
J Nanostruct 12(3): 686-696, Summer 2022

 RESEARCH PAPER

Synthesis and Characterization CuO-ZnO Binary Nanoparticles 
Adnan M. Mansoor Al-Saeedi 1, Firas K. Mohamad 1 and Noor J. Ridha 2* 

1 Deartment of Environmental Health, College of Applied Medical Sciences, University of Kerbala, Iraq
2 Department of Physics, College of Science, University of Kerbala, Kerbala, Iraq

* Corresponding Author Email: nooraboalhab@yaho.com nooraboalhab@yaho.com 

ARTICLE  INFO 

Article History:
Received 03 February 2022
Accepted 12 June 2022
Published 01 July 2022

Keywords:
CuO-ZnO
Hydrothermal
Nanostructures
XPS

ABSTRACT

How to cite this article
Mansoor Al-Saeedi A M., Mohamad F K., Ridha N J. Synthesis and Characterization CuO-ZnO Binary Nanoparticles. J 
Nanostruct, 2022; 12(3):686-696. DOI: 10.22052/JNS.2022.03.021

                           This work is licensed under the Creative Commons Attribution 4.0 International License.
To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

In this work, a simple and low cost modified hydrothermal method was 
used to prepare CuO-ZnO nanostructures. The innovation of this work 
is to modify hydrothermal method by flowing nitrogen gas during the 
reaction. Structural, morphological, optical, and chemical species of grown 
crystals were studied using the techniques of X-ray diffraction (XRD), 
Scanning Electron Microscopy (SEM), high-resolution transmission 
electron microscopy HRTEM, x-ray photoelectron spectroscopy (XPS), 
UV/Vis spectroscopy and photoluminescence (PL). Specifically, XRD 
analysis shows that the sample has hexagonal structure with no phases of 
impurity indicating the Zn ions have been effectively integrated into the 
standard CuO crystal structure. The parameters of the lattice, the length of 
the unit cell and the crystallite size were determined from the XRD pattern 
of the CuO-ZnO sample and it was noticed that the crystallite size ranged 
from 17 nm to 26 nm. The SEM micrographs of the sample CuO-ZnO 
revealed that the prepared sample exhibited nanorods-like structure. The 
XPS spectrum proved the presence of Cu+2 and Zn+2 elemental forms. It is 
also observed that the XPS spectrum was free from other peaks related to 
impurities which indicating that the prepared sample was pure. The optical 
characterization recorded that the energy gap was around 2.51 eV while 
PL spectrum showed blue and red orange emissions originated from CuO- 
ZnO nanostructures. 

in various morphologies such as nanospheres [2, 
3], nanotubes [4, 5], core-shell [6] and nanorods 
[7-9] which exhibited high performance in several 
fields of applications. 

Semiconductor nanomaterials have attracted 
extensive investigations from theoretical and 
experimental standpoints, due to their wide range 
of applications in environment and optoelectronic 
technological devices [10-13]. Their applications 
are well known in several areas such as antibacterial 
[14], solar cells [15], electrodes [16],  gas sensing 

INTRODUCTION
Nanotechnology is one of the most promising 

field due to their large range of applications [1]. It 
is well known that the size of nanomaterials plays 
an effective role in controlling their properties 
owing to the quantum confinement effects. 
Besides, the morphology of nanomaterials is the 
most principal parameter that affects the surface 
area since it controls the fraction of the molecules 
existing on the surface. Therefore, meticulous 
efforts have been focused on developing materials 
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[17], photocatalytic [18-23], liquid crystal displays 
[24], etc.

The main attractive and critical property of the 
metal oxides semiconductors is their energy gap, 
hence it varied from wide to narrow depending 
on the type of metal oxide. Copper oxide (CuO) 
is a p-type semiconductor which has a narrow 
bandgap around 1.2 eV [25]. Earlier publications 
focused on the preparation of CuO using different 
methods such as sol-gel [26], hydrothermal [27], 
chemical vapor deposition (CVD) [28], pulsed 
laser deposition (PLD) [29], etc. Recently CuO was 
doped with several elements such as Al using sol-
gel method [30], Au by wet chemistry method [31, 
32], Ti by microwave method [33, 34] and so on.  

