungal efficacy of the CS-coated 
Fe3O4 NPs and FLC against Candida spp. All of the 
tested strains of Candida spp. had their growth 
inhibited by the CS-coated Fe3O4 NPs, proving 
their antifungal activity against harmful strains of 
the fungus. Against Candida spp. the MIC of FLC is 
15-122 µg/ml, while for CS-coated Fe3O4 NPs it is 
59-475 µg/ml. Antifungal activity against C. krusei, 
C. parapsilosis, C. lusitaniae, and C. albicans spp. 
was considerably lower for CS-coated Fe3O4 NPs 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. FTIR analysis: (a) CS-coated Fe3O4 NPs, (b) Fe3O4 NPs and (c) CS polymer.
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compared to that of FLC (p≤0.05). Regarding the 
antifungal impact on C. glabrata and C. tropicalis, 
there were no discernible differences between the 
FLC and CS-coated Fe3O4 NPs. For the two species, 
the corresponding MIC values were around 122 
and 61 µg/ml. In contrast to other species like 
C. krusei, C. parapsilosis, and C. lusitaniae which 
required larger amounts of the CS-coated Fe3O4 

NPs to stop their growth, C. glabrata, C. albicans, 
and C. tropicalis spp. were more sensitive to lower 
concentrations of the CS-coated Fe3O4 NPs, as 
shown by findings of antifungal activity for the CS-
coated Fe3O4 NPs (Fig. 4).

The MICs of the FLC and CS-coated Fe3O4 NPs 
against several Candida spp. are shown in Fig. 
4. In light of the data, the amounts necessary to 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5. The MFC of FLC and CS-coated Fe3O4 NPs against various Candida spp.

Fig. 4. The MIC of CS-coated Fe3O4 NPs and FLC against various Candida spp.
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prevent growth varied depending on the Candida 
spp. that were put to the test. As a result, C. 
lusitaniae required the largest amount of the CS-
coated Fe3O4 NPs to be inhibited, preceded by C. 
parapsilosis and C. krusei. The CS-coated Fe3O4 NPs 
had a susceptibility ranking of C. parapsilosis˃C. 
lusitaniae, C. glabrata>C. krusei, and C. 
tropicalis>C. albicans. Out of all the examined 

isolates C. parapsilosis, C. krusei, and C. lusitaniae 
isolates exhibited the highest levels of CS-coated 
Fe3O4 NPs resistance. The FLC concentration that 
produced the lowest MIC was 15 g/ml when 
used on C. albicans. A MIC of 61 g/ml effectively 
prevented the growth of C. parapsilosis, C. krusei, 
and C. tropicalis. For the FLC, the average MIC value 
reached to 122 g/ml, making C. glabrata and C. 

 

 

(a) 

 

(b) 

 
Fig. 6. Zone of inhibition: (a) CS-coated Fe3O4 NPs and (b) FLC at different concentrations against various Candida spp. (mm).
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lusitania less sensitive than any of these examined 
Candida spp. The FLC’s susceptibility ranking was 
C. parapsilosis and C. krusei > C. lusitaniae and C. 
glabrata and C. albicans>C. tropicalis. The MFC of 
the FLC and CS-coated Fe3O4 NPs against several 
Candida spp. is depicted in Fig. 5.

Fig. 5 shows the microdilution assay findings for 
the fungicidal activity (MFC values) of CS-coated 
Fe3O4 NPs and FLC against Candida spp. The MFC 
ranges for the FLC and CS-coated Fe3O4 NPs were 61 
to 486 µg/ml and 475 to 950 µg/ml, respectively. 
For the species of C. lusitaniae, C. tropicalis, and C. 
albicans the MFC value of the CS-coated Fe3O4 NPs 
was 475 µg/ml, whereas it was 950 µg/ml for the 
species of C. glabrata, C. parapsilosis, and C. krusei. 
When used against the C. albicans species and C. 
glabrata and C. parapsilosis species, respectively, 
the FLC concentrations that produced the smallest 
and largest MFC were 61 µg/ml and 486 µg/ml.

In the current research, at a level of 950 µg/ml 
the diameters of the CS-coated Fe3O4 NPs’ zones 
of inhibition against the C. albicans, C. tropicalis, 
and C. glabrata species were acquired as 36.1, 
39.9, and 48.6 mm, respectively. Relatively smaller 
values of 23.4 25.8, and 33.3 mm were obtained 
against C. lusitaniae, C. parapsilosis, and C. krusei, 
respectively. C. tropicalis and C. glabrata on the 
other hand, were more vulnerable to the CS-
coated Fe3O4 NPs at a concentration of 950 µg/ml. 
Fig. 6 displays the zones of inhibition for the FLC 
and CS-coated Fe3O4 NPs at varying doses against 
various Candida species.

CONCLUSION
Due of their particular qualities and low 

negative side effects, NPs are gaining more and 
more attention. According to the findings of this 
research, CS-coated Fe3O4 NPs possess antifungal 
properties and have the ability to inhibit the 
growth of all Candida species. It is important 
to conduct additional susceptibility, toxicity, 
pharmacokinetic (PK), and efficacy research, both 
in vitro and in vivo, in order to determine whether 
or not CS-coated Fe3O4 NPs are suitable for use in 
the medical field. Limitations of our study include 
using only six Candida species to investigate the 
effects of CS-coated Fe3O4 NPs, and each antifungal 
agent was only used in one concentration.
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