 Nowadays, designing a novel composite with 
promising properties is the crucial demand to 
enhance its performance. Binary system is the 
recent motivation for several researches, as 
example SnO2-CuO binary system was synthesis by 
hydrothermal method [35, 36]. As well, CuO-TiO2 
nanofluid was prepared by chemical method [37]. 
Nevertheless, Zinc oxide (ZnO) is one of the most 
interesting n-type semiconductor metal oxides 
because of the large direct bandgap (∼3.37 eV at 
room temperature) which is applicable in various 
fields [38, 39]. Therefore, the creation of a binary 
system of CuO-ZnO provides new properties and 
therefore enhances their performance. Thus, 
CuO was as well doped with Zn using different 
preparation methods. For example, the co-
precipitation method was used for doping ZnO by 
Cu ions in which hexagonal structure was obtained 
[40]. As well, another group of researchers 
studied the effects of different precursors [41]. 
Meanwhile, other researchers used solid-state 
method to prepare copper doped zinc oxide hence 
the achieved irregular structure with dimensions 
varied from 50 – 100 nm [42]. Recently, CuO was 
doped with Zn by electrodeposition method in 
which large particles size in the range of 1-10 µm 
were obtained by increasing Zn concentration [43]. 

In this work, CuO-ZnO nanorods were 
successfully prepared via a facile and economic 
modified hydrothermal method in which nitrogen 
(N2) gas. The novelty of this work is purging N2 gas 
to increase the surface area. The structural and 
optical properties were investigated in details. 

MATERIALS AND METHODS
To prepare CuO-ZnO nanoparticles modified 

hydrothermal method was used. First, Copper 

chloride CuCl2 from Sigma-Aldrich and zinc nitrate 
Zn (NO3)2 from PubChem was separately dissolved 
in 100 ml of DI water. Then, the two solutions were 
vigorously stirring to ensure the solution mixed 
well. Drops of NaOH (0.1 M) was gradually added 
to the solution to control the pH value (pH=11). 
The solution was poured into a reactor then 
heated at 90 °C for 3 h. The novelty of this work 
is to flow nitrogen gas during reaction thus porous 
structures could be obtained. The precipitation 
was washed with DI water, dried at 100 °C for 1 h 
and finely annealed at 300 °C for 1 h. 

The prepared sample was characterized by 
several techniques in order to investigate its 
structural and optical properties. The purity was 
studied by X-ray diffractometer (XRD) from Cu 
Kα with λ=0.1518 nm via smart-lab. Hitachi (S-
4800) scanning electron microscopy (SEM) and 
JEOL JEM-2100 transmission electron microscopy 
(TEM) were used to monitor the morphology. 
X-ray photoelectron spectroscopy (XPS). 
Ultraviolet/visible spectrometer (UV/Vis) model 
PE lambda 750S and FLS 1000 photoluminescence 
spectroscopy (PL) were used to investigate the 
optical properties. These characterizations with 
their explanations could provide  informative 
investigations on the prepared CuO-ZnO binary 
nanoparticles. 

RESULTS AND DISCUSSIONS
Typical X-ray diffraction (XRD) of the prepared 

sample CuO-ZnO is shown in Fig. 1. The sample 
exhibited a single-phase ZnO with a wurtzite 
hexagonal structure (space group P63mc) 
matching the standard diffraction pattern (JCPDS 
01-079-0207). In general, the diffraction pattern 
showed three main peaks at 2Ɵ°= 31.7, 34.3 and 
36.2 were corresponding to 100, 002 and 101 are 
related to ZnO. For ZnO, the preferred orientation 
was at (101) represented ZnO structures grown in 
a-direction while the growth in other orientations 
was retarded. The crystal size = 26.45 nm which 
was calculated according to (101) peak while a=b= 
2.65Å and c= 4.9Å.  

Whilst another two main peaks related to 
Cu were detected at 2Ɵ° = 35.62 and 38.68 
were matched to (100) and (111). Hence the 
preferred orientation is at (100) an evident to the 
growth of CuO Tenorite Monoclinic structures 
(JCPDJ=01-072-0629). The lattice parameters a= 
4.35 Å, b =3.254 Å and c= 4.98 Å and the average 
Crystallite Size =17.48 nm. It is also noticed from 
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the diffractograms, the presence of small peaks at 
2Ɵ° = 17.63 and 41.58 which are related to other 
Cu components. These peaks matched 00-023-
0954 (Cu2O2 Melanothallite Orthorhombic). This 
XRD pattern appeared lowest than other peaks 
which indicate the lowest ratio due to growth 
environments. 

It is worth comparing the calculated lattice 
parameters of ZnO (a=b= 2.65Å and c= 4.9Å) with 
their corresponding theoretical values related to 
reference code (JCPDJ=01-079-0207) which equal 
to a=b=3.2568 Å and c= 5.2125Å. It is clear that 
there is a variation in these values in which the a 
and b become larger while c become smaller. This 
is in fact due to the disturbance of the presence of 
Cu hence the ionic radii of Cu = 140 pm and Zn= 
139 pm.  

It is valued to compare this work with previously 
reported work, as example the CuO-ZnO structures 
were prepared via microwave method [44]. The 
XRD reported results indicated the formation of 
hydrozincite and aurichalcite structures. While 
another group of researchers reported that the 
dominant structure in ZnO-CuO prepared sample 
was the hexagonal wurtzite with some Cu ions 
substitutional the Zn ions [45]. Nevertheless, the 
CuO-ZnO was synthesized previously and both 
wurtzite and monoclinic structures were obtained 
[46].

The field emission scanning electron microscope 
(FESEM) of sample CuO-ZnO is shown in Fig. 2. 

The prepared nanoparticles are agglomerated to 
reduce their surface energy. A closer view to Fig. 
2(b) gives the sense that the prepared sample 
exhibited a rod-like structure. The estimated 
nanorods diameter is around 25-26 nm as shown 
in Fig. 2(d). 

Fig. 3 shows the energy dispersive X-ray 
spectroscopy (EDX) of the prepared CuO-ZnO 
sample. The EDX analysis results illustrate that the 
prepared sample is composed of Cu, Zn and O. The 
atomic ratio of the elements is as follow; Zn=12.2%, 
Cu=37.12% and O=50.68%. By comparison the 
atomic percentage ratio of the ratio of Zn: Cu is 
around 1:3, indicated the majority amount of Cu 
element in the structure. Meanwhile, (Cu+Zn) :O 
is almost 1:1 with a slightly higher O ratio. This 
evidently supports that the prepared sample 
is CuO - ZnO nanostructures. Similar results were 
found elsewhere hence the O was higher that both 
Cu and Zn [47].

For further confirmation of the elemental 
composition and distribution, the EDX mapping 
was conducted as shown in Fig. 4. The survey scan 
proved the presence of Cu, Zn and O elements. 
These elements were distributed homogeneously 
and uniformly on the entire sample. It’s clear 
that the highest ratio is for Cu and O elements 
as in Fig. 4(a and c). Nevertheless, the existence 
of the Zn element is lower and well distributed 
in the sample as in Fig. 4(b). No other elements 
were detected even in a very small ratio as in the 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. XRD spectra of the prepared sample
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figures. This could be attributed to the high quality 
of the preparation method. The presence of the 
elements in well-distributed form proved that the 
prepared sample is a composite of the Cu, O, and 
Zn.

The TEM, HRTEM and SAED of sample CuO-ZnO 
were investigated and are shown in Fig. 5. The 
wide range scan of TEM revealed the formation 
of rod-like nanoparticles as presented in Fig. 5(a). 
Higher magnification revealed that the length of 
the rods is 100 to 200 nm and the diameter 20-40 
nm as shown in Fig. 5(b) which matching well the 
SEM results. High magnification TEM discovered 
the existence of quantum dots coating the rods as 
in Fig. 5 (c and d). The SAED prove the existence of 
monoclinic CuO patterns with rings of (111) and 
(100) as in Fig. 5(e). As well, the hexagonal ZnO 
structures were appeared as well represented 

with rings denoted by (100), (002), (101) and (102). 
The appearance of both phases related to CuO 
and ZnO indicated the formation of a composite 
material. The HRTEM showed the interplanar 
spacing d=0.274 nm related to the peak (110) of 
CuO monoclinic structure, as well, the d=0.282 
nm corresponds to Hexagonal ZnO (100) as shown 
in Fig. 5(f).  These results proved the presence of 
polycrystalline CuO – ZnO nanocomposite. These 
results are matching well the previously reported 
works [48].

XPS measurements were investigated for 
further explanation about the structure in terms 
of bonding characteristics, oxidation states and 
purity. The XPS spectra of CuO-ZnO nanoparticles 
were demonstrated in Fig. 6. It is clear from the full 
survey scan spectrum of the prepared sample that 
there were four detected atoms attributed to Zn 
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Fig. 2. FE-SEM micrographs of CuO-ZnO nanostructures at different magnification where (a) is the low magnifi-
cation 35kX, (b) higher magnification 75 kX, (c) 150kX and (d) the highest 200kX.
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2p, Cu 2p, O 1s and C 1s as shown in Fig. 6 (a). The 
C 1s peak could be attributed to the hydrocarbon 
impurity inside the XPS instrument, nevertheless, 
the biding energies were standardized according 
to the signal from adventitious carbon (284.5 eV). 
It is also observed that the spectrum is free from 
other peaks related to impurities which indicating 
that the prepared sample was a highly pure 
composite. To evaluate the chemical nature of 
carbon atoms in the prepared sample, the narrow 
scan XPS spectra of the C 1s region as illustrated in 
Fig. 6 (b). Two peaks related to carbon atoms were 
detected at 284.5 eV and 286.9 eV which were 
assigned to C-C and C-O, respectively [49, 50]. 

The high resolution of the Cu 2p core-level XPS 
spectrum is shown in Fig. 6 (c). Four 962 eV, 952.5 
eV, 942.5 eV and 932.45 eV were attributed to 
shackup satellite, Cu 2p1/2, shackup satellite and 
Cu 2p3/2, respectively. Out of these, there are two 
major detected peaks that correspond to Cu 2p, 
namely Cu 2p 1/2 and Cu 2p 3/2 centered at 952.5 
eV and 932.45 eV matching well with previously 
reported values [51, 52]. The existence of two Cu 
2p peaks indicated the presence of two types of 

Cu ions. When  Cu 2p core level spectrum displays 
Cu 2p 1/2  at 952.5 eV indicated that CuO owing 
the Cu2+ (d9) ground state configuration [53]. This 
can be ascribed to the existence of O species on 
the surface of the sample [54]. Meanwhile, the 
asymmetrical peak of Cu 2p3/2 at 932.45 eV 
corresponds to Cu1+ (d10) ion [55]. In another hand, 
the two shackup satellite peaks centered at 962.1 
eV and 942.5 eV originated from the electron 
transitions. During the photoejection of a core 
electron, the valance band electron excited to the 
higher unoccupied bands. This transition leads 
to reduce the kinetic energy of the photoejected 
electron lowest than the energy of another 
molecule electrons in the same core orbital [56]. 

It is noticed that the fitting of the asymmetric 
O 1s contains three peaks as depicted in Fig. 6 
(d). These three peaks located at 533 eV, 531 eV 
and 529 eV correspond to O chemisorbed, O in 
lattice and MO, respectively. The small peak at 
533 eV. The other peak at 531 eV corresponds to 
adsorbed CO2 [57]. The strongest peak at 529.7 eV 
corresponds to CuO according to (CAS No 1317-
38-0). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Element Line Int W% A%

O Kα 82.9 22,55 50.68

Cu Kα 151.6 57.90 37.12

Zn Kα 37.6 19.55 12.20

100.00 100.00

Fig. 3. EDX spectra of prepared CuO-ZnO nanostructures.
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Fig. 5. TEM spectra of the prepared CuO-ZnO nanostructures in which (a) TEM low magnification, (b) , (c)  
and (d) TEM with high magnification, (e)  SAED (f) HRTEM. 

Fig. 4. EDX spectra of the prepared CuO-ZnO nanostructures in which (a) Cu, (b) Zn, (c) O 
and (d) the corresponding FESEM image. 
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Fig. 6. XPS spectra of sample CuO-ZnO (a) survey spectra (b) C 1s spectra (c) Cu 2p spectra (d) O 1s spectra and (e) 

Zn 2p spectra.
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Nevertheless, in Fig. 6 (e), it is noticed that 
there are two main well-characterized and 
separated peaks. These peaks are centered at a 
binding energy of 1021.9 eV and 1044.5 eV which 
corresponds to 2p3/2 and 2p1/2, respectively (CAS 
No 1314-13-2) [58, 59]. The large binding energy 
separation around 23 eV indicating the presence 
of Zn(II) [60].

To investigate the optical properties, UV/Vis 

spectrum of CuO-ZnO was studied as shown in 
Fig. 7. The spectrum revealed the presence of a 
shoulder at 372.4 nm related to intrinsic band 
gap of ZnO owing to the transition of electrons 
from the valance band to the conductance band 
(O2p to Zn3d). The insight figure showed the energy 
gap of the CuO-ZnO which is equal to Eg=2.51 eV. 
This variation in band gap is extremely successful 
approach to decelerate the electron–hole pair’s 
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Fig. 7. The UV/Vis spectrum of CuO-ZnO.
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recombination. The unique features of the 
new coupled structure permit to control their 
performance. Comparing to previous work the 
energy gap of CuO – ZnO value depends on several 
parameters such as shape, size and the ratio of 
ZnO to CuO. As example 20 nm spherical CuO – 
ZnO exhibited energy gap varied from 3.07 to 3.22 
eV [61]. Another reported work revealed that the 
energy gap of nanorods CuO-ZnO is decreased 
from 2.6 to 2.4 as the Cu amount increased [62]. 
Meanwhile, other researchers described the 
energy gap of CuO – ZnO nanorods as 1.5 eV with 
ham at 3.2 eV related to ZnO [63].  

The effects of doping CuO with Zn ions in terms 
of intrinsic and extrinsic defects were investigated 
using photoluminescence (PL) in the wavelength 
range between 200 – 800 nm as shown in Fig. 8. 
The spectra vouchsafed emission peaks at 238 nm, 
430 nm, 488 nm and 502 nm. The shoulder at 378 
nm is attributed to exciton transitions in the UV 
region relates to the band energy 3.28 eV [64]. 
As well, the peak at 430 nm followed the energy 
band of 2.45 eV originated from defects caused by 
oxygen vacancies [65]. The small PL peaks in the 
range between 450 to 475 nm could be attributed 
to the intrinsic defects of surface states in CuO [66]. 
As well as, the two peaks at 488 nm and 502 nm at 
the energy of 2.88 eV and 2.47 eV, respectively are 
originated from CuO original [67-69]. The orange-
red emission at 563 nm is attributed to ZnO [70].

CONCLUSION
In the current work, binary system of CuO-ZnO 

nanostructures was prepared using hydrothermal 
method. XRD measurements revealed that the 
CuO-ZnO nanostructures displayed the presence 
of monoclinic CuO and hexagonal phase ZnO. The 
SEM micrographs revealed that the morphology 
of the prepared sample was nanorods. The XPS 
spectrum revealed that the papered sample was 
free from other impurities. The HRTEM confirmed 
the existence of quantum dots coating the 
nanorods. We have demonstrated that the CuO-
ZnO binary system is a promising candidate for 
several applications.   
